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The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach
this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced
density matrices, natural orbitals, and natural geminals (electron-positron pair wave functions) of the quantum
theory of many-particle systems. We find that an expression based on the natural geminals provides an exact,
unique, and compact expression for the momentum density. The natural geminals can be used to define and
to determine enhancement factors for enhancement models going beyond the independent-particle model for a
better understanding of the results of positron annihilation experiments.

DOI: 10.1103/PhysRevB.89.041105 PACS number(s): 78.70.Bj, 71.60.+z

When a positron annihilates with an electron, the emitted
γ photons provide valuable information on the surroundings
in which they annihilate. This is used in the positron emis-
sion tomography for living subjects [1] and in annihilation
spectroscopy for detection, quantification, and chemical and
structural characterizations of open-volume defects in mate-
rials [2] and for studying the Fermi surface of metals and
alloys [3]. In positron annihilation experiments, positrons
entering a solid thermalize very rapidly and trap effectively
at open-volume defects in which their measured lifetimes are
increased. Furthermore, the momentum density of annihilating
electron-positron pairs can reveal impurity or dopant atoms
around the trap or can give information on the structure of the
Fermi surface and correlation effects reflected in its shape.

Theoretical modeling has an important role in understand-
ing the indirect information contained in the experimental
results [2]. The measurable quantities can be modeled using
electronic structure techniques, but typically, instead of using
direct many-body modeling of positrons in a solid (see,
for example, Ref. [4]) one has to resort to using a mean-
field approach for the electrons and positrons. Much of the
modeling in the defect identification field is based on the
two-component electron-positron density-functional theory
[5] (DFT), but in this formalism, the fundamental quantities are
the real-space one-body electron and positron densities, and
the route to obtain two-body momentum-space observables
is not a practical one [6]. In practice, when modeling the
momentum densities ρ(p), one has to resort to band-structure
calculations and choose one of the various modifications of
the independent-particle model (IPM),

ρ(p) =
∑
occ. j

∣∣∣∣
∫

dr e−ip·rφp(r)φe
j (r)

∣∣∣∣
2

, (1)

appropriate for noninteracting systems (see, for example,
Refs. [7–10]). What the IPM does not describe is the effect
of short-range screening of the positron by electrons, a
many-body effect increasing the annihilation rate and affecting
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the measured ρ(p). In some models [8], this phenomenon
is incorporated by scaling the orbital product φp(r)φe

j (r) by

parametrized enhancement factors as
√

γj (r)φp(r)φe
j (r) to

describe the correlated electron-positron pair wave function
more realistically.

How exactly should the IPM be modified in order to take
correlations into account, preferably both electron-positron
and electron-electron ones? This way, one could calculate ac-
curate momentum densities with the two-component density-
functional theory without the need for expensive many-body
modeling. To answer this, we utilize concepts of reduced
density matrices (RDMs), natural orbitals (NOs), and natural
geminals [11,12]. The many-body reduced density-matrix
formalism combined with many-body modeling can be used
to derive and to analyze expressions, which resemble the
IPM of Eq. (1) but are exact even for correlated systems.
The reduced density matrices and NOs have been discussed
earlier in the context of electron momentum densities and
x-ray Compton scattering [13] where they are intriguing
since, for the NOs, the exact expression is simple and
similar to the analogous IPM for the electron momentum
density. Below we demonstrate that the two-body objects
corresponding to the NOs in the case of electron-positron
annihilation are the natural geminals [12]. They provide an
exact and unique connection from the many-body picture to
the two-particle one of the annihilating pair and lead to a
compact formula for ρ(p) in which we can further connect the
natural geminals to products of single-particle orbitals [NOs
or the orbitals within DFT and the Kohn-Sham (KS) method]
using enhancement factors describing the correlated motion.
The resulting expression still has a solid basis in the many-body
formalism. We perform accurate many-body modeling of finite
inhomogeneous electron-positron systems using the exact
diagonalization technique to get accurate reference momentum
densities and to benchmark the suggestion to go beyond the
IPM.

We focus on the 2γ annihilation in which the annihilating
electron-positron pair is in the spin singlet state. The momen-
tum density of the annihilating pairs reads

ρ(p) ∝
∫

dr dr′ e−ip·(r−r′)�ep(r,r; r′,r′), (2)
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where �ep(r,r; r′,r′) is the electron-positron two-body reduced
density matrix (2-RDM), defined as

�ep(rp,re; r′
p,r′

e) = NeNp

∫
dr3 · · · drN

×�(rp,re, . . . ,rN )�∗(r′
p,r′

e, . . . ,rN ).

