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Subwavelength waveguides composed of dielectric nanoparticles
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We study waveguiding of the electromagnetic energy below the diffraction limit with arrays of dielectric
nanoparticles through the excitation of both electric and magnetic Mie resonances. We analyze the dispersion
characteristics of such coupled-resonator optical waveguides by means of the coupled-dipole approximation and
then verify the validity of the coupled-dipole model by comparing the results with direct numerical simulations. We
reveal that a chain of silicon nanoparticles with realistic material losses can guide light for the distances exceeding
several tens of micrometers, which is significantly better than the guiding by any plasmonic waveguide with the
propagation distances less than 1 μm. We verify the main concept and our theoretical findings experimentally at
microwaves for an array of ceramic particles.
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I. INTRODUCTION

A new type of optical waveguide, drastically different
from conventional waveguides involving either the Bragg
scattering or total internal reflection, is based on the guiding
properties of an array of coupled high-Q optical resonators [1].
Recent realizations of such novel waveguides include chains
of microresonators or microcavities [2–4], magnetoinductive
waveguides [5–11] with magnetic resonators coupled by
induced voltages, and chains of metallic nanoparticles with
subwavelength localized waves guided due to the excitation
of surface plasmon polaritons [12–28]. Very small sizes of
plasmonic nanoparticles and the ability of such waveguides to
bend without any significant reduction of a signal propagation
suggest their use as building blocks for photonic integrated
circuits [14]. Conventionally, a nanoparticle waveguide can be
modeled as an infinite chain of magnetic or electric dipoles,
and it supports guided waves under certain conditions when
losses are neglected [20,29]. It was demonstrated that the
propagation constants of plasmonic modes are strongly af-
fected by nonquasistatic components of the dipole field and the
effect of retardation in polarizability and mainly by dissipative
losses in metals [19]. Experimental plasmonic chains were
studied in Refs. [15,16,30–32], where limited propagation
distances of optical signals were observed. In order to decrease
the signal attenuation, one can employ core-shell plasmonic
nanoparticles [33], adjust a design of the waveguiding struc-
tures [24,27,34], or introduce gain media [35–37]. However,
all such advances do not allow achieving substantially longer
propagation distances of the guided modes, and therefore this
limits applications of plasmonic waveguides based on metal
nanoparticles.

One of the approaches that can improve the propagation
distances of optical energy in array waveguides is to use
dielectric nanoparticles with high refractive index, such as
silicon. According to the Mie solutions, silicon spherical
subwavelength nanoparticles can support both magnetic
dipole (MD) and electric dipole (ED) resonances in the
optical frequency range [38]. Such a feature of dielectric
particles, i.e., the presence of both magnetic and electric
resonances, gives an additional control possibility over the

light scattering. It has been employed to improve efficiency
of optical nanoantennas [39,40] and achieve all-dielectric
negative-index metamaterials at mid-IR [41] (experimentally
shown in [42]) and optical frequencies [43]. For a silicon
nanoparticle with the refractive index n ≈ 4 and radius
R ≈ 100–200 nm, the lowest frequency resonance is the
MD resonance at wavelength λm ≈ 2nR, which makes the
linear size of particles several times less than the operating
wavelength. Recently, those resonances were experimentally
demonstrated [44,45]. From a practical point of view,
silicon photonics is considered to be very promising for
the development of optical and optoelectronic photonic
integrated circuits [46,47] because of a possible use of silicon
microelectronics fabrication technologies. The most important
advantages of dielectric particles over plasmonic ones, when
it comes to the waveguide applications, is the level of losses,
which is several times lower in silicon than in metals.

One-dimensional arrays of dielectric nanoparticles were
studied for the subwavelength guiding in a number of
papers [48–59]. In particular, Quidant et al. [48] demon-
strated numerically and experimentally the possibility of using
a chain of mesoscopic dielectric (TiO2) heterowires as a
subwavelength waveguide with the propagation distances of
several micrometers. In other studies [53,55], it was shown
numerically that a chain of infinitely long circular GaAs rods
with radius 100 nm (below the diffraction limit) and a chain
of appropriately arranged dielectric nanospheres with high
refractive index allow the energy transfer with a subwavelength
transverse confinement and also that propagating signals can
be transported around corners and split with Y-type structures.
The possibility of bending periodic dielectric waveguides at
the angles up to 180◦ with high efficiency was numerically
demonstrated in Refs. [49,51,54]. Some features (in particular,
high quality factors) of the wave propagation in finite chains of
dielectric particles were demonstrated [50,52]. Although the
use of dielectric particles imposes a low limit on the particles
size (while plasmonic particles of any size support plasmonic
resonance), all studies claimed a much higher propagation dis-
tances in dielectric chain waveguides compared to plasmonic
arrays. A consistent theory based on a dipole approximation,
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which makes it possible to study the dispersion characteristics
of complex dipolar waves in one-, two-, and three-dimensional
arrays of electric and/or MDs, was developed in Refs. [57,58].

