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Investigating the metallic behavior of Na clusters using site-specific polarizabilities
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A site-specific analysis scheme based on density functional theory is used to investigate the static polarizability
response of NaN clusters for N up to 80. The cluster structures used in the study stem from extensive searches
for the respective global minima. The analysis involves partitioning the total cluster polarizability exactly into
site (or atomic) contributions; it also results in the decomposition of the polarizability into local (or dipole) and
charge transfer contributions. The computed total polarizabilities are found to be in excellent agreement with
recent experimental measurements up to a small overall shift. The site analysis provides clear evidence that
interior atoms in sodium clusters are strongly screened from an applied external field by the charge induced at
the cluster surface. In addition, cluster size trends in the local and charge transfer contributions are shown to be
reproduced very well by a simple metal sphere model. The overall picture is that of clusters exhibiting metallic
behavior down to the smallest sizes.
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I. INTRODUCTION

The abiding interest in the behavior of atomic clusters
stems from the fact that they are the smallest condensed
matter systems. Physical and chemical properties are known
to depend sensitively on the number of atoms in the cluster
size regime, and systematically investigating the properties of
clusters as a function of size yields insight into how bulklike
properties emerge at the nanoscale. The electronic properties
of clusters are particularly interesting yet challenging to
characterize. Since clusters have discrete electron-energy
levels, rules based on bulk energy bands cannot be applied.
New approaches to understanding the behavior of cluster
systems are needed.

The dipole polarizability is a direct measure of a system’s
response to an applied electric field. Many experimental mea-
surements of polarizabilities have appeared in the literature
for various cluster systems [1,2]. These utilize a cluster-beam
deflection technique that can yield both the polarizability and
the static, zero-field electric dipole moment of a cluster. Cluster
polarizabilities and dipole moments can also be computed
using the theoretical framework of density functional theory
(DFT), allowing for direct comparison with experimental
results and providing additional insight into the behavior of
the clusters [3–6].

Recently, high precision measurements of cluster polariz-
abilities and dipole moments were made for sodium clusters
(NaN ) [7]. The temperatures of the clusters were reported to
be 20 K, so the observed clusters were assumed to be in their
ground state structures. A fascinating result of the experiments
was that the observed dipole moments for NaN were found
to be vanishingly small for clusters for all sizes down to
N = 3. This was remarkable since DFT calculations for the

*Corresponding author: mali@nwu.edu.cn
†Corresponding author: jacks1ka@cmich.edu
‡Corresponding author: jellinek@anl.gov

likely ground state clusters predicted [8,9] much larger dipoles
that should have been observed easily given the precision
of the experiments. The absence of permanent dipoles led
to the conclusion that Na clusters are metallic down to the
smallest sizes [7]. The reasoning was that a metal cannot
support a nonzero dipole in its interior; the free electron
charge of the metal would rearrange itself to quench any
dipole.

More recently, calculations on clusters up to N = 20
produced results that suggest a different interpretation of
the missing dipoles [10]. In that study, DFT-based molecular
dynamics (MD) calculations were performed to simulate the
effects of quantum zero point motion (ZPM) on the cluster
structures and the corresponding dipoles. The clusters were
found to be fluxional, even at the low energies corresponding to
ZPM. Because of this, the simulated dipole moments average
to nearly zero over a timescale corresponding to the vibrations
and would therefore also be effectively zero on the much longer
timescale of the cluster beam experiments. These calculations
show that vanishing dipoles do not directly imply metallic
behavior in the clusters. The question of the nature of the
clusters thus remains unresolved.

In this paper we report the results of systematic DFT-based
calculations of cluster polarizabilities over a wide size range
from N = 2 to N = 80. By using a scheme that partitions
the polarizability into site-specific contributions [11,12], we
analyze the experimental polarizability results into charge
transfer or metal-like contributions and local (dipole) or
dielectriclike contributions. By considering the cluster-size
trends of these contributions separately, we show that the
behavior of the cluster polarizabilities is captured very well
by a metal sphere model. We also show direct evidence of
strong, metallic screening of atoms in the cluster interior from
the effects of an applied electric field.

