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Tunneling into the localized phase near Anderson transitions with Coulomb interaction

I. S. Burmistrov,1,2 I. V. Gornyi,3,4 and A. D. Mirlin3,5,6

1L. D. Landau Institute for Theoretical Physics, Kosygina Street 2, 119334 Moscow, Russia
2Moscow Institute of Physics and Technology, 141700 Moscow, Russia

3Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
4A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

5Institut für Theorie der kondensierten Materie and DFG Center for Functional Nanostructures,
Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

6Petersburg Nuclear Physics Institute, 188300 St. Petersburg, Russia
(Received 7 August 2013; revised manuscript received 7 January 2014; published 24 January 2014)

We study the tunneling density of states (TDOS) of a disordered electronic system with Coulomb interaction
on the insulating side of the Anderson localization transition. The average TDOS shows a critical behavior at
high energies, with a crossover to a soft Coulomb gap � at low energies. We demonstrate that the single-particle
excitations experience a localization transition (which belongs to the noninteracting universality class) at an
energy E = ±Ec. The mobility edge Ec scales with the distance μc − μ from the interacting critical point
according to Ec ∝ (μc − μ)νz, where ν and z are the localization-length and the dynamical critical exponents.
Local TDOS shows strong fluctuations and long-range correlations which reflect the multifractality associated
with interacting and noninteracting fixed points as well the localization of low-energy excitations.
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I. INTRODUCTION

Anderson localization [1] is one of major research fields in
condensed matter physics. Of particular interest are Anderson
metal-insulator transitions (MITs) which are quantum phase
transition with a variety of remarkable properties. The physics
of such transitions is by now well understood [2] in situations
when the electron-electron interaction is irrelevant in the
renormalization group (RG) sense. This is the case in problems
with a short-range interaction and broken spin-rotation sym-
metry. The case of a long-range (1/r) Coulomb interaction is
more complicated. A perturbative analysis based on a diffuson
diagram technique [3] showed that the interaction affects the
conductivity in an essential way and may thus be important
for the physics of a MIT. Initial scaling ideas [4,5] emphasized
the mutual influence of interaction and disorder. A systematic
theoretical approach to the problem was built in the framework
of the nonlinear σ -model (NLσM) formalism [6]. This has
allowed to develop a scaling theory of the transition [7,8],
in agreement with experimental observations of a MIT in
three-dimensional (3D) semiconductor structures [9].

The goal of the present paper is to explore the nature of
single-particle excitations in a Coulomb-interacting disordered
system that is slightly on the localized side of the Anderson
MIT. The character of excitations is revealed by correlations
and fluctuations of the local tunneling density of states
(TDOS). In particularly, we study a fate of the single-particle
mobility edge in the presence of Coulomb interaction and
manifestation of localization of excitations in TDOS.

Experimental studies of the average TDOS [10–13] have
demonstrated that at the transition point it vanishes in a
power-law fashion, 〈ρ(E)〉 ∼ |E|β (energy E is counted from
the chemical potential μ), in agreement with the theoretical
prediction [4–6]. Further, it was found that on the localized
side of the transition an additional soft gap with a stronger
suppression of the average TDOS opens around the Fermi
energy. To describe the TDOS near the MIT, a scaling ansatz

was put forward in Ref. [11] (see also [14]). With the
assumption that the exponent β is determined by the dynamical
exponent z, the scaling ansatz extrapolates [11] the physics
of a soft Coulomb gap from the insulating regime [15] to
the criticality, where it agrees with the results of Ref. [4]. A
similar behavior was found in a Hartree-Fock (HF) modeling
of the problem [14]. However, while qualitatively capturing
observed features of the TDOS, the approach of Refs. [4,11]
does not fully reflect the complexity of the problem since, in
general, the exponents β and z are independent as seen for the
Anderson MIT in the spatial dimensionality d = 2 + ε [6].

A further experimental motivation for our work is a recent
paper [16] where TDOS near a MIT was studied locally by
the scanning tunneling microscopy (STM) approach. Strong
fluctuations and long-range correlations of the TDOS were
found there and analyzed in terms of multifractality, which
was supported recently by numerical analysis in the framework
of the density functional theory [17], the HF simulation [14],
and the NLσM analysis [18]. While Ref. [16] focused on the
critical point and the metallic side of the transition, it should
be possible to extend an experimental study of fluctuations and
spatial correlations of local TDOS to the insulating side.

II. DIFFUSION AND LOCALIZATION NEAR
THE MOBILITY EDGE

According to the RG analysis of the NLσM [7,8], scaling
properties of the diffusion constant D(ω,q) at the critical point
are

D(ω,q) ∼
{

qd−2, ω � qz,

ω(d−2)/z, ω � qz,
(1)

where z is the dynamical exponent. We assume below that
z < d, which is normally the case.

Equation (1) discards a possible effect of multifractality
on the diffusion constant D(ω,q) in the large-momentum
range, qz � ω. In fact, it is known that in the noninteracting
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problem, the multifractality does influence D(ω,q) of a critical
system at qd � ω [2,19]. Further, it has been recently shown
[18] that multifractality of local TDOS exists also in the
presence of Coulomb interaction (see also Ref. [14], where the
multifractality was found within the HF approximation). It is
thus plausible that the multifractality affects the q � ω1/z,ξ−1

0
behavior of the diffusion constant in the interacting case
as well (see Appendix A). It can be shown, however, that
multifractality would have no influence on our results on the
scaling of average TDOS, since none of them are controlled
by this range of momenta and frequencies (see Appendix B).

Since the compressibility ∂n/∂μ entering the Einstein
relation is not critical, Eq. (1) determines also the scaling
of conductivity at criticality. While our main interest is in
the 3D case, it is useful to consider a general d > 2, since
critical exponents can be controllably calculated in d = 2 + ε

dimensions.
We will consider the localized phase, μ < μc (here μ is the

chemical potential), near the transition, where the localization
length

ξ0 ∼ (μc − μ)−ν (2)

is finite but large. In this case Eq. (1) is applicable under
the conditions ω � ξ−z

0 . In the opposite regime, ω � ξ−z
0 ,

the system gets localized. Thus, D(ω,q) has a behavior
characteristic of the localized regime

D(ω,q) � −iωP (q), (3)

which means that the propagating density has a finite long-time
limiting shape. Matching Eq. (1) with (3) at ω ∼ ξ−z

0 , we find

P (q) ∼
{

qd−2ξz
0 , q � ξ−1

0 ,

ξ z+2−d
0 , q � ξ−1

0 .
(4)

The electric susceptibility χ (ω,q) (determining the permittiv-
ity via ε = 1 + 4πχ ) is given in 3D by

χ (ω,q) = 1

4π
V0(q)�(ω,q) = e2

q2

∂n

∂μ

D(ω,q)q2

D(ω,q)q2 − iω
, (5)

where V0(q) = 4πe2/q2 is the bare Coulomb interaction and
�(ω,q) the polarization operator. In the frequency range
corresponding to the localized regime, ω � ξ−z

0 , we substitute
(3) into (5) and obtain

χ (ω,q) = e2(∂n/∂μ)P (q)/[1 + P (q)q2]. (6)

In the low-momentum range, q � ξ−1
0 , the second term in the

denominator can be neglected. Using Eq. (4), we find the static,
long-scale polarizability in 3D:

χ ∼ ξz−1
0 , (7)

in agreement with Ref. [7]. A similar analysis for arbi-
trary d [with V0(q) ∼ q1−d ] yields χ ∼ ξz+2−d

0 q3−d (see
Appendix A).