In this paper, we employ a theoretical approach to study the
transmission properties of one-dimensional chains of silicon
nanoparticles, which under certain conditions can be modeled
as an array of electric and magnetic dipoles. To characterize the
guiding properties and justify the applicability of the model,
we compare theoretical results with numerical simulations.
Furthermore, we verify experimentally the concept of sub-
wavelength waveguides composed of dielectric particles in
the radio-frequency range. We also estimate the propagation
distances in such waveguides depending on the particle spacing
and radius.

The paper is organized as follows. In Sec. II, we introduce
our theoretical model that describes an array of coupled electric
and MDs, and then verify it in Sec. III with direct numerical
simulations. Our experimental results are summarized in
Sec. IV, and then Sec. V concludes the paper. We note that the
Gaussian system of units is used in all equations throughout
the paper.

II. THEORETICAL MODEL

We start our study by describing a coupled-dipole approx-
imation model [38,60,61], which we employ to obtain the
dispersion characteristics of a chain of silicon nanoparticles
shown schematically in Fig. 1(a). Silicon particles of radius
R with refractive index n are simulated as magnetic and
electric point dipoles with magnetic m and electric p momenta,
oscillating with frequency ω [∝exp(−iωt)]. For the zeroth
point dipole the momenta induced by the electromagnetic field
of all other dipoles in the chain can be written in as

p0 = αe

∑
n�=0

(Ĉnpn − Ĝnmn),

m0 = αm

∑
n�=0

(Ĉnmn + Ĝnpn),

where Ĉn = AnÎ + Bn(̂rn ⊗ r̂n), Ĝn = −Dn̂rn × Î , ⊗ is a
dyadic product, Î is the unit 3 × 3 tensor, r̂n is the unit vector
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FIG. 1. (Color online) (a) A chain of dielectric (with permittivity
εsp) particles with radius R and period a, located in the host medium
with permittivity εh. (b) Schematic of all different eigenmodes in a
chain of nanoparticles.

in the direction from the zeroth to the nth sphere, and

An = exp(ikha|n|)
a|n|

[
k2
h − 1

(a|n|)2
+ ikh

a|n|
]

,

Bn = exp(ikha|n|)
a|n|

[
−k2

h + 3

(a|n|)2
− 3ikh

a|n|
]

,

Dn = exp(ikha|n|)
a|n|

(
k2
h + ikh

a|n|
)

,

where a|n| is the distance between the centers of the zeroth
and the nth spheres, a is the period of the structure, εh is the
permittivity of the host medium, and kh = √

εhω/c is the host
wave number.

Knowing the magnetic and electric polarizabilities αm and
αe of the sphere, we can obtain three independent dispersion
equations [20,57,58]. The first equation is for the transverse
polarization [see Fig. 1(b)],(

a3

αe

− A

) (
a3

αm

− A

)
− D2 = 0, (1)

and two other equations describe the longitudinal polarization
[see Fig. 1(b)],

a3

αm

− (A + B) = 0, (2)

a3

αe

− (A + B) = 0, (3)

where

A = a3
∑
n�=0

Ane
iβan = (kha)2Li+1 + ikhaLi+2 − Li+3 ,

D = a3
∑
n�=0

|n|
n

Dne
iβan = (kha)2Li−1 + ikhaLi−2 ,

B = a3
∑
n�=0

Bne
iβan = 3Li+3 − 3ikhaLi+2 − (kha)2Li+1 ,

Li±s = Lis{exp[i(kh + β)a]} ± Lis{exp[i(kh − β)a]},
with the function Lis(z) = ∑∞

k=1
zk

ks as a common polyloga-
rithm [62]; here β is the Bloch wave number, and

1

αe

= −i
2k3

h

3εha
sc
1

,
1

αm

= −i
2k3

h

3bsc
1

, (4)

are the inverse electric and magnetic polarizabilities, respec-
tively, defined from the Mie theory [63], with asc