In the next section we review our site-specific methodology.
We then present the main results of the calculations in Sec. III.
In Sec. IV, we discuss and interpret the results. We close in
Sec. V with a summary of the key findings.
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II. METHODOLOGY AND COMPUTATIONAL
PROCEDURE

To insure physically meaningful results for calculated clus-
ter properties, the correct atomic arrangements for the clusters
must be used in the calculations. We determine the global
minimum (GM) energy or ground-state structures of NaN

clusters using an unbiased, three-step search strategy similar to
that used to successfully determine the ground-state structures
of Cu clusters [13,14]. The method proceeds as follows at each
cluster size. First, a large number of initial configurations is
generated using the computationally efficient Gupta potential
[15] and the basin-hopping algorithm encoded in the GMIN
program [16]. Up to 200 basin-hopping runs are made at
each size, each beginning from a different random starting
structure. The 50 lowest energy structures produced in each
run are saved and added to a database of candidate structures.
Structures with energy differences of less than 10−5 eV are
assumed to be identical, and duplicates are eliminated from
the pool. Second, single-point DFT calculations are carried
out at the geometries of the approximately 150 lowest energy
local minima obtained in step 1. The resulting total energies
(DFT1) are used to reorder the candidate structures. In the
final step, the structures corresponding to the 20 lowest DFT1
energies are fully relaxed at the DFT level with no symmetry
constraints. The lowest energy structure obtained in this step
is assumed to be the GM for the given cluster size. Further
discussion of the three-step search strategy can be found in
Refs. [13] and [17].

All DFT calculations were carried out using the generalized
gradient approximation of Perdew-Burke-Ernzerhof (PBE-
GGA) [18] and an extensive, all-electron basis set formed from
16 bare Gaussians, including 6s-type, 4p-type, and 4d-type
orbitals on each atom, as implemented in the NRLMOL
code [19,20]. Recent studies indicate that the polarizability
is well converged with a basis set of this quality [21].
Spin-polarized calculations were done for clusters with an odd
numbers of electrons. Structural relaxations were done using a
standard, gradient-based algorithm [22]. We estimate that the
uncertainty in evaluating the total energies of the local minima
to be no greater than 0.0015 Hartree or less than 0.05 eV using
standard settings for NRLMOL.

The dipole polarizabilities of the ground-state structures
were calculated using the site-specific partitioning method
[11,12]. This scheme decomposes the total dipole moment and
polarizability of a finite system exactly into nonoverlapping
contributions from its constituent atoms. A complete descrip-
tion of the method can be found in Refs. [11] and [12]. Here we
repeat only the details relevant to the discussion of the results.

The polarizabilityα of a system can be defined as

αij = − d2E

dFidFj

∣∣∣∣
F=0

dμi

dFj

∣∣∣∣
F=0

, (1)

where E is the total energy of the system, F is a uniform
external electric field, and μ is the electric dipole of the system,
and i and j label x, y, and z components. The dipole can be
expressed as an integral over the cluster charge density. The
integration volume can be partitioned over nonoverlapping
atomic volumes �A, each of which contains the nucleus of a
single atom A. �A is a Voronoi cell, i.e., the volume closer

to A than to any other atom in the system. (Note that �A

can be generalized to represent the volume of a site that
includes multiple atoms.) The integrals over �A define the
atomic dipole moments μA

i ,

μA
i =

∫
�A

riρ(r)d3r, (2)

which sum exactly to the total dipole moment of the system:

μi =
∑
A

μA
i . (3)

The μA can be further partitioned into local dipole μA,p and
charge transfer μA,q components

μA
i = μ

A,p

i + μ
A,q

i , (4)

where

μ
A,p

i =
∫

�A

(
ri − RA

i

)
ρ(r)d3r, (5)

and

μ
A,q

i =
∫

�A

RA
i ρ(r)d3r = qARA

i . (6)

RA is the position of the nucleus of atom A, and qA is its
net charge. μA,p represents the dipole moment of the total
charge distribution in �A with respect to RA. Its value is
clearly independent of the position of the origin of the overall
coordinate system. μA,q is the dipole corresponding to a point
charge of magnitude qA located at RA. Its value does depend
on the choice of origin, except when qA = 0, because RA

does. However, the sum of the μA,q over all atoms is origin
independent for a neutral system.