III. DISORDER-AVERAGED TDOS

We remind the reader that suppression of the disorder-
averaged TDOS in a diffusive interacting system has a form

of a generalized Debye-Waller factor,

〈ρ(E)〉 = ρ0T Im
∫ 1/T

−1/T

dτ
eiεnτ−J (τ )

sin πT τ

∣∣∣∣
iεn→E+i0

, (8)

reflecting the charge spreading affected by gauge-type phase
fluctuations [7,20–25]. Here ρ0 is a noncritical high-energy
TDOS (differing from ∂n/∂μ only by Fermi-liquid correc-
tions), T stands for the temperature, and

J (τ ) = 1

ρ0

∫
ddq

(2π )d
T

∑
ωm

(1 − cos ωmτ )Z

Dq2(Dq2 + Z|ωm|) . (9)

Here the frequency renormalization factor [6] Z(iωm,q) has
the following asymptotic behavior at |ω| � ξ−z

0 :

Z(ω,q) ∼
{

qd−z, qξ0 � 1,

ξ z−d
0 , qξ0 � 1.

(10)

We use the imaginary-time formalism with fermionic (εn) and
bosonic (ωm) Matsubara frequencies. Below we focus on the
zero-temperature limit.

At the MIT point Eq. (8) leads to a power-law scaling,

〈ρ(E)〉 ∝ |E|β, (11)

where β = O(1) in d = 2 + ε dimensions. Specifically, up to
corrections of order ε, one finds β � 1/2, 1/[4(1 − ln 2)], and
1, for problems with magnetic impurities, magnetic field, and
spin-orbit scattering, respectively [7,8].

When the system is slightly off criticality, Eq. (11) is
valid for energies |E| � ξ−z

0 , where ξ0 ∼ |μ − μc|−ν is the
localization (for μ < μc) or correlation (for μ > μc) length.
On the metallic side of the MIT, the diffusion coefficient D

approaches a finite limiting value at |ω| � ξ−z
0 and q � ξ−1

0 ,
so that the TDOS behavior (11) saturates at a constant
〈ρ(0)〉〉 ∼ ξ

−zβ

0 . On the insulating side, D gets suppressed
at |ω| � ξ−z

0 according to Eq. (3). Thus, for Matsubara
frequencies |ωm| � ξ−z

0 we get∫
ddq

(2π )d
Z

Dq2(Dq2 + Z|ωm|) � 2�

ω2
m

, (12)

where

� = 1

2

∫
ddq

(2π )d
Z

P (q)q2(P (q)q2 + Z)
∼ ξ−z

0 . (13)

This yields a contribution �|τ | to J (τ ). The effect of such a
linear-in-time contribution is well known from the theory of
Coulomb blockade [26–28]: it opens a gap around the Fermi
energy, so that the LDOS 〈ρ(E)〉 vanishes for |E| ≤ �.

We thus see that the system generates a gap in analogy with
the Coulomb blockade effect, with � playing a role of the
effective charging energy. Physically, this can be understood as
follows. One can think of the system as breaking in “quantum
dots” of the size of the localization length ξ0. We will show
below that low-lying excitations (with energies well below �)
are localized on a scale ξ0. Now consider two such states with
energies E1 > 0 (unoccupied) and E2 < 0 (occupied) which
are located within the same (or nearby) “quantum dots” so
that the distance between their centers is ∼ ξ0. The screened
Coulomb interaction between this states is ∼ ξ−z

0 according
to Eq. (7). This implies that the difference E1 − E2 should be
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� ξ−z
0 ; otherwise we would reduce the energy by shifting an

electron from the state 2 to the state 1; cf. the Efros-Shklovskii
(ES) argument [15]. Hence, there is a Coulomb gap of the size
∼ ξ−z

0 ∼ �.
In fact, contributions to J (τ ) from |ωm| � � as well as

corrections to the approximation (8) smear the gap [26–28].
In d = 2 + ε dimensions Eq. (8) yields the following results
for the average TDOS: (i) the power-law scaling (11) at
|E| � ε ezν�, (ii) almost constant dependence on energy,
〈ρ(E)〉 ∼ | ln ln(|E|/�)|−zνβ , for � � |E| � ε ezν�, and
(iii) linear dependence on energy, 〈ρ(E)〉 ∼ |E|, for |E| � �

(see Appendix B).
We note that linear energy dependence of the average TDOS

is also obtained within an approximation of a hard gap of a
fixed width 2� from the following argument. Let us assume
that the precise position of the gap may fluctuate from point to
point (corresponding to a random value of a potential on each
“dot”), with a restriction that the gap includes the zero energy
[29,30]. If we neglect interaction on scales larger than ξ0, the
“dots” will become uncorrelated, so that the center of the gap
will be uniformly distributed in the interval [−�,�]. This
would yield an average TDOS vanishing linearly at |E| < �:

〈ρ(E)〉 ∼ 〈ρ(�)〉|E|/�, (14)

where 〈ρ(�)〉 ∼ �β is the TDOS (11) on the lower boundary
of the high-energy (critical) regime.

Interaction between distant “dots” leads to an additional
suppression of the average TDOS due to the ES mechanism
[15]. We focus in this discussion on the 3D situation. The
interaction between such states at a distance r > ξ0 is U (r) ∼
1/χr ∼ 1/ξz−1r ∼ �ξ/r , where we used Eq. (7). An empty
state with energy Ei > 0 and a filled state with energy Ej < 0
corresponding to the “dots” i and j should satisfy the “single-
particle stability criterion”: Ei − Ej > U (ri − rj ). This yields
the ES law for the low-energy behavior of TDOS:

〈ρ(E)〉 ∼ E2/�3ξ 3
0 . (15)

Note that Eq. (15) does not match the high-energy behavior
(11) at |E| ∼ � in view of a difference between the exponents z

and zβ = d/(β + 1). Thus, within the single-particle Coulomb
gap picture, there should be an intermediate regime between
the critical regime E � � and the low-energy behavior (15).
An alternative way to express this mismatch is to introduce an
energy scale

δ = 1

〈ρ(�)〉ξ 3
0

∼ ξ
βz−3
0 ∼ �ξ

3(z/zβ−1)
0 (16)

with a meaning of an excitation level spacing within the length
ξ0. The inequality z �= zβ = d/(β + 1), which, as we expect,
is a generic case, implies a parametric mismatch between δ

and �. Although we know that z > zβ for MIT in d = 2 + ε

[7,8], it is not known which of the exponents z and zβ is larger
in d = 3, so that we consider both possibilities.

(i) z < zβ , i.e., δ � �. This is the usual situation from the
Coulomb-blockade point of view. The “charging energy” �

is much larger than the level spacing δ in the “dot” (localized
region of typical size ξ0). The ES formula (15) is valid only
for |E| < δ. In the intermediate range δ < |E| < � we should
take into account contribution of all excited states in the dot.

This enhances the ES result by a factor |E|/δ, yielding

〈ρ(E)〉 ∼
{

E2
/(

�3ξ 3
0

)
, |E| � δ,

|E|3/(
δ�3ξ 3

0

)
, δ � |E| � �.

(17)

At |E| ∼ � this matches the result (11) for the disorder-
averaged TDOS at the criticality.

(ii) z > zβ , i.e., δ � �. This is a case opposite to the
usual Coulomb-blockade situation: charging energy is now
much smaller than the level spacing (note that this situation is
realized in d = 2 + ε). As a result, the ES mechanism is not
very efficient in suppressing the average TDOS, so that in most
of the gap region it is expected to be given by Eq. (14). Only
at the lowest energies will the ES mechanism be operative,
further suppressing the TDOS. We thus expect that the TDOS
in the gap will be given by the minimum of (14) and (15),

〈ρ(E)〉 ∼
{

E2
/(

�3ξ 3
0

)
, |E| � �2/δ,

|E|/(
�δξ 3

0

)
, �2/δ � |E| � �.

(18)

It is worth noting, however, that the single-particle stability
criterion yields only an upper bound for the TDOS. Many-body
stability criteria may lead to a stronger suppression [29,31,32]
of the true TDOS in the limit |E| → 0. Therefore, the results
(17) and (18) for the average TDOS should be regarded as the
estimates from above.

IV. LOCALIZATION TRANSITION FOR EXCITATIONS

Now we explore the character of excitations and, in
particular, the dependence of the localization length ξ on an
excitation energy E. We remind the reader that then ξ0 is the
zero-energy localization length, ξ (E = 0) ≡ ξ0.