1 and bsc
1 being

the scattering coefficients.
In our calculations, we choose the following parameters:

permittivity of silicon particles εsp = 16, permittivity of the
host medium εh = 1, radius of the particle R = 70 nm. Two
values of period a are considered: a = 2R = 140 nm, when
particles are touching each other, and a = 200 nm. We do not
take into account the material dispersion of silicon because
the real part of the permittivity does not change significantly
in the required spectral range and the imaginary part is small
enough, so the changes caused by material losses would be
proportional to Im(εsp) and therefore can be easily evaluated,
being small. In the optical frequency range, Im(εsp) can be as
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small as ≈0.05 and even being several times smaller in the
near-infrared region [64].

III. NUMERICAL RESULTS

First, we study the characteristics of guided waves in chains
of lossless silicon particles. The imaginary part of inverse
polarizabilities (4) for the lossless spheres in the transparent
medium are [65]

Im(1/αe) = −i
2

3

k3
h

εh

, Im(1/αm) = −i
2

3
k3
h,

so that the left-hand sides of the dispersion equations (1)–
(3) for real-valued β > kh are also real valued [57], thus
providing the conditions for existence of allowed bands with
unattenuated guided modes near the MD and ED resonances.
This is the property of an infinite chain of lossless scatterers.

For any finite-size chain dispersion, equations (1)–(3) would
be complex valued and the modes would be attenuated due to
radiative losses, i.e., scattering in the free space.

Real-valued solutions are obtained by solving analytical
dispersion equations for the periods a = 200 nm and a =
140 nm, and they are shown in Figs. 2(a) and 2(b). Two solid
curves correspond to the transversely polarized forward waves
marked as TM and TE. The abbreviation TM (or TE) does
not mean that this transverse eigenmode is purely magnetic
(electric) mode, i.e., a mode of a chain of magnetic (electric)
dipoles; rather it means that an allowed TM (TE) band is close
to MD (ED) resonance of a silicon particle. We also show
the dispersion curves for noninteracting chains of magnetic
and electric dipoles, i.e., when an electric moment vanishes
(purely magnetic transverse-polarized modes, marked with
MD) and when a magnetic moment vanishes (purely electric
transversely polarized modes, marked with ED), obtained with
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FIG. 2. (Color online) (a),(b) Dispersion diagrams of infinite chains of lossless spherical silicon nanoparticles and uncoupled chains of
electric and magnetic dipoles (only real solutions of dispersion equations for both transverse and longitudinal polarizations are shown) for
period of (a) 200 nm and (b) 140 nm. Solid black curves (TM and TE) show solutions of Eq. (1), dashed curves (MD and ED) show solutions of
Eqs. (5), solid red and green curves (LM and LE, respectively) show solutions of Eqs. (2) and (3). Eigenmodes, numerically calculated with the
MPB package, are shown with black squares. The oblique gray line is the light line. Horizontal dashed blue lines indicate the positions of MD
and ED resonance frequencies. (c),(d) Numerically calculated transmission spectra of a chain of six silicon spheres with periods (c) a = 200 mm
and (d) a = 140 nm. (e)–(l) Electric field distributions in the corresponding modes. The operational range of normalized frequenices kha/π

lies within an optical spectral range for the chosen values of period.
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the following dispersion equations:

a3

αm

− A = 0,
a3

αe

− A = 0. (5)

In contrast to the transversely polarized modes, for the
longitudinally polarized modes there is no coupling between
magnetic and electric dipoles, so that both red and green curves
marked with LM and LE are solutions of the independent
dispersion equations (2) and (3), respectively.

Following from Fig. 2(a), for large-enough periods (a �
3R) the modes TM and MD and TE and ED almost coincide,
because MD and ED resonance frequencies of silicon spheres
with chosen parameters are located far from each other and,
therefore, the magnetic and EDs are weakly interacting with
each other. One of the transversely polarized modes—the
TM mode—is almost completely a magnetic mode, and
another—TE—is almost completely electric. In Fig. 2(b),
when the gap between the particles is absent, the difference in
the dispersion curves becomes substantial, which emphasizes
the necessity of consideration of both magnetic and electric
modes simultaneously, especially for the chains of smaller
periods.