(3)

Here, �(r1,r2, . . . ,rN ) is the many-body wave function of
the whole system, Ne and Np are the particle numbers, ri is
the position of particle i, and the subscripts e and p denote
electrons and positrons with fixed opposite spin components.
We assume the usual experimental case of only one positron
in the system at a time.

In the many-body formalism, especially within second
quantization, the 2-RDM typically is expanded using single-
particle orbital bases, say {φe

i } and {φp

i } such that

�ep(rp,re; r′
p,r′

e) =
∑
ijkl

ρ
ep

ijklφ
p

i

∗
(r′

p)φe
j
∗(r′

e)φp

k (rp)φe
l (re), (4)

where the factors are ρ
ep

ijkl = 〈a†
ipa

†
jealeakp〉. The IPM, which

is the exact result for a noninteracting system, results from this
expression. However, regardless of the orbital bases used, it
will turn out below that, for an interacting system, there are too
many significant coefficients ρ

ep

ijkl to construct a parametriza-
tion or a meaningful model that takes correlations into account.
Therefore, instead of trying to express the 2-RDM using
single-particle functions, one can expand by electron-positron
pair wave functions {ωi}, also called geminals,

�ep(rp,re; r′
p,r′

e) =
∑
ij

bijωi(rp,re)ω∗
j (r′

p,r′
e). (5)

Particularly useful are the natural geminals {αj }, which are the
unique orthonormal eigenfunctions of the 2-RDM [12],∫

dr′
pdr′

e�
ep(rp,re; r′

p,r′
e)αj (r′

p,r′
e) = gjαj (rp,re). (6)

The eigenvalues gj are non-negative occupations and satisfy∑
j gj = NpNe. Furthermore, the natural geminals provide a

diagonal expansion in Eq. (5).
Expanding using the natural geminals, the momentum

density of the annihilating pairs Eq. (2) becomes

ρ(p) ∝
∑

j

gj

∣∣∣∣
∫

dr e−ip·rαj (r,r)

∣∣∣∣
2

, (7)

where, unlike in the corresponding orbital expansion-based
expression [see Eq. (10) below], each term is positive at all
momenta p. Similar diagonal expressions have appeared in
the literature (see, for example, Ref. [14]) where the geminals
have been denoted as electron-positron pair wave functions.
In the present Rapid Communication, we are able to discuss
their nature in a general interacting many-body system and
to identify them unambiguously as natural geminals. One can
possibly relate the natural geminals to the Lehmann represen-
tation geminals of the two-particle Green’s function similarly
as the natural orbitals are connected to the generalized overlap
amplitudes [15].

In addition to the momentum density of annihilating pairs,
another important experimental parameter is the positron

annihilation rate. With all four coordinates the same, the above
2-RDM is the contact density, namely, the density of electrons
at a positron at point r, the quantity determining the lo-
cal positron annihilation rate γ (r)ne(r)np(r) = �ep(r,r; r,r).
Here, γ (r) is the so-called enhancement factor of the total
density (the zero-distance value of the electron-positron pair
correlation function at r) appearing in the positron literature.
Its purpose is to incorporate many-body effects, namely, to
take the short-range screening of the positron by the electrons
into account when evaluating the positron annihilation rate λ

or the mean lifetime τ using the DFT’s uncorrelated one-body
electron and positron densities ne(r) and np(r),

λ = 1

τ
∝

∫
dr γ (r)ne(r)np(r). (8)

Typically, γ (r) is approximated within the local-density
approximation (LDA), and the parametrizations are based on
many-body calculations performed for homogeneous electron-
positron systems [5,16–18]. How to define the enhancement
factor γ (r) for the total particle densities is straightforward.
The next question would be how to properly define similar
enhancement factors for correcting momentum densities and
products of uncorrelated single-particle orbitals.