It is instructive to consider first the noninteracting case
when the mobility edge for excitations is simply Ec = μc − μ.
The critical behavior at this edge, when E crosses Ec, is clearly
the same as the zero-energy critical behavior with μ driven
through the transition point μc. As we discuss now, the case
of a Coulomb-interacting system differs from this picture in
several crucial aspects.

To identify the localization threshold Ec for the interacting
problem, we proceed as follows. The interacting NLσM theory
gets renormalized with a scaling factor b according to q → bq,
τ → b1/ντ , and E → bzE, where τ = (g − g∗)/g∗ ∼ (μ −
μc)/μc is a deviation of the conductance from the interacting
fixed-point value g∗. If |E| � ξ−z

0 , the RG for the operators
characterizing the physics at an energy E (e.g., moments of the
LDOS) proceeds in two steps. The first step is described by the
interacting RG and stops at the length scale LE ∼ |E|−1/z �
ξ0. The output value of τ is small [i.e., g(LE) is close to g∗]:

τ = (
ξ−z

0

/|E|)1/νz � 1. (19)

The second step of RG (between LE and min{ξ,Lφ} where
Lφ is the dephasing length) develops in accordance with the
noninteracting theory with g(LE) serving as the input value.
We assume that the noninteracting fixed point is characterized
by a critical value gn

∗ < g∗. This is certainly the case for
problems in which exchange interaction is suppressed such
that the (direct) interaction enhances localization. Then for
energies well above ξ−z

0 the conductance g(LE) is above gn
∗ ,

so that the second step of RG starts at the metallic side of
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FIG. 1. (Color online) Sketch of the two-step RG in the case
g∗ > gn

∗ for (a) |E| � ξ−z
0 and (b) |E| � ξ−z

0 ; g0 denotes the bare
value of g.

the noninteracting fixed point [see Fig. 1(a)]. Therefore, the
states with |E| � ξ−z

0 are delocalized. With decreasing |E|
(increasing LE), the value of g(LE) decreases such that at
|E| � ξ−z

0 the conductance g(LE) becomes below gn
∗, and

the second step of RG starts at the insulating side of the
noninteracting critical point [see Fig. 1(b)]. The energy Ec

at which g(LE) reaches the value gn
∗ scales as

Ec = ξ−z
0

(
g∗ − gn

∗
g∗

)νz

∼ (μc − μ)νz. (20)

When deriving the result (20), we have neglected the
dependence of the bare diffusion constant (the bare g) on
energy. This is justified provided νz > 1, which is satisfied
both theoretically (in d = 2 + ε) and experimentally (in
d = 3). Taking into account the energy dependence of the
bare g would thus only slightly change the initial value
τ0 = (g0 − g∗)/g∗, without any essential effect.

The energy Ec is the mobility edge for single-particle exci-
tations. Let us emphasize that, contrary to the noninteracting
problem, there is not only a mobility edge at Ec for particles but
also a second mobility edge at −Ec for holes. For |E| < Ec, the
excitations are localized. In this region the zero-temperature
dephasing rate (or, equivalently, inelastic decay rate) vanishes.
The excitations with |E| > Ec are delocalized. Under the
condition νz > 1, the mobility edge Ec satisfies Ec � μc − μ.
The corresponding phase diagram is sketched in Fig. 2. A
qualitatively similar phase diagram was obtained in Ref. [14]
from the HF numerical modeling of the interacting Anderson
transition on a 3D cubic lattice of size 103.

In d = 3 the critical conductances g∗ and gn
∗ are of the order

unity. Therefore, the width � of the soft Coulomb gap defined
by Eq. (12) is parametrically the same as the mobility edge
Ec. Thus, one can roughly say that the states inside (outside)
the gap are localized (respectively, delocalized). For MIT in
d = 2 + ε in the presence of magnetic impurities the following
results are known: gn

∗ = 1/(π
√

2ε), g∗ = 2/(πε), ν = 1/ε,
and z = 2 + ε/2 [7,8]. Hence, from Eqs. (12) and (20) we find
Ec ∼ ξ−z

0 exp(1/
√

2ε) and � ∼ ξ−z
0 /ε. Thus, while Ec and �

have the same scaling with the distance from the critical point,

E=E E
Interacting Critical

Interacting Critical

Metallic

FIG. 2. “Phase diagram” in the μ-E plane. The interacting MIT
critical point is at μ = μc, E = 0; it determines the quantum critical
behavior with the exponents ν, z, β, �q . The thick lines |E| = Ec ∼
(μc − μ)νz emanating from this point on the insulating side, μ < μc,
are lines of the Anderson transition for excitations. This transition
is characterized by the noninteracting critical exponents νn, �n

q ; the
corresponding critical regions are shaded. The average TDOS shows
a critical scaling (11) above Ec and a soft Coulomb gap below Ec. A
counterpart of Ec on the metallic side (dashed lines) marks a crossover
from the critical to metallic behavior.

Ec ∼ � ∼ (μc − μ)νz, their dependence on ε is parametrically
different. As a result, for ε � 1 we find Ec � � implying that
localized excitations exist far beyond the soft Coulomb gap �.

A crucial consequence of the above analysis is that the
localization transition for excitations at |E| = Ec is in the
noninteracting universality class. In particular, the localization
length ξ (E) scales near Ec as

ξ (E) ∼ ξ0(|Ec − |E||/Ec)−νn , |Ec − |E|| � Ec, (21)

where νn is the exponent of the noninteracting theory.
An important characteristic of excitations is their dephasing

length Lφ . In the localized regime, |E| < Ec, there is no
inelastic decay; i.e., Lφ = ∞. When energy |E| approaches
Ec from above, |E| > Ec, the dephasing length diverges:

Lφ ∼ LE((|E| − Ec)/Ec)−1/zn
φ , |E| − Ec � Ec. (22)

This is because the decay is only possible in the continuous
spectrum: a particle with energy E > Ec can decay into
another delocalized particle with an energy E′ satisfying Ec <

E′ < E and a localized electron-hole pair. The corresponding
phase volume tends to zero when the energy approaches
Ec from above. A Fermi golden-rule type calculation yields
zn
φ = max{d2/(4 − d),d2/(d + �n

2)} (see Appendix C). Here
�n

q stands for the noninteracting multifractal exponents. Since
for the 3D Anderson transition in orthogonal symmetry class
it is known from numerics that �n

2 = −1.7 ± 0.05 [33], we
obtain zn

φ = 9 in d = 3. For energies |E| � Ec the system is
at criticality from the point of view of the interacting theory,
so that the dephasing length is controlled by the corresponding
dynamical exponent, Lφ ∼ LE ∼ |E|−1/z.

V. FLUCTUATIONS OF TDOS

Fluctuations and correlations of TDOS in different energy
ranges are governed by three factors: (i) multifractality at the
interacting fixed point, (ii) multifractality at the noninteracting
fixed point, and (iii) localization of excitations below Ec.

For energies well above the mobility gap, |E| − Ec � Ec,
the system is controlled by the interacting quantum critical
point. Thus, the moments of local TDOS show strong fluctu-
ations governed by the corresponding multifractal exponents
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�q : [18]

〈ρq(E)〉/〈ρ(E)〉q ∼ L
−�q

φ . (23)

These fluctuations are further enhanced for energies near
the mobility edge, |E| > Ec and |E| − Ec � Ec, such that
the dephasing length Lφ is strongly enhanced and satisfies
Lφ � ξ0. We note that Lφ in this regime is much shorter
than the correlation length ξ (E) in view of νnz

n
φ > 1. In this

situation the system shows interacting multifractal scaling up
to the scale ξ0 and then noninteracting multifractality (with
exponents �n

q) up to the scale Lφ :

〈ρq(E)〉/〈ρ(E)〉q ∼ ξ
−�q

0 (Lφ/ξ0)−�n
q . (24)

Since in the localized regime, |E| < Ec, the dephasing
length is infinite, Lφ = ∞, the LDOS fluctuations will diverge,
〈ρq(E)〉 = ∞ for q > 1. This result is regularized by a small
temperature T that yields a finite (although large) dephasing
length LφT � ξ0 due to electron-electron and/or electron-
phonon scattering processes. We do not discuss different
contributions here but simply consider LφT as a parameter.
For T = 0 the regularization is provided by the system size L.