To determine the conditions under which the dipole ap-
proximation model remains valid, in Figs. 2(a) and 2(b) we
compare the results obtained with the analytical model with
the numerical results shown with black squares, calculated
using the MPB package [66]. This approach employs the
supercell method, so, in principle, we calculate eigenmodes
of a three-dimensional array, but with large periods in both
x and y directions. It is a reasonable approximation for a
one-dimensional array, when the field is well confined in the
transverse directions, i.e., when rloc = 1/[2Im(kr )] is small,

where kr =
√

k2
h − β2. Therefore, near the light line (β = kh)

there might be a certain inaccuracy in the MPB calculations.
Two numerically found low-frequency guided TM and LM

modes coincide exactly with the modes described by the
analytical model for both periods. Electric transverse TE and
longitudinal LE modes are well described by the dipole model,
when there exists a large-enough gap between the spheres,
but when the gap vanishes, the dipole model exhibits a small
inaccuracy near the ED resonance [Fig. 2(b)]. The similar
difference between the dipole model and exact solutions,
obtained by summation of all multipole moments, for the TE
and LE modes was also reported in Ref. [59] for a chain of
dielectric spheres with permittivity ε = 10.

Numerical calculations also indicate the excitation of
higher-order multipole modes, absent in the dipole model. The
magnetic quadrupole (MQ) resonance frequency of a silicon
sphere is higher than the ED resonance frequency [67], but
the corresponding longitudinal magnetic quadrupole (LMQ)
band broadens, when the period of chain decreases, shifting
partially to lower frequencies [Fig. 2(b)], thus making the
dipole approximation incomplete near the ED resonance
frequency for very small periods. Other multipole modes
remain at higher frequencies, and we do not show them in
Fig. 2. Thus, unlike the plasmonic chain waveguides, where
the field is strongly localized in gaps between the particles,
and the multipole approach is deemed to be necessary even
for the large periods [68–70], eigenmodes of a silicon chain

waveguide can be very accurately described within a dipole
approximation in a wide range of parameters.

To study the realistic case of chains of a finite extent
and to check a possibility of exciting the numerically found
eigenmodes, we employ CST Microwave studio [71] for
simulating the transmission of optical signals generated by
a magnetic loop probe through two chains of six silicon
spheres with 200- and 140-nm periods [Figs. 2(c) and 2(d)],
respectively. Magnetic loop probes, oriented along the chain,
are located on both ends of the chain as a source and receiver of
radiation. Due to the inhomogeneity of current in these probes,
not only LM and LMQ, but also TM and even TE modes (in
the case of touching spheres) are excited.

For a chain with a 200-nm period [Fig. 2(c)] we clearly
observe a transmission band around kha/π = 0.7 formed
by excited TM and LM modes [Figs. 2(f) and 2(g)]. A
transmission band around kha/π = 1 is formed by multipole
modes. The highest peak corresponds to the LMQ mode with
β = 0 [Fig. 2(e)], which is excited more effectively than other
modes. This mode crosses the light line (i.e., this is a radiating
leaky wave), and therefore it is not shown in Fig. 2(a), where
only unattenuated modes are presented. The same situation
is observed in Figs. 2(b) and 2(d) for the chain with the period
of 140 nm. To calculate these frequencies (at the upper edges
of the LMQ bands), we use the eigenmode solver in CST
Microwave Studio. We place the chains in a 700 × 700 nm
rectangular waveguide with PEC walls, so energy is conserved,
and because the modes are longitudinal, we are able to track
them distinctly for any Bloch wave number β. Numerically
found frequencies for β = 0 are kha/π ≈ 1.02 for a 200-nm
period and kha/π ≈ 0.76 for a 140-nm period, which coincide
with the values in the transmission spectra at the upper edges
of the LMQ bands [Figs. 2(e) and 2(h)].