Given the decomposition of the atomic dipole moment in
Eq. (4), the atomic polarizability can be represented as

αA
ij = α

A,p

ij + α
A,q

ij , (7)

with local dipole (αA,p

ij ):

α
A,p

ij = dμ
A,p

i

dFj

∣∣∣∣∣
F=0

, (8)

and charge transfer (αA,q

ij ):

α
A,q

ij = dμ
A,q

i

dFj

∣∣∣∣∣
F=0

= RA
i

dqA

dFj

∣∣∣∣
F=0

(9)

components. α
A,p

ij reflects the change in the local dipole
moment at site A when an external electric field is switched on.
It is therefore sensitive to rearrangements of the electron charge
density within �A. α

A,q

ij reflects the change in the net site
charge qA when an external field is imposed. It is sensitive to
transfers of charge between �A and the rest of the cluster. Since
α

A,p

ij and α
A,q

ij involve derivatives with respect to the same
external field, comparing these quantities for different atoms
directly indicates differences in how the charge density around
those atoms changes due to the application of an external field.
Summing the site-specific polarizabilities over all the atoms
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and dividing by N leads to the total per atom local and charge
transfer polarizabilities:

α
p

ij

N
= 1

N

∑
A

α
A,p

ij (10)

and

α
q

ij

N
= 1

N

∑
A

α
A,q

ij . (11)

As in the case of the corresponding dipole moments, each of
the α

A,p

ij is independent of the choice of the origin, but α
A,q

ij is
not. However, in a neutral system, α

q

ij does not depend on the
location of the origin.

All polarizability components are evaluated using a finite
difference method [23]. For a given cluster, a series of self-
consistent DFT calculations are performed in which a small,
uniform external electric field is oriented along the “+” and
“−”x, y, and z directions, respectively. The polarizabilities are
then calculated according to

α
A,p(q)
i.j = μ

A,p(q)
i (+Fj ) − μ

A,p(q)
i (−Fj )

2Fj

, (12)

where Fj is the magnitude of the external field applied in the
j th coordinate direction. A magnitude of 0.005 atomic units
for the external field has been found to yield numerically stable
and well-converged results for the derivatives [23].

In the following sections, we mainly focus on isotropically
averaged polarizabilities. For the sake of clarity, we use
brackets to indicate the averaged values. For example,

〈α〉 = 1

3

∑
i

αii . (13)

Also, it is convenient to introduce the following averaged
quantity:

∣∣∣∣dqA

dF

∣∣∣∣ =
√(

dqA

dFx

)2

+
(

dqA

dFy

)2

+
(

dqA

dFz

)2

. (14)

Its value is independent of the location of the origin of a given
cluster, as are 〈α〉,〈αp〉, and 〈αq〉.

III. RESULTS

A. Ground-state structures and properties of NaN clusters

We used the scheme described in Sec. II to obtain GM
structures for NaN (N = 2–30) clusters. The lowest energy
structure found at each size is shown in Fig. 1. The clusters
are planar for N = 3–5, while for N = 6–15 the structures
are layered with no interior atoms. Na16 has one atom on what
could be described as a concave surface site. For N = 17 and
beyond, all clusters have at least one interior atom. For N = 17
and 18, the structures contain only one interior atom, while for
N = 19–22 there are two, for N = 23 and 24 there are three, for
N = 25–29 there are four, except for Na27, which has five, and
for Na30 there are six interior atoms. (Coordinates and other
information regarding these cluster structures are available on
request from the authors.)

FIG. 1. (Color online) Ground-state structures of NaN found
using an unbiased search technique (N = 2–30).

There have been several earlier theoretical studies of the
structures of NaN clusters, especially for N < 20, but a few
involving much larger structures [24–26]. A detailed review
was given recently by Aguado and Kostko [26]. Here we
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limit the comparison of the structures in Fig. 1 to the new
results presented in Ref. [26]. Aguado and Kostko also carried
out extensive, unbiased searches for NaN GM structures for
N up to 80 atoms. Their methodology also involves use
of an empirical Gupta potential [15] and the basin-hopping
algorithm [16] to create a large pool of candidate structures
at each size. A subset of this pool was then chosen for
study within DFT, in this case using the local spin density
approximation (LSDA) [27]. To refine their pool, Aguado and
Kostko [26] first grouped the Gupta-derived geometries based
on shape characteristics and then chose the lowest energy
isomer of each shape type for further studies. Their rationale
for this procedure is that the energy ordering given by the
empirical potential should be more reliable when comparing
structures of similar overall shape. They also generated
additional candidate structures by adding or removing single
atoms to the low energy structures of a neighboring size. In
total, up to 150 candidate structures were fully optimized at
the LSDA level at each size.