When the energy is below the mobility edge but close to
it, |E| < Ec and Ec − |E| � Ec, the system shows first the
interacting multifractal scaling up to ξ0, then the noninteracting
multifractality up to ξ , and finally insulator-like fluctuations
up to the scale LφT :

〈ρq(E)〉/〈ρ(E)〉q ∼ ξ
−�q

0 (ξ/ξ0)−�n
q (LφT /ξ )d(q−1). (25)

When the energy is further lowered, |E| < Ec and
Ec − |E| ∼ Ec, the localization length ξ becomes of the order
of ξ0, so that the second factor in Eq. (25) disappears.

The multifractality leads not only to strong fluctuations but
also to long-range spatial correlations of TDOS. In particular,
at |E| � Ec the correlation function 〈ρ(E,r)ρ(E,r + R)〉
shows a power-law scaling ∼ R�2 up to the scale ξ0. In the
vicinity of the mobility edge, |Ec − |E|| � Ec, there is a range
of distances, ξ0 � R � ξ (for |E| < Ec) or ξ0 � R � Lφ

(for |E| > Ec) where this correlation function shows the
scaling ∼ R�n

2 controlled by the noninteracting multifractal
exponent.

VI. DISCUSSION AND CONCLUSIONS

We have studied the TDOS of a disordered electronic
system with Coulomb interaction on the insulating side of the
Anderson localization transition. The average TDOS shows
a critical behavior at high energies, with a crossover to a
soft gap � at low energies. The latter regime combines the
physics of Coulomb blockade in quantum dots and that of
Coulomb gap deep in the insulating phase. The single-particle
excitations experience a localization transition at an energy
E = ±Ec. The mobility edge Ec and the soft Coulomb gap
� show the same scaling with the distance from the critical
point, Ec ∼ � ∼ (μc − μ)νz, where ν and z are the critical
exponents of the interacting problem. The critical behavior
of the localization length of excitations near Ec is controlled
by the exponent νn of the noninteracting theory. Local TDOS
exhibits strong fluctuations and long-range correlations which
reflect the multifractality associated with interacting and

noninteracting fixed points as well with the localization of
low-energy excitations.

It is worth discussing the relation of our findings to previous
results on effects of interaction on localization properties of
excitations.

(i) In Refs. [34,35] the mobility edge for two-particle
excitations above the Fermi sea (Ec2) was studied for the case
of short-range interaction. It was found that Ec2 is much lower
than the naive mobility edge μc − μ. This implies that the
true single-particle mobility edge is also lowered. Indeed, a
single-particle excitation with energy between Ec and Ec2 can
create an electron-hole pair and then use the excited electron
to form a delocalized two-particle excitation. We argue that in
our problem with Coulomb interaction the mobility edge for
two-particle excitations has the same scaling with the distance
to the critical point as Ec [see Eq. (20)]. The reason for this
is that in the case of Coulomb interaction all the energy scales
relevant to diffusion behave as ξ−z

0 . In particular, the energy of
Coulomb interaction for two closely located particles is given
by � ∼ Ec ∼ ξ−z

0 . Thus we expect that Ec gives the correct
scaling of the mobility edge for all types of charged excitations.

(ii) According to Refs. [36–38] Coulomb interaction leads
unavoidably to delocalization of electron-hole pairs in di-
mensionality d ≥ dc = 3 in view of slow decay of coupling
between distant electron-hole pairs. This implies for our
problem that localized charged excitations at |E| < Ec may
coexist with delocalized neutral excitations. Furthermore, the
arguments based on consideration of processes involving
four electron-hole pairs suggest that the critical dimension
for delocalization of electron-hole pairs is lower, dc = 3/2
[39,40]. We expect, however, that the presence of delocalized
neutral excitations does not essentially affect our results for
tunneling characteristics of the system since the latter are
necessarily related to the transport of charge. A possible
manifestation of the electron-hole delocalization would be a
finite value of Lφ at zero T in Eq. (25). A more detailed study
of the related effects is relegated to future work.

The average TDOS and its fluctuations can be also exper-
imentally studied in the vicinity of 2D localization quantum
phase transitions, including the superconductor-insulator tran-
sition [41] and the quantum Hall transition [42]. Extending our
analysis on these transitions remains a challenging prospect for
future research.

Note added in proof. Recently, Mottaghizadeh et al. [43]
explored the average TDOS in a memristive device with a
tunable doping level across the MIT. Their findings are in an
overall agreement with the “phase diagram” in our Fig. 2 and
with theoretical expectations for the corresponding regimes.
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APPENDIX A: SCREENED INTERACTION
IN THE LOCALIZED PHASE

In the main text, we have focused on the screening
properties of a 3D insulator. Here we present the results for
the screened Coulomb interaction in an insulating phase near
the metal-insulator transition (MIT) in an arbitrary spatial
dimensionality 2 < d ≤ 3. The screened electron-electron
interaction U (ω,q) and the effective dielectric function ε(ω,q)
are given as

U (ω,q) = U0(q)

ε(ω,q)
, ε(ω,q) = 1 + ∂n

∂μ

Dq2U0(q)

Dq2 − iω
. (A1)

Here, ∂n/∂μ is the thermodynamic density of states and
U0(q) ∼ q1−d denotes the bare Coulomb interaction in d

spatial dimensions. It is worth mentioning that the irre-
ducible polarization operator which determines the screening
in Eq. (A1) does not contain the Finkelstein’s frequency
renormalization parameter Z(ω,q) since it involves a standard
(including the interaction vertex corrections) diffuson rather
than a mesoscopic one [7].

In the vicinity of the interacting critical point, |g/g∗ −
1| � 1 (we remind the reader that g denotes dimensionless
conductance and g∗ stands for the critical value of the
conductance), the diffusion coefficient can be written in the
scaling form

D(ω,q) = ξ 2
0 (ξ0/l)−dRD(ω/�,qξ0), � = E0(ξ0/l)−z.

(A2)

Here l and E0 stand for the ultraviolet length and energy
scales (the elastic mean-free path and the inverse elastic
scattering time, respectively), the dynamical exponent z relates
the induced length scale L with the energy E or frequency ω,
L ∼ |E|−1/z or L ∼ |ω|−1/z, and ξ0 = l|g/g∗ − 1|−ν denotes
the divergent localization/correlation length.

In the localized phase (g < g∗) the diffusion coefficient at
low frequencies ω � � can be written as

D(ω,q) = −iωP (q) +
(

e2 ∂n

∂μ

)−1

Re σ (ω,q). (A3)

To be consistent with the scaling form (A2) of the diffu-
sion coefficient, the first (imaginary) term, which describes
the polarizability of the system, should have the following
asymptotic behavior:

P (q) ∼ ξ 2
0 (ξ0/l)z−d

{
(qξ0)d−2+�2 , q � ξ−1

0 ,

1, q � ξ−1
0 .

(A4)

Here we include a possible effect of the multifractality in the
presence of the Coulomb interaction [18] (see also Ref. [14])
on the diffusion coefficient which is characterized by the
interacting multifractal exponent �2 < 0 (in the absence of
this effect, �2 = 0).

In a noninteracting Anderson insulator, the real part
of ac conductivity is given by Mott’s formula, Re σ (ω) ∝
ω2 lnd+1(�/ω). However, in a Coulomb-glass insulator which
we are dealing with, at frequencies ω � � (as we shall

demonstrate below, � is understood as the Coulomb potential
at scale ξ0) the Mott formula is modified by Coulomb energy
associated with the pairs of states involved in the transport
[15,31,44]. The main modification is the replacement ω2 →
|ω|� in the Mott formula. In what follows, we shall use the
following expression for the real part of the ac conductivity:

Re σ (ω) ∼ e2 ∂n

∂μ
|ω|α�1−αM(q). (A5)

Here and in what follows, we disregard the logarithmic
factors in Re σ (ω,q), since we will focus on the power-law
dependencies. We use α = 2 for the Mott formula and α = 1
when the modifications due to the Coulomb interaction are
taken into account according to Refs. [15,31,44]. The function
M(q) behaves as

M(q) ∼ ξ 2
0 (ξ0/l)z−d

{
(qξ0)d−2+�2 , q � ξ−1

0 ,

1, q � ξ−1
0 .