For the chain with the period of 140 the transmission peaks
correspond to LMQ [Figs. 2(h) and 2(i)], LM [Fig. 2(k)], and
TM [Fig. 2(l)] modes, which are consistent with the calculated
dispersion curves. It is known [72], that the magnetic resonance
of such spheres is strongly localized within them, so the
spheres are coupled stronger, and LM and LMQ bands become
wider, when the period of the chain decreases [5]. One can
also observe a transmission peak at kha/π ≈ 0.61 [Fig. 2(j)]
corresponding to the TE mode, which is also excited due to
the current inhomogeneity in the probes.

Within a dipole approximation, our analytical model makes
it possible to calculate leaky waves, which we observe in the
CST simulation, and to take into account losses in silicon.
Figure 3 presents a more general case of Fig. 2(a) that includes
complex solutions (leaky waves). We show the dispersion
diagrams in the case of only transversely polarized modes
for the chain of (a) and (b) lossless and (c) and (d) absorptive
silicon particles with the period of 200 nm (the case of the
140-nm period is qualitatively similar). Modes 1 and 2 and
the corresponding modes in the uncoupled model (and their
symmetric counterparts in the lossless case) are analytical con-
tinuations of the modes TM, MD, TE, and ED in Fig. 2(a). We
observe that interaction between magnetic and electric dipoles
affects mostly the leaky waves [Im(β) > 0]. Modes 1 and 2
(as well as modes 3 and 4) that start as purely magnetic and
electric modes are well described only at very low frequencies,
while at higher frequencies, close to the resonances of the
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FIG. 3. (Color online) Structure of complex modes for the chain
of (a),(b) lossless and (c),(d) lossy silicon spheres with period of
200 nm. Solid black lines show solutions of Eq. (1), short-dashed red
and long-dashed green lines show dispersion curves of the chains of
purely electric and purely magnetic dipoles, respectively, described
by Eqs. (5).

sphere, they merge into an indistinguishable branch that is
substantially different from the modes of independent MDs
and EDs chains. Meanwhile, the guided modes with Im(β) = 0
undergo a slight change, as shown in Fig. 2(a). Besides the
common interest of the entire complex mode structure of such
chains, dispersion characteristics of the leaky waves might
be of special importance for optical nanoantennas based on
periodic arrays of small scatterers [39,73].

In the case of lossy silicon spheres [Fig. 3(b)] with
Im(εsp) = 0.5 (we choose a large value 0.5, so the difference
in the mode structure caused by losses could be easier traced)
degenerated modes 1,2 and 3,4 split, and the system does not
have symmetric β and β∗ solutions. Interaction between MDs
and EDs affects the real parts of guided modes 1 and 2 even
more, when the material losses are taken into account.

Numerical calculations of complex modes allow us to
estimate such important characteristics of waveguides as a
balance between the propagation distance z0 = 1/[2Im(β)]
and the field localization in the transverse direction rloc. In
Fig. 4, we show the dependencies of z0 on the period of
the structure for three different values of rloc: 75, 100, and
125 nm. We observe that the propagation distance for the TM
mode grows with decreasing the chain period, reaching the
maximum value z0 ≈ 15 μm (for rloc = 125 nm), when the
period equals two radii. TM modes are well described within
a dipole model, so such estimates can be considered as pretty
accurate. A TE mode with some fixed value of rloc has the
maximum propagation distance z0 at a certain value of period.
This value z0 is approximately the same as that for the TM
mode with the same radius of localization rloc.
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FIG. 4. (Color online) Propagation distance z0 as a function of
the period a of the chain for three different radii of localization rloc

for transversely polarized modes. Red solid curves correspond to
the “magnetic” TM modes; green dashed curves correspond to the
“electric” TE modes.

The estimates of the propagation distances are made for the
level of losses Im(εsp) = 0.1 corresponding to the wavelength
λ ≈ 700 nm. In the spectral range 700–1000 nm losses can be
several tens of times less [64], and therefore the propagation
distances can reach tens and even hundreds micrometers, while
the radius of the field localization would be considerably less
than the operating wavelength. Comparison to the nanowaveg-
uides, based on plasmonic particles, where the propagation dis-
tances are predicted to be several hundred nanometers [12,16],
about 2 μm for the core-shell particles chains [33] and up
to 10 μm for multiple-particle chains [74,75], indicates the
apparent advantage of the waveguides composed of dielectric
nanoparticles, so that the propagation lengths more than
10 μm can be achieved with silicon nanospheres even at the
frequencies where losses are rather strong for bulk dielectric
material.