We find a close agreement between the structures in Fig. 1
and those presented in Ref. [26] at all sizes up to N = 30. The
proposed GM structures are the same for all sizes except for
N = 23, 29, and 30. For Na23, the structure in Fig. 1 coincides
with the second-lowest structure reported in Ref. [26], which is
nearly degenerate with their proposed GM. In our GGA-PBE
calculations, the two structures are also nearly degenerate,
separated by less than 0.03 eV. The ground-state structure for
Na29 in Fig. 1 has Cs symmetry. It differs from the C1 structure
presented in Ref. [26] in the placement of a single cap atom.
In GGA-PBE, the two structures are essentially degenerate,
differing in total energy by less than 0.01 eV. The C1 structure
for Na30 shown in Fig. 1 also differs from the respective Cs

structure in Ref. [26] by the placement of a single cap atom.
At the GGA-PBE level, the Cs structure from Ref. [26] is
0.05 eV lower in energy than the structure shown in Fig. 1. The
nearly exact agreement between the proposed GM structures
presented in Ref. [26] and those found independently in this
work (Fig. 1) demonstrates that unbiased search procedures
can reliably locate the lowest energy cluster isomers.

In Fig. 2, we show structures for NaN , N = 38, 40, 50,
55, 60, 70, and 80. These were taken from Ref. [26] and
reoptimized using GGA-PBE. The resulting structures were
used along with those in Fig. 1 to explore the trends of the
cluster polarizability and other properties over a large range of
cluster sizes. We now turn to those results.

In the upper panel of Fig. 3, we show the average bond
length 〈R〉 as a function of cluster size. To determine 〈R〉
for a given cluster, bonds are assumed to exist between
any two atoms separated by less than 1.25 dmin, where dmin

is the shortest interatomic separation in the cluster. This
criterion was chosen by examining histograms of interatomic
distances for several clusters. The histograms typically have a
broad first peak that corresponds to first-neighbor separations.
The bond criterion was chosen so as to include all of the
bonds contributing to this peak when computing 〈R〉. For a
typical cluster, 1.25 dmin is approximately 4.1 Å, well less
than the distance to the second nearest neighbor in the bulk
body-centered-cubic (bcc) structure for Na (4.2 Å).

〈R〉 increases rapidly with N for the smallest clusters but
reaches a maximum value of about 3.71 Å for N = 80.

FIG. 2. (Color online) Ground state structures of NaN (N = 38,
40, 50, 55, 60, 70, and 80) taken from Ref. [21] and reoptimized using
GGA-PBE.

This is somewhat larger than the nearest-neighbor distance
computed within PBE for the bulk sodium bcc lattice, 3.62 Å
[4]. (For comparison, the experimentally determined bond
length, measured at 5 K, is 3.659 Å [28].) As a rule, 〈R〉
increases with cluster size and approaches the bulk bond length
from below at large values of N . The bcc structure of bulk
Na is relatively open, and each atom has only eight nearest
neighbors. The clusters have a more close-packed structure.

FIG. 3. Upper panel: Average nearest-neighbor distance 〈R〉 (in
Å) vs N for the ground-state structures of NaN clusters. The dashed
line is the bulk Na bcc lattice nearest-neighbor distance, 3.659 Å [23].
Middle panel: HOMO-LUMO gap (in eV) vs N for ground state NaN

clusters. Lower panel: Computed electric dipole moments (in Debye)
for ground state NaN clusters.
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For example, for N = 70 and 80, the average coordination is
8.5 and 8.9, respectively, even though many of the atoms are at
the cluster surface. Generally, bond lengths increase with the
number of nearest neighbors, so the somewhat larger cluster
bond lengths appear to result from the fact that the cluster
structures are more closely packed than the bcc bulk structure.

The energy gap between the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) is shown in the middle panel of Fig. 3. While HOMO-
LUMO gaps are typically underestimated when computed
in DFT using the corresponding Kohn-Sham eigenvalues,
qualitative cluster size trends in the gap are reproduced [29].
In Fig. 3, the HOMO-LUMO gap for NaN is seen to have a
general trend toward smaller values as N increases, but there
is considerable variation from cluster size to cluster size. At
N = 80, the largest cluster considered here, the gap is 0.08 eV,
yet at N = 70 the value is 0.29 eV. The HOMO-LUMO gap
values are larger at sizes that correspond to electronic shell
closures in a jellium model of the clusters (e.g., N = 2, 8, 18,
and 20) [30].

As mentioned in the Introduction, the size of the dipole in
Na clusters is a matter of significant current interest [7,9,10].
Recent experiments [7] suggested that permanent dipoles are
vanishingly small in NaN ; however, DFT-based calculations
[9,10] gave a different picture. They indicated that NaN clusters
have finite dipoles in their static, ground state geometries, but
these average out to give nearly zero effective dipole moments
when dynamical effects due to temperature and ZPM are taken
into account.