(A6)

It is convenient to introduce the inverse static screening
length κ as (∂n/∂μ)U0(q) = (κ/q)d−1. Hereinafter, we as-
sume that the inequality

q � 1/l � κ (A7)

holds. Using Eqs. (A4) and (A6), we find the statically screened
Coulomb potential in different domains of momenta:

∂n

∂μ
|U (0,q)| ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, q0 � q,

(ξ0/l)d−z(qξ0)−d−�2 , ξ−1
0 � q � q0,

(ξ0/l)d−z(qξ0)−2, qκ � q � ξ−1
0 ,

(κ/q)d−1, 0 < q � qκ .

(A8)

Here the scale q0 = ξ−1
0 (ξ0/l)(z−d)/(d+�2) is given by

the condition P (q)q2 ∼ M(q)q2 ∼ 1. The condition
P (q)q2(κ/q)d−1 ∼ M(q)q2(κ/q)d−1 ∼ 1 determines the
momentum scale

qκ = ξ−1
0 (κξ0)(1−d)/(3−d)(ξ0/l)(d−z)/(3−d). (A9)

We see that at the lowest momenta, q � qκ , in d < 3
the interaction remains unscreened. In d = 3, this scale
disappears, qκ = 0. Thus, in d = 3 the screened interaction
remains long-ranged on scales larger than the localization
length:

U (r) ∼ �
ξ0

r
, r � ξ0. (A10)

We stress that in order to obtain the static screening in
the localized state, one should use the dynamically screened
interaction. This is because the diffusion coefficient is itself
proportional to ω, so that the frequency cancels out in Eq. (A1).
Therefore, for the analysis of the static screening it is incorrect
first to set −iω = 0 and then cancel out the terms D(ω,q)q2

in the “static” polarization operator in Eq. (A1). Such a re-
placement, �(ω = 0,q) → ∂n/∂μ, would yield incorrectly a
conventional metallic screening U (0,q) ∼ e2/(qd−1 + κ

d−1).
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We see that the dynamically screened interaction is in fact
static for ω � �.

As follows from Eq. (A8), the effective dielectric function
at ω � � can be written as

ε(0,q) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(κ/q)d−1, q0 � q,

(κl)d−1(ql)1+�2 (ξ0/l)z+�2 , ξ−1
0 � q � q0,

(κl)d−1(ξ0/l)z+2−d (ql)3−d , qκ � q � ξ−1
0 ,

1, 0 < q � qκ .

(A11)

In particular, Eq. (A11) implies that in d = 3 the effective
permittivity (ε) and electric susceptibility (χ ), related via
ε = 1 + 4πχ , that determine the behavior of the Coulomb
interaction at large distances r � ξ0 [see Eq. (A10)], are
divergent upon approaching the MIT according to ε ∼ χ ∼
(ξ0/l)z−1 � 1, in agreement with Ref. [7].

APPENDIX B: DISORDER-AVERAGED TUNNELING
DENSITY OF STATES

In this Appendix we analyze the disorder-averaged tunnel-
ing density of states (TDOS) at the insulating side (g < g∗)
of the MIT in d = 2 + ε. At T = 0, it is convenient to
rewrite Eq. (8) in the equivalent form by using the real-time
representation derived in Ref. [22]:

〈ρ(E)〉 = ρ0

π

∫ ∞

−∞
dt

sin(|E|t)
t

exp[−Jc(t)] cos[Js(t)]. (B1)

Here ρ0 = 1/(E0l
d ) is the ultraviolet value of the DOS which

differs from ∂n/∂μ by the Fermi-liquid ballistic renormaliza-
tions (we shall disregard this difference below) and

Jc(t) =
∫ ∞

0

dω

π

∫
ddq

(2π )d
ImVR(ω,q) (1 − cos ωt),

(B2)

Js(t) =
∫ ∞

0

dω

π

∫
ddq

(2π )d
ImVR(ω,q) sin ωt,

with the retarded propagator

VR(ω,q) = ZU0(q)

(Dq2 − iZω){Dq2[1 + (∂n/∂μ)U0(q)] − iω} .
(B3)

We remind the reader that the energy E is measured with
respect to the chemical potential μ. With the help of Eq. (A7),
Eq. (B3) can be simplified:

VR(ω,q) � 1

ρ0

Z

(Dq2 − iZω)[Dq2 − iω(q/κ)d−1]
. (B4)

I III

II
IV

Q

1

1

I III

IIII
IVIV

Q

1

1

FIG. 3. Sketch of different regions for the asymptotic behavior of
the scaling functions RD(�,Q) and RZ(�,Q).

We mention that at (q/κ) → 0, the expression (B4) for
VR(ω,q) corresponds to Eq. (10) from the main text for its
Matsubara counterpart V(iωm,q).

The diffusion coefficient D(ω,q) [see Eq. (A2)] and
Finkelstein’s frequency renormalization factor Z(ω,q)
parametrize the interacting mesoscopic diffuson (we omit the
dephasing rate induced due to interaction)

Dint(ω,q) = 1

D(ω,q)q2 − iZ(ω,q)ω
. (B5)

The frequency renormalization factor can be written in the
following scaling form [7]:

Z(ω,q) = (ξ0/l)z−dRZ(ω/�,qξ0). (B6)

The asymptotic behavior of the scaling functionsRD(�,Q)
and RZ(�,Q) in different domains of the Q = qξ0 and
� = ω/� plane (see Fig. 3) is summarized in Tables I and
II. In regions (I) and (III) we include possible effect of the
multifractality in the presence of the Coulomb interaction
[18] (see also [14]) on the diffusion coefficient which is
characterized by the interacting multifractal exponent �2 < 0
[cf. Eqs. (A4) and (A6)]. It is worth noting that, in view of
the gauge invariance (preserved by the energy-independent
quantities like the polarization operator), the effect of the
multifractality on the diffusion coefficient in the case of
Coulomb interaction deserves a separate detailed study. As
we shall demonstrate below, even if multifractality affects the
diffusion coefficient in the case of Coulomb interaction, it
does not influence the scaling results for the disorder-averaged
TDOS.

It is convenient to rewrite Eq. (B4) in terms of the scaling
functions RD/Z(�,Q) and dimensionless variables � and Q.
Provided condition z + �2 > 0 is fulfilled, one finds with the

TABLE I. The asymptotic behavior of the scaling function RD(�,Q). Here c is a constant of the order unity; the exponent α is equal to 2
for the Mott’s formula and 1 in the case of modifications of Refs. [15,31,44] due to Coulomb energy associated with the pairs of states involved
in the transport.

0 ≤ � � 1 1 � �

max{�1/z,1} � Q (I): Qd−2+�2 (−i� + c|�|α) (III): Qd−2+�2 |�|−�2/z

0 ≤ Q � max{�1/z,1} (II): −i� + c|�|α (IV): |�|(d−2)/z
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TABLE II. The asymptotic behavior of the scaling function
RZ(�,Q).

0 ≤ � � 1 1 � �

max{�1/z,1} � Q (I): Qd−z (III): Qd−z

0 ≤ Q � max{�1/z,1} (II): 1 (IV): |�|(d−z)/z

help of Eq. (A7)

VR(ω,q) = ξd
0 /�

Q2RD(�,Q)

1

Q2RD(�,Q)/RZ(�,Q) − i�
.