The natural geminal expansion Eq. (7) differs from the
IPM of Eq. (1) by the eigenvalues gj and that the product of
the single-particle orbitals is replaced by a geminal involv-
ing correlations. In the limit of vanishing electron-positron
interaction, the natural geminals simply are products of the
positron and electron natural orbitals ϕ

p

0 (r) and ϕe
j (r) (nor-

malized eigenfunctions of the respective 1-RDMs) α0
j (r,r) =

ϕ
p

0 (r)ϕe
j (r), and the eigenvalues gj are the products of the

electron and positron natural orbital occupations (eigenvalues
of the 1-RDM). Therefore, and to meet and to interpret the state
and position-dependent enhancement factors of enhancement
models [8], we define

√
γj (r) using

αj (r,r) = √
γj (r)ϕp

0 (r)ϕe
j (r). (9)

Hence, the many-body interpretation of the state- and
position-dependent enhancement factors is to relate natural
orbitals to natural geminals. This can be made explicit
by expanding the geminals by natural orbitals αj (rp,re) =∑

mn c
(j )
mnϕ

p
m(rp)ϕe

n(re), where the dominant term should be
ϕ

p

0 (rp)ϕe
j (re) for the enhancement factors to be reasonable.

This seems to be true for natural geminals of high occupation
gj , but for low gj , the Schmidt decomposition shows that
the natural geminals are entangled with orbitals that are more
deformed from natural orbitals. Furthermore, the nodes of the
natural geminals and natural orbitals do not match in general,
in which case, the defined enhancement factor can exhibit
singularities. We have not encountered such problems in our
model systems.

In our model system, we confine eight electrons and
one positron in a three-dimensional harmonic trap Vext(r) =
ω2r2/2 (we use the Hartree atomic units). For a more realistic
model, see Ref. [19]. The exact diagonalization (ED) method
is used to solve the ground state with the many-body basis
truncated by allowing only Slater determinants of the lowest
eight noninteracting shells (120 orbitals) with noninteracting
total energy less than a chosen cutoff (E � 33ω). The 1-RDM
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FIG. 1. (Color online) (a) The total momentum density, un-normalized diagonal sums of Eq. (10) for the natural orbitals (NO) and HO
orbitals, and the convergence analysis of Eq. (7) for the ω = 0.2 system. The inset shows the high-momentum regime and the behavior of
the two-shell NO sum. (b) Enhancement factors for the ω = 0.4 system. The solid (black) line shows the factor

√
γ (r) evaluated with ED.

The (blue) dashed lines show the
√

γj (r)’s for the s and p shells. The solid (orange) line is the
√

γ (r) according to a two-component LDA
functional [16], the (red) dashed line is its zero-positron-density limit [5], and the dotted (green) one is the result of the GGA (Ref. [17]), which
also is formulated in this limit. The ED results are not converged near the border of the figure because of the finite extent of the basis functions.
(c) Two-shell diagonal sums of Eq. (10) for various bases as well as a convergence analysis of Eq. (7) for the ω = 0.4 system plotted as a ratio
to the accurate ED spectrum. All spectra have been normalized prior to taking the ratio. Also, the position-dependent LDA model employing
the LDA γ (r) (Ref. [8]) has been applied as well as the state-dependent enhancement factor by Alatalo et al. [9].

and 2-RDM are straightforward to extract from the total
wave function, and natural orbitals and geminals are solved
by diagonalizing these. Our model systems have the two
lowest electron shells (four orbitals) occupied within the
IPM. The magnitudes and degeneracies of the largest gj

and the symmetries of the corresponding αj (r,r) reflect the
very same shell structure seen in either the NOs and their
occupations or in the DFT’s LDA orbitals and eigenval-
ues. To exemplify, for a ω = 0.4 system with an electron-
density parameter rs � 1.6 a.u., we find a singly degenerate
g0 = 0.943 and a triply degenerate gj = 0.917 (j = 1,2,3),
whereas, regardless of the ω value, the corresponding αj (r,r)’s
have s- and p-type symmetries arising from products of s-
and p-type electron orbitals with an s-type positron orbital.
Moreover, according to our data, the enhancement factors
for our spherically symmetric models are shell-dependent
radial functions. This suggests that one could be able to
parametrize them as local- or semi-local- (shell-) density
functionals.