We computed dipole moments (μ) for the static structures
shown in Figs. 1 and 2. The results are shown in the bottom
panel of Fig. 3. There is clearly significant variation in the value
of μ with cluster size. Highly symmetric clusters such as Na55

have zero dipole moment, but lower symmetry structures such
as Na60 have nonvanishing moments. The values are in good
agreement with the recent results of Aguado et al. [9]. For
example, for Na13 we obtain a value of 0.297 Debye compared
to a value of 0.248 Debye given in Ref. [9] for the PBE density
functional. We note that, as shown in Ref. [9], the computed
value of the dipole moment for a given cluster size depends on
the functional used for the calculation, but different functionals
give similar qualitative comparisons between different cluster
isomers and different cluster sizes.

B. Site-specific analysis of cluster polarizabilities

Site-specific polarizabilities have been computed for all of
the clusters shown in Fig. 1 and Fig. 2 using the methodology
described in Sec. II. For each cluster, values of 〈αA,p〉 and
〈αA,q〉 are computed for each atom A. Since 〈αA,q〉 depends
on the choice of the origin of the coordinate system, it is
more convenient to focus on the related quantity | dqA

dF
|, which

is independent of this choice. As mentioned above, the site-
specific polarizabilities indicate how the distribution of the
charge density in the volume associated with that site (atom)
changes when an electric field is applied. Specifically, 〈αA,p〉
is related to the change in the local dipole of atom A, and | dqA

dF
|

indicates how the net charge associated with atom A changes.
In Fig. 4, shading is used to show the magnitudes of 〈αA,p〉

and | dqA

dF
| for the atoms in Na6, Na14, Na25, and Na70. The same

FIG. 4. (Color online) Site-specific values of 〈αA,p〉 and | dqA

dF
|

for NaN , N = 6, 14, 25, and 70. The shading indicates the relative
magnitudes of the quantities, with the darkest atoms having the largest
values. The shading scale is set independently for each quantity, but
the same scales are used for all four cluster sizes.

shading scale is used for all cluster sizes, so a comparison
between atoms can be made not only within a single cluster
but also across the different clusters. For each quantity, the
maximum value across all the clusters is used to define the
darkest shading.

The same general behavior is exhibited by all the clusters
in Fig. 4. The values of both 〈αA,p〉 and | dqA

dF
| are smaller

in magnitude for the atoms closer to the cluster center of
mass than for atoms near the cluster surface. The difference is
slightly more pronounced for | dqA

dF
|. In Na25 and Na70, which

have interior atoms, the values of both 〈αA,p〉 and | dqA

dF
| for

the interior atoms are close to zero. For Na25, for example,
the smallest magnitude of 〈αA,p〉 is 0.45 Bohr3 for the interior
atoms, while the largest value for an atom at the surface is about
57 Bohr3. For | dqA

dF
|, the corresponding values are 0.35 and

38 Bohr2. Some of the values of 〈αA,p〉 and 〈αA,q〉 for interior
atoms have a negative sign. This indicates that, for a given
applied field, the dipoles induced in these atomic volumes are
opposite in direction to the applied field.

To show the trends differently, the values of 〈αA,p〉 (squares)
and | dqA

dF
| (circles) are plotted as a function of the distance of

the various atoms from the center of mass of the clusters in
Fig. 5. As mentioned, the trends for both quantities are very
similar in all the clusters. Reading from right to left in each
panel clearly shows that the atoms furthest from the cluster
center generally have the largest values and that the values
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FIG. 5. (Color online) Site-specific values of 〈αA,p〉 and | dqA

dF
| vs

distance of atom A from the cluster center of mass (R), for NaN ,
N = 6, 14, 25, and 70.

decrease to approximately zero for atoms in the cluster interior.
(There are no true interior atoms in Na6 or Na14. While Na6 is
quasiplanar, the central atom lies above the plane defined by
the pentagon.) The maximum values of 〈αA,p〉 and | dqA

dF
| for

the surface atoms are similar for all of the clusters. 〈αA,p〉 and
| dqA

dF
| span a range of values over the various surface atoms.

This corresponds to the differences in shading seen for the
surface atoms in Fig. 4.