(B7)

We start the analysis of the momentum integral in Eq. (B2)
from the case � � 1. In the region (III), if the inequality z +
3�2/2 > 0 is fulfilled, the integral is dominated by momenta
Q ∼ �1/z, and we find∫

�1/z�Q

ddq

(2π )d
ImVR(ω,q)

= Sd

(2π )d
�

�

∫ ∞

∼�1/z

dQ
Qd−1R2

Z

R3
DQ6

� Sd�
(z+d−6)/zR2

Z(�,�1/z)

(2z + 3�2)(2π )d�R3
D(�,�1/z)

. (B8)

Here, Sd = 2πd/2/�(d/2) is the area of the d-dimensional
sphere. In the region (IV), we obtain∫

Q��1/z

ddq

(2π )d
ImVR(ω,q) = Sd

(2π )d��

∫ ∼�1/z

0
dQ

Qd−1

RDQ2

= 1

2π��RD(�,0)

[
1

ε
+ O(1)

]
.

(B9)

Comparing Eqs. (B8) and (B9), we find that in d = 2 + ε

dimensions for � � 1, if the inequality z + 3�2/2 > 0 holds,
the main contribution to the integral over momenta comes from
the domain Q � 1 in the region (IV).

In the opposite case of � � 1, the integral over momenta
is dominated by the contribution from the region (II) if the
inequality z + 2�2 > 0 is fulfilled. Then, we find∫

0<Q�1

ddq

(2π )d
ImVR(ω,q)

= Re
Sd/[(2π )d�]

� + i0+

∫ ∼1

0
dQ

Qd−1

RDQ2

= 1

2π�
Re

1

(� + i0+)RD(�,0)

[
1

ε
+ O(1)

]
. (B10)

Importantly, the leading contribution to this integral is propor-
tional to 1/ε, similarly to the case of critical frequency domain,
ω � �. We mention that Eqs. (B9) and (B10) can be written
in the unified way if one takes into account that in d = 2 + ε

the dimensionless conductance g(ω) = 2πRD(�,0):∫
ddq

(2π )d
ImVR(ω,q) = Re

1

ε

1

(ω + i0+)g(ω)
. (B11)

Here we neglect terms which are finite at ε → 0.

As was demonstrated above, even if the multifractality
affects the diffusion coefficient in the case of Coulomb
interaction, it does not influence the integral (B11) over mo-
menta for ω � � (ω � �) if the inequality z + 3�2/2 > 0
(z + 2�2 > 0) holds. Below we shall demonstrate that the
disorder-averaged TDOS at |E| � � is determined by the
integral (B11) with ω � �. Therefore, provided z + 3�2/2 >

0, the possible multifractality in the diffusion coefficient is
not important for the disorder-averaged TDOS at |E| � �.
Moreover, the possible multifractality contribution does not
affect Eq. (B1) also at |E| � �, if the condition z + 2�2 > 0
is met.

In d = 2 + ε dimensions, for the MIT in a system of dis-
ordered electrons with Coulomb interaction with broken time-
reversal and spin-rotational symmetries due to the presence of
magnetic impurities (the “MI(LR)” class in the terminology
of Belitz and Kirkpatrick [8]), the dynamical exponent z is
known up to the second loop order [45,46]:

z = 2 + ε

2
+

(
2A − π2

6
− 3

)
ε2

4
+ O(ε3), (B12)

where

A = 1

16

[
139

6
+ (π2 − 18)2

12
+ 19

2
ζ (3) +

(
16 + π2

3

)
ln2 2

−
(

44 − π2

2
+ 7ζ (3)

)
ln 2

+ 16G − 1

3
ln4 2 − 8 li4

(
1

2

) ]
≈ 1.64. (B13)

Here G ≈ 0.915 denotes the Catalan constant, ζ (x) stands for
the Riemann zeta function, and li4(x) = ∑∞

k=1 xk/k4 denotes
the polylogarithm. Recently, the multifractal exponent �2 was
also computed up to the second loop order [18]:

�2 = −ε

2

[
1 +

(
1 − A − π2

12

)
ε

]
+ O(ε3). (B14)

Therefore, for the MIT in the class “MI(LR)” in d = 2 + ε

dimensions the inequality z + 2�2 > 0 holds.
With the help of Eq. (B11), the functions Jc(t) and Js(t)

[see Eq. (B2)] can be written as

Jc(t) = t2

8ε
lim
ω→0

Im
ω2

g(ω)
+ p.v.

∫ ∞

0

dω

επ

1 − cos ωt

ω
Re

1

g(ω)
,

Js(t) = t

4ε
lim
ω→0

Im
ω

g(ω)
+ p.v.

∫ ∞

0

dω

επ

sin ωt

ω
Re

1

g(ω)
.

(B15)

In order to make analytical estimates for the disorder-averaged
TDOS in the insulating side (g < g∗) of the metal-insulator
transition we assume that at ω > � the real part of the
conductance g(ω) can be written as Re g(ω) = g∗fg(ω/�)
where the dependence on ω is due to the frequency induced
length Lω ∼ |ω|−1/z. Since at ω � �, the renormalization
of the conductance up to the scale Lω is governed by the
interacting critical point, the function fg(x) has the following
asymptote at x � 1: fg(x) = 1 − x−1/(zν). At ω < �, we use
the scaling form for the diffusion coefficient in the region (II)
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(see Table I): g(ω) = −iω/� + c(|ω|/�)α with 1 ≤ α ≤ 2.
Then, we find

Jc(t) =
∫ 1

0

dx

πε

1 − cos(�tx)

x3−α

c

1 + c2x2α−2

+
∫ E0/�

1

dx

πεg∗

1 − cos(�tx)

xfg(x)
,

Js(t) = c(α)�t

4ε
+

∫ 1

0

dx

πε

sin(�tx)

x3−α

c

1 + c2x2α−2

+
∫ ∞

1

dx

πεg∗

sin(�tx)

xfg(x)
, (B16)

where c(α) = 1 for 1 < α ≤ 2 and c(1) = 1/(1 + c2). At
interacting criticality, |E| � �, the integral in Eq. (B1) is
determined by small values of t , t � 1/�. At t → 0, behavior
of functions Jc(t) and Js(t) is determined by the integrals
over x > 1 in Eqs. (B16). We obtain the following asymptotic
expressions:

Jc(t) = 1

πεg∗
ln E0t, Js(t) = 1

2εg∗
, �t � e−zν . (B17)

We mention that the results (B17) are not sensitive to the
precise form of the function fg(x). By using asymptotic
expressions (B17), we find from Eq. (B1) the following result
for the disorder-averaged TDOS:

〈ρ(E)〉 ∼ ρ0

( |E|
E0

)β

, β = 1

πg∗ε
, |E| � �ezν. (B18)

In d = 2 + ε dimensions, the critical point of the MIT point in
the class “MI(LR)” is also known up to the second loop [46]:

1

πg∗
= ε

2
(1 − Aε) + O(ε3). (B19)

Therefore, in d = 2 + ε dimensions for the class “MI(LR)”
the exponent β which determines the power-law behavior of
the disorder-averaged TDOS is given as [7,8]

β = 1
2 + O(ε). (B20)

Note that in order to find the exponent β at the order ε one
needs to compute Eq. (B11) in the next order in ε.

At energies � � |E| � �ezν the integral in Eq. (B1)
is dominated by the range �−1 exp(−zν) � t � �−1. At
exp(−zν) � �t � 1 the asymptotic behavior of functions
Jc(t) and Js(t) is as follows:

Jc(t) = 1

πεg∗
ln

E0

�
+ zν

πεg∗
ln

zν

ln[λ/(�t)]
,

(B21)

Js(t) = 1

2εg∗
+ c(α)�t

4ε
, e−zν � �t � 1.

Here λ = exp[(e − 1)zν] is determined from the coincidence
of asymptotes (B17) and (B21) for Jc(t) at t = exp(−zν)/�.
At �/ε � |E| � �ezν , we can neglect the second term in
the asymptotic expression (B21) for Js(t). Then performing
integration over t in Eq. (B1) we find for �/ε � |E| � �ezν

that

〈ρ(E)〉 ∼ ρ0

(
�

E0

)β (
ln

zν

ln(λ|E|/�)

)−zνβ

. (B22)

We emphasize that the results (B18) and (B22) are determined
by the behavior of functions Jc(t) and Js(t) that comes from
the frequencies ω > � in the integrals of Eq. (B16).