IV. CONCEPTUAL EXPERIMENTAL VERIFICATION AT
MICROWAVES

In order to verify experimentally the concept of a dielectric
waveguide composed of a chain of dielectric nanoparticles,
we scale down the dimensions to the microwave frequency
range. To mimic the silicon spheres at these frequencies,
we employ MgO-TiO2 ceramic particles characterized by
dielectric constant of ≈15.4 and dielectric loss factor of
≈1.15 × 10−4 measured in the 4–10-GHz frequency range.

The experimental structure consists of six ceramic
spheres with radius Rc ≈ 7.5 mm, placed with periods a ≈
Rc(200/70) ≈ 21.4 mm [Fig. 5(a)] and a ≈ Rc(140/70) =
15 mm [Fig. 5(b)]. Particles are located on a substrate made of
a styrofoam material with the dielectric permittivity of 1. The
experimental setup consists of two small (6 and 8 mm inner
diameter) shielded-loop antennas, which are connected to the
vector network analyzer (Agilent E8362C) through coaxial
cables (85131F). The transmitting loop antenna is located 1
mm in front of spheres and the receiving antenna 1 mm behind
the spheres in such a way that magnetic moments are oriented
along the spheres (in the z direction). In such a configuration,
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FIG. 5. (Color online) Comparison between experimental data
(solid red curves) and numerically calculated transmission spectra
(dashed blue curves) for a chain of six ceramic spheres with radius
Rc = 7.5 mm, εc = 15.4, and periods (a) a = 21.4 mm and (b)
a = 15 mm.

the experimental setup is similar to that employed for the mea-
suring magnetoinductive waveguides, which support only LM
modes. In our case, excitation sources are not ideal magnetic
point dipoles, so the modes of different types are excited.
Due to an inefficient coupling between loop antennas and
chain-waveguide modes, the transmission coefficients are well
below the unity. An analysis of various methods of effective
excitation of a certain eigenmode requires a more rigorous
approach, and it is a subject of a separate different study.

As is explained above, for the chain with nonzero gap
[Fig. 5(a)] we observe rather narrow LM and LMQ bands with
one sharp peak in each band. In the case of touching spheres
[Fig. 5(b)] these bands broaden and six distinct peaks (at least
for a LMQ band) are observed. Besides, low-transmission
peaks at the frequencies kha/π ≈ 0.47 and kha/π ≈ 0.62
indicate that the excitation of TM and TE modes [see Figs. 2(j)
and 2(l)] is also possible. Both experimental spectra in
Figs. 5(a) and 5(b) show very good agreement with numerical
simulations, which are performed with the help of CST Mi-
crowave Studio. Therefore, experimental results prove a pos-
sibility of using a chain of dielectric particles as a waveguide
with the subwavelength energy localization, which may be a
very good alternative to the chains of plasmonic nanoparticles.

V. CONCLUSIONS

We have analyzed the dispersion properties of arrays of sil-
icon nanoparticles with different periods. We have shown that
such nanoparticle arrays create subwavelength waveguides
that support MD, ED, and MQ guided modes with reasonable
propagation distances and subwavelength energy localization.
A comparison with numerical simulations indicates that the
coupled-dipole model describes very accurately MD modes,
and it remains valid for ED modes in the case of large
spacing. For small lattice spacings, MQ mode shifts to lower
frequencies, and the dipole model gives inaccurate predictions
at the frequencies near the ED resonance. More accurate
description requires to take into account also the MQ moment.

We emphasize that for the analysis of the guided modes in
a chain of silicon particles it is necessary taking into account
both magnetic and electric moments. Interaction between the
EDs and MDs affects strongly the dispersion characteristics of
leaky waves and also guided waves, when the lattice spacing
becomes small.

Our analytical and numerical results, also verified by
microwave experiments, indicate many advantages of chains
of silicon nanoparticles over plasmonic arrays and confirm
a promising perspective of using them as waveguides with
subwavelength guiding in optical integrated circuits.

One of the important issues for the further study is the
influence of the surrounding medium on the guiding properties
of such chains. For the mostly confined modes one does not
expect any significant differences, because the field in these
modes is strongly localized inside the particles. However, in
certain practically important cases, especially when a chain
lies right on a substrate, it may substantially affect its guiding
properties [23,28,76].
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