We start our analysis of momentum densities, calculated
for our model systems, by considering the convergence
of the natural geminal expansion expression. Figure 1(a)
shows the full momentum density and the convergence of
Eq. (7) as a function of the number of terms included for
an ω = 0.2 system with rs � 2.4 a0. We observe a rapid
convergence of both the shape and the mass of the spectrum.
The four eigenvalues corresponding to the pairs of orbitals
occupied in the IPM are not quite enough to reproduce the
mass, but the shape is already good. The natural geminal
expansion expression appears to be much more compact than
the corresponding single-particle orbital expression based on
Eq. (4),

ρ(p) ∝
∑
ijkl

ρ
ep

ijkl

[ ∫
dr e−ip·rφp

k (r)φe
l (r)

]

×
[ ∫

dr′ e−ip·r′
φ

p

i (r′)φe
j (r′)

]∗
, (10)

namely, the important off-diagonal terms of the four-index sum
of Eq. (10) are reproduced by the natural geminal terms in the
one-index sum of Eq. (7). To be useful, for real calculations,
Eq. (10) should have rather diagonal ρ

ep

ijkl in a convenient
basis and should converge fast as a function of the number
of terms included. This appears not to be the case as will be
demonstrated below.

We test Eq. (10) by restricting to diagonal sums consisting
of terms corresponding to ρ

ep

ijij and studying how they look
for different choices of the bases. We choose: (i) NOs [11]
calculated with ED, (ii) orbitals calculated using fully self-
consistently the two-component electron-positron density-
functional theory [5] within the LDA for the electron-electron
exchange and correlation energy [20] and electron-positron
correlation energy [16], (iii) obtained using accurate ED den-
sities and an inversion algorithm providing the corresponding
exact local potentials and orbitals [21,22], and (iv) those of a
noninteracting harmonic oscillator (HO).

Figure 1(a) also displays sums of the diagonal terms of
Eq. (10) with the factors ρ

ep

ijij from ED for two exemplary
basis sets, the NO and the HO orbitals. The discrepancy
between the truncated sums and the full results in Fig. 1(a)
clearly shows that the off-diagonal terms do, regardless of the
basis used, have a significant contribution to the mass of the
full spectrum (although not always to their shape), especially
in strongly interacting systems (small ω), such as this one.
Since the interactions are reflected better in the NOs, the
shape of the spectrum is reproduced better than with the HO
orbitals. The same also applies to the KS orbital bases (not
shown). The mass of the full spectrum is larger than that of
the diagonal sum, which corresponds to an increasing positron
annihilation rate with an increasing number of off-diagonal
terms. The inset of Fig. 1(a) inspects the high-momentum
region of the spectra in case of the NO basis. The diagonal
sum has a larger intensity at high momenta than the full one,
especially in case of this more strongly interacting system.
This kind of a convergence is possible for Eq. (10) since
there is no guarantee that the off-diagonal elements of ρ

ep

ijkl
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or the corresponding terms would be positive. It turns out that
this overestimation can be cured by including, in the sum,
only the terms corresponding to states, which are occupied in
the IPM, namely, the lowest positron state and two occupied
electron shells [see the inset of Fig. 1(a)]. We have analyzed the
convergence as a function of the number of off-diagonal terms
using the HO basis, and the convergence seems rather slow, too
slow to provide a simple model for improving the two-shell
diagonal sums. The spectra in Fig. 1(a) are un-normalized.
However, when they are normalized to the same number of
“counts” as when comparing theory against experiments, the
discrepancy appears smaller.

We now have established the rapid convergence of the
natural geminal expansion in comparison with the poor
performance of the orbital-based formula. The next step is then
to demonstrate, in practice, how the many-body problem can be
connected in another way with the single-particle picture using
the natural geminals and enhancement factors as in Eq. (9).
Figure 1(b) shows a comparison of different enhancement fac-
tors for the ω = 0.4 system with rs � 1.6 a0. We use the exact
limit, the NOs as our reference orbitals. The link to the practical
DFT calculations here is that they differ very little from the KS
orbitals. From our ED data, we evaluate the square root of the
enhancement factor of the total density

√
γ (r) and the state-

dependent enhancement factors of Eq. (9). The agreement
between these quantities is rather good, which provides some
support for the use of the accurate total density’s γ (r) in models
with a position-dependent enhancement [8], although some
state dependence can clearly be seen. Figure 1(b) also com-
pares the above quantities to different LDA enhancement fac-
tors evaluated from LDA densities. The two-component LDA
parametrization of Ref. [16] reproduces the correct shape, but
the magnitude is too large, whereas, the zero-positron-density
limit, appropriate for delocalized positrons, also has, within
the LDA (Ref. [5]), a wrong shape. This also applies to the
generalized-gradient approximation (GGA) [17]. The struc-
ture in these two