In the region � � |E| � �/ε, the second term in the
asymptotic expression for Js(t) in Eq. (B21) restricts the
integral in Eq. (B1) to the domain t � ε. Hence, for � �
|E| � �/ε we obtain

〈ρ(E)〉 ∼ ρ0

(
�

E0

)β (
ln

zν

ln[λ/(ε�)]

)−zνβ
ε|E|
�

. (B23)

We have shown in the main text that the critical behavior
of the TDOS, Eq. (B18), at |E| ∼ � crosses over to the
Coulomb-gap behavior. At |E| � � the leading contribution
to the functions Jc(t) and Js(t) is also proportional to 1/ε

[see Eq. (B10)], similarly to the case ω � �. Therefore, it is
instructive to evaluate Eq. (B1) also at the lowest energies
by using Eq. (B11) and the scaling form of the diffusion
coefficient (A2) as presented in Appendix A. For |E| � �

the integral in Eq. (B1) is determined by large values of t ,
t � 1/�. We find the following asymptotic expressions at
�t � 1:

Jc(t) = 1

πεg∗
ln

E0

�
+ c

2 − α

(�t)2−α

πε
,

(B24)

Js(t) = c(α)�t

4ε
+ c

α − 1

(�t)2−α

πε
.

We mention that in the case α = 2 the leading contribution
to the asymptote of Jc(t) at large t is logarithmic. But, in
order to find the power of the logarithm one needs to take into
the logarithms in the Mott formula. A similar problem occurs
with the large-t asymptote of Js(t) for α = 1. As one can see,
the asymptotic expressions for Jc(t) and Js(t) are sensitive to
the precise form of the frequency dependence of the diffusion
coefficient at ω � �. Since the scaling function RD(�,Q)
remains to be calculated from the microscopic theory in the
case of Coulomb interaction, in what follows we do not use
the precise form of t dependence in Eq. (B24).

Fortunately, in order to find the energy dependence of the
disorder-averaged TDOS at |E| � �, we do not need to known
the precise asymptotic form of Jc(t) at t � 1/�. Provided the
function Jc(t) grows faster than the first power of ln(�t), we
obtain the linear dependence of the disorder-averaged TDOS
on energy. Since 〈ρ(E)〉 is a continuous function we obtain that
its behavior at |E| � � is still given by Eq. (B23). If the large-t
asymptotic behavior of the function Jc(t) is logarithmic, then
at |E| � � the energy dependence of the disorder-averaged
TDOS will be a power law with some nontrivial exponent. It is
worthwhile to mention that if, as in the main text, one neglects
the real part of the conductance g(ω) for ω < � and neglects
contributions to the functions Jc,s(t) from ω > �, then the
disorder-averaged TDOS will vanish for |E| < �/(4ε). We
mention that in the main text, � is defined to be equal to the half
of the hard gap and, therefore, is different by a factor 4ε from
� used here. As discussed in the main text, an uncorrelated
averaging over positions of such local hard gaps yields a linear
behavior of 〈ρ(E)〉 similar to Eq. (B23). We remind the reader
that the above calculation at |E| � � [g(LE) � 1] yields only
the upper bound of the TDOS.
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APPENDIX C: DEPHASING OF THE SINGLE-PARTICLE
EXCITATIONS ABOVE Ec: GOLDEN-RULE

CALCULATIONS

In this Appendix we present the derivation of the result
for the exponent zn

φ . We start with the conventional formula
for the inelastic-scattering (dephasing) rate for a single-
particle excitation at energy E expressed in terms of diffusion
propagators and (dynamically screened) Coulomb interaction
U (ω,q):

1

τφ(E)
∼ ρ0

∫
dωdE′ddq ReD(ω,q; E) ReD(ω,q; E′)

× |U (ω,q)|2[1 − f (E − ω)]f (E′)[1 − f (E′ + ω)].

(C1)

Here D(ω,q; E) is the diffusion propagator at energy E

(measured from the chemical potential μ) and f (E) is the
distribution function for single-particle states.

We are interested in the zero-temperature dephasing of
a single-particle critical state with energy E > Ec near the
(renormalized by the interaction) single-particle mobility
edge Ec: (E − Ec)/Ec � 1. The dephasing occurs due to
transitions between delocalized states with energies E > Ec

and E − ω > Ec accompanied by the excitation of electron-
hole pairs near the chemical potential. At T = 0 we thus have
the following conditions which restrict the phase space for
inelastic scattering:

0 < ω < E − Ec, E′ < 0, E′ + ω > 0. (C2)

Under these conditions, the product of distribution functions
in Eq. (C1) is equal to unity.

We remind the reader that in d = 2 + ε the single-particle
mobility edge Ec is much higher than the characteristic
energy � ∼ ξ−z

0 whereas in d = 3 the two scales Ec and
� coincide. The particle-hole excitations are localized for
energies smaller than �. Therefore, in order to find the
critical exponent of the dephasing length, we consider the
energies satisfying: E − Ec � �, such that the particle-hole
excitations with ω < E − Ec are localized and described
by the “localized” interacting diffusion propagator. We note
that this diffuson corresponds to the irreducible polarization
operator (it can be considered as a part of the screening) and
hence the frequency in this diffuson is not renormalized by the
Finkelstein’s frequency renormalization factor Z, in contrast
to the mesoscopic diffuson (see Appendix A).

Furthermore, we assume that both critical noninteracting (c)
and localized interacting (l) diffusons are energy-independent:

D(ω,q; E) ≡ Dc(ω,q), D(ω,q; E′) ≡ Dl(ω,q). (C3)

In view of Eq. (C2), the integration over E′ then yields just
ω. Representing the structure ReD1 ReD2|U |2 equivalently
through ReD1 Im U , we arrive at

1

τφ(E)
∼ −ρ0

∫ E−Ec

0
dω

∫ 1/ξc

0
dq qd−1 ReDc(ω,q)

× Im U (ω,q). (C4)

Here the integration over the transferred momentum is re-
stricted by q < ξ−1

c which is the ultraviolet cutoff of the
renormalized theory.

It is worth emphasizing that Eq. (C1) describes the
Hartree contribution to the dephasing rate. For short-ranged
interaction, one encounters a strong Hartree-Fock cancellation
in the critical regime [47–49]. However, in our case of
long-ranged Coulomb interaction, the exchange counterparts
of Eq. (C1) are subleading. Indeed, the characteristic scale of
the localized interacting diffuson is ξc which is the “ballistic
scale” for the critical noninteracting diffuson. As we will see,
the dominant contribution to the dephasing rate comes from
much larger scales related to E − Ec � �. On such scales the
Hartree contribution dominates over the exchange term. In the
latter one interaction line necessarily connects the two point
separated by distance � ξc, whereas in the former there is no
such restriction.

By using Eqs (A1), (A3), (A4), and (A5), the imaginary
part of the screened Coulomb interaction involved in Eq. (C4)
can be written as

Im U (ω,q) ∼ − 1

ρ0

(
ξ0

l

)d−z

(qξ0)−2

×

⎧⎪⎨
⎪⎩

(q/qκ)2(3−d), 0 < q ≤ qκ,

1, qκ < q ≤ ξ−1
0 ,

(qξ0)−d+2−�2 , ξ−1
0 < q.

(C5)

Here we consider the case of the Mott’s law modified by
Coulomb energy associated with the pairs of states involved in
the transport [15,31,44] (i.e., α = 1) and neglect logarithmic
factors in the real part of ac conductivity. Substituting
Eqs. (A4), (A5), and (C5) into Eq. (C4), we find

1

τφ(E)
∼ ξd−2

0 �

∫ E−Ec

0
dω

[∫ 1/ξ0

qκ

dq qd−3 ReDc(ω,q)

+
∫ qκ

0
dq

(
q

q2
κ

)3−d

ReDc(ω,q)

+
∫ 1/ξc

1/ξ0

dq qd−3(qξ0)−d+2−�2 ReDc(ω,q)

]
.