The evolution of 〈α〉
N

, 〈αq 〉
N

, and 〈αp〉
N

with N is shown
in Fig. 6; the values of these quantities are independent of
the location of the origin of the system of coordinates. For
comparison, measured values for 〈α〉

N
obtained by Bowlan

et al. in recent experiments [7] are also shown. The calculated
and experimentally determined values exhibit the same trends
with cluster size, although the calculated values are shifted
down from the experimentally determined values by a roughly
constant amount of 10.0 Bohr3. We discuss this difference
further below. The values of 〈αp〉

N
follow a smoothly decreasing

FIG. 6. (Color online) Isotropic per atom polarizabilities 〈α〉/N ,
〈αp〉/N , and 〈αq〉/N for NaN clusters vs N . The bulk polarizability
per atom is shown by the dashed line and has the value 60.75
Bohr3/atom. The dotted line is a plot of the second two terms on
the right side of Eq. 23, with δ = 0.86 Å.

trend with cluster size. By contrast, the values of 〈αq 〉
N

undergo
significant fluctuations at the smallest sizes but reach a roughly
constant value beyond N = 20. The fluctuations in the values
of 〈α〉

N
are largely due to the fluctuations in 〈αq 〉

N
.

To characterize the anisotropy in the response of a cluster
to the direction of the applied external electric field, we define
the polarizability anisotropy η as

η = α1 − α3

〈α〉 , (15)

where αk (k = 1, 2, 3) are the eigenvalues of the total
polarizability matrix, labeled so that α1 � α2 � α3. Physically,
the eigenvectors of the polarizability matrix define those
directions in which the change in the dipole moment of a
system in response to an external electric field is simply a
scaling by a scalar factor, and the eigenvalues reflect the rate
of change of the dipole moment with the field in the limit of
vanishingly small field.

The polarizability eigenvalues can be decomposed into
local (or dipole) α

p

k and charge transfer α
q

k contributions:

αk = α
p

k + α
q

k , (16)

where α
p

k and α
q

k are the diagonal elements of the local (or
dipole) αp and charge transfer αq matrices subjected to the
same transformation that diagonalizes the total polarizability
matrix α. (Note that αp and αq are not themselves diagonalized
by this transformation. See Ref. [10] for further discussion.)
Given this, η can be partitioned into local (or dipole) ηp and
charge transfer ηq contributions:

η = ηp + ηq, (17)

where

ηp = α
p

1 − α
p

3

〈α〉 (18)

and

ηq = α
q

1 − α
q

3

〈α〉 . (19)

The polarizability anisotropies and their dipole and charge
transfer components for NaN clusters are plotted in Fig. 7.
It is clear from the figure that η is dominated by ηq for all
clusters. The implication is that the directional dependence of
the polarizability is carried mainly through the charge transfer
component. The values of ηpare much smaller at all sizes. This
implies that the change in the local dipole part of the cluster
dipole moment due to an external electric field is nearly the
same regardless of the direction of the field. The sign of ηpis
negative for many clusters. This indicates that the dipole part of
the total polarizability of these clusters is largest in a direction
other than that for the charge transfer part.

To connect the polarizability anisotropy to cluster shape,
we define a shape anisotropy χ as

χ = I3 − I1

〈I 〉 , (20)

where Ik (k = 1, 2, 3) are the principal moments of inertia
of the cluster labeled so that I1 � I2 � I3 and 〈I 〉 = (I3 +
I2 + I1)/3. Note that this numbering scheme is opposite to
the convention used for α1, α2, and α3. In general, systems
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FIG. 7. (Color online) Polarizability anisotropies η, ηp , and ηq

for NaN vs N . Inset: Correlation between the cluster polarizability
anisotropy η and the shape anisotropy χ for NaN . See text for details.

are most polarizable along the direction of their largest linear
dimension. But the moment of inertia with respect to an axis
that points in this direction is the smallest. With reversed
numbering schemes for the polarizabilities and the moments
of inertia, the eigenvectors that correspond to the eigenvalues
of these two quantities with the same k define the same or
nearly the same spatial directions.

We show a plot of η vs χ for all the clusters in the inset
of Fig. 7. There is a strong correspondence between η and
χ , showing that the clusters with the most (least) isotropic
mass distributions (i.e., the ones that are the most (least)
spherical) also have the most (least) isotropic polarizabilites.
This correlation between the polarizability anisotropy η and
the shape anisotropy χ can be rationalized by noting that η

is dominated by ηq , and that the atomic contributions α
A,q

ij

defining ηq depend on the atomic positions RA
i (Eq. 9).

IV. DISCUSSION

A simple model expresses the polarizability of a metal
sphere [6,31,32] as

〈α〉 = (R + δ)3, (21)

where R is the sphere radius and δ is a parameter representing
the distance that the electron charge density extends beyond
the sphere radius due to the finite decay length of the electron
wave functions. In