√
γ (r)’s arises from having a nonmonotonous

electron-density profile with a side maximum at ∼1.3a0.
Similar to what is seen in Fig. 1(b), the LDA γ (r)’s are well
known to overestimate positron annihilation rates in solids.
For the ω = 0.4 system in Fig. 1(b), the two-component LDA
of Ref. [16] predicts a positron lifetime of 132 ps, whereas,
the ED result is 261 ps. The zero-positron-density limit of the
LDA enhancement gives 115 ps, and the GGA gives 114 ps.
The discrepancy in the enhancement factors and the lifetime in-
creases with decreasing ω, whereas, the two-component LDA√

γ (r) of Ref. [16] still always reproduces the correct shape.
The LDA assumes a metallic system, whereas, our system is
a finite closed-shell one. On the other hand, the low-density
limit of the LDA involves formation of positronium atoms and
negative ions, which is not expected in our model system where
both particle types are strongly confined by the same potential.

We still need to discuss the results of the various expansions
we have presented in terms of how they compare with results
of existing models applied in DFT calculations. Figure 1(c)
shows normalized spectra divided by the normalized accurate
ED spectrum and compares the convergence of two-shell
diagonal sums of Eq. (10) corresponding to the sum over
pairs of orbitals occupied in the IPM in various bases to
that of the natural geminal expansion Eq. (7) as well as

against DFT-based model results. These normalized spectra
are more appropriate in theory-experiment comparisons. Here,
we consider the ω = 0.4 system but emphasize again that
the conclusions drawn do not depend on ω. The normalized
two-shell sums (NOs, LDA, and exact KS orbitals) have
a common tendency to underestimate the low-momentum
intensity and to overestimate the high-momentum one. On
the other hand, Fig. 1(c) further demonstrates the compactness
of the natural geminal expansion. The shape of the spectrum
is, at low momenta, already very good with four terms, and
the high-momentum part improves systematically with an
increasing number of terms.

Of the models applied within DFT, the model of Alatalo
et al. [9]. uses state-dependent enhancement factors and
orbitals calculated with DFT, and the expression used looks
similar to the diagonal of Eq. (10) with the summation
restricted to the IPM’s states. When the LDA is used to evaluate
the enhancement factors of this model, the results are known
to overestimate annihilation with core electrons and, thereby,
the high-momentum intensity [23]. This same tendency can
be seen in the present results in Fig. 1(c). On the other
hand, a LDA model with a position-dependent enhancement
[8], applied using LDA orbitals and the (state-independent)
two-component γ (r) (Ref. [16]), works rather well for our
systems, especially, concerning the shape of the spectrum
at low momenta and the high-momentum intensity. The
high-momentum part is oscillatory relative to the reference
result unlike other model results. These findings are consistent
with theory-experiment comparisons, which show that the
state-dependent enhancement model overestimates the high-
momentum intensity in comparison with experiments and the
position-dependent LDA model [23]. However, when a coinci-
dence Doppler spectrum is plotted as a ratio to a reference one,
the shape is reproduced better than with the position-dependent
LDA model where the oscillations lead to a worse agreement
with experiment. The agreement in the spectra [Fig. 1(c)] and
in the extracted enhancement factors [Fig. 1(b)] provides sup-
port for the position-dependent enhancement model using an
accurate state independent γ (r), although some improvement,
possibly in the form of state dependence, is needed in order
to improve the model. Also, one would have to find a way to
approximate the gj occupations and to better understand the
enhancement factors of the low-gj geminals, which we leave
outside the scope of the present Rapid Communication.

In conclusion, we have introduced an expression for the
momentum density of annihilating electron-positron pairs
written in terms of natural geminals that provides both an exact
and a unique definition for an orthogonal electron-positron pair
wave function familiar from positron literature and a rapidly
convergent diagonal expression even for strongly interacting
systems. The geminals and the concept of enhancement
factors can be used as a means to link the problem to the
single-particle picture more appropriate for practical modeling
more effectively than using a direct orbital expansion of
the two-body reduced density matrix. The natural geminals
can be extracted from accurate many-body wave-function
calculations and can be used to define and to parametrize
state- and position-dependent enhancement factors for models
going beyond the independent-particle model and being able
to describe correlated electron-positron systems.
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