(C6)

In the experimentally relevant case d = 3 the second (that of
0 < q < qκ) and third (that of 1/ξ0 < q < 1/ξc) contributions
disappear (since qκ = 0 and ξc ∼ ξ0) and we obtain

1

τφ(E)
∼ ξ0�

∫ E−Ec

0
dω

∫ 1/ξ0

0
dq ReDc(ω,q). (C7)

Since we are interested in the dephasing length that cuts off
the scaling of the conductance or the mesoscopic fluctuations
in the noninteracting RG, the critical noninteracting diffuson

Dc(ω,q) = 1

Dn(ω,q)q2 − iω
(C8)

is understood as the mesoscopic diffuson at scales � ξc

where the interacting RG was operated. Therefore, the
diffusion constant of the critical noninteracting diffuson
Dc(ω,q) at the length scale ξc can be estimated as Dc =
D(Ec,ξ

−1
c )/Z(Ec,ξ

−1
c ) ∼ gn

∗Ecξ
2
c . As long as the behavior
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I III

II
IV

FIG. 4. Sketch of different regions for behavior of the diffusion
coefficient Dn(ω,q) in the critical noninteracting diffuson Dc(ω,q).

of the critical diffuson is concerned, we have four different
domains in the ω-q plane (see Fig. 4) for behavior of the
diffusion coefficient (see Table III). At given frequency,
the domains are separated either by the momentum scale
qω = ξ−1

c (ωξ 2
c /Dc)1/d or by the inverse localization length

ξ (E) = ξc(E/Ec − 1)−νn for the noninteracting Anderson
transition (see Fig. 4). Regions of small and large frequencies
are separated by the energy scale ωξ = (Dc/ξ

2
c )[ξ (E)/ξc]−d

(see Fig. 4). The condition νnd > 1 implies that ωξ � E −
Ec. In d = 2 + ε dimensions for the Anderson transition
in the Wigner-Dyson class A [which is the noninteracting
counterpart of the interacting “MI(LR)” class] the exponent
of the localization length is known up to the five-loop order,
νn = 1/(2ε) − 3/4 [50]. Therefore, the inequality νnd > 1
is fulfilled. We mention that in the domains (I) and (III)
the diffusion coefficient Dn(ω,q) depends on the multifractal
exponent �n

2 < 0 for the noninteracting Anderson transition.
In d = 2 + ε dimensions for the Anderson transition in the
Wigner-Dyson class A, the multifractal exponent is known up
to the fourth loop �n

2 = −(2ε)1/2 − 3ζ (3)ε2/8 [51].
Substituting ReDc(ω,q) into Eq. (C6), we observe that

the first two integrals over momenta are dominated by
q ∼ qω [the domains (III) and (IV)]. The contribution of
the region ξ−1

0 < q < ξ−1
c will be discussed. Let us first

assume that qκ � qE−Ec
= ξ−1

c [(E − Ec)ξ 2
c /Dc]1/d � ξ−1

0 .
Evaluating the integral over q in the domain (IV), we see
that the frequency integral is dominated by the upper limit
ω = E − Ec. Then we find

[
1

τφ(E)

]
IV

∼ (ξc/ξ0)2−d (gn
∗)2/d

∫ E−Ec

ωξ

dω

(
ω

Ec

)−2/d

∼ Ec√
ε

(
E − Ec

Ec

)1−2/d

,

gn
∗(qκξc)d � E − Ec

Ec

� �

Ec

. (C9)

Here we have used that (ξc/ξ0)2−d ∼ 1 and (gn
∗)2/d ∼ 1/

√
ε

in d = 2 + ε. The condition qE−Ec
� qκ necessary breaks

down for energies sufficiently close the mobility edge. For such
energies the second contribution (from the region 0 < q <

qκ) in Eq. (C6) becomes essential. Provided −2 < �n
2 < 0

the two distinct cases are possible (i) 4 − 2d − �n
2 < 0 and

(ii) 4 − 2d − �n
2 ≥ 0. We mention that in d = 2 + ε for the

Anderson transition in the Wigner-Dyson class A the case (ii)
is realized at small ε. As we approach d = 3 from below, we
expect that the case (i) should be realized.

In the case (i) the dominant contribution to the dephasing
rate comes from momenta q ∼ qω, yielding

1

τφ(E)
∼ Ec(qκξc)2(d−3)

(
ξ0

ξc

)d−2−z (
E − Ec

gn∗Ec

)4/d−1

,

(C10)

and hence [Lφ ∼ (τφ)1/d ]

Lφ ∝ (E − Ec)−1/zn
φ , zn

φ = d2/(4 − d). (C11)

In the case (ii) the main contribution to the dephasing rate
comes from momenta q ∼ qκ . Then, we obtain

1

τφ(E)
∼ Ec(qκξc)2(d−3)

(
ξ0

ξc

)d−2−z (
E − Ec

gn∗Ec

)1+�n
2/d

,

(C12)

such that zn
φ = d2/(d + �n

2).
In particular, for d = 2 + ε we find zn

φ � 2(1 + √
ε/2).

The contributions of domains (I) and (II) to the dephasing
rate scale as [ξ (E)]d−4 ∼ (E − Ec)(4−d)νn for the case (i) and
[ξ (E)]−d−�n

2 ∼ (E − Ec)(d+�n
2)νn for the case (ii). They are

therefore subleading for νn > 1/d in comparison with the
results (C10) and (C12), respectively.

The third contribution in Eq. (C6) can be important
only in d = 2 + ε when ξc � ξ0. Since in d = 2 + ε the
following inequality holds, d + 1 + �2 + �n

2 > 0, the integral
over momenta and frequencies is dominated by q ∼ ξ−1

0 and
ω ∼ E − Ec, respectively [region (III)]. Then, we find

ξd−2
0 �

∫ E−Ec

ωξ

dω

∫ 1/ξc

1/ξ0

dq qd−3(qξ0)−d+2−�2 ReDc(ω,q)

∼ Ec

(
ξ0

ξc

)d+�n
2
(

E − Ec

gn∗Ec

)1+�n
2/d

. (C13)

This contribution has the same power-law dependence
on E − Ec as the result (C12). Since qκ � 1/ξ0 �
1/ξc and z + 2(d − 2) − �n

2 > 0, we find (ξ0/ξc)d+�n
2 �

(qκξc)2(d−3)(ξ0/ξc)d−2−z. Therefore, the contribution (C13) is
always smaller than the result (C12) and the region 1/ξ0 <

q < 1/ξc does not influence the results (C10) and (C12) for
the dephasing rate.

TABLE III. Diffusion coefficient Dn(ω,q) of the critical noninteracting diffuson Dc(ω,q).

0 ≤ ω < ωξ ωξ ≤ ω < E − Ec

max{qω,1/ξ (E)} ≤ q < ξ−1
c I: Dc(qξc)d−2[qξ (E)]�

n
2 III: Dc(qξc)d−2(q/qω)�

n
2

0 ≤ q < max{qω,1/ξ (E)} II: Dc[ξc/ξ (E)]d−2 IV: Dc(qωξc)d−2
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TABLE IV. Results for the exponent zn
φ .

α = 1 α = 2

4 − 2d − �n
2 < 0 d2/(4 − d) d2/4

4 − 2d − �n
2 ≥ 0 d2/(d + �n

2) d2/(2d + �n
2)

In d = 3 the momentum scale qκ = 0 and ξc ∼ ξ0. The
dominant contribution to the dephasing rate comes from
momenta q ∼ qω. Therefore, the dephasing rate is given

by Eq. (C9) with d = 3 such that zn
φ = 9 (for the case

α = 1). We summarize the results for the critical exponent zn
φ

in Table IV.
Finally, it is worth noticing that in the model with-

out Coulomb interaction between localized particles, where
the conventional Mott formula applies, the dephasing rate
contains an extra power of (E − Ec)/Ec, as compared to
Eqs. (C9) and (C10). This leads to the following results:
zn
φ = d2/4 for the case (i) and zn

φ = d2/(2d + �n
2) for the

case (ii). We summarize the results for the exponent zn
φ in

Table IV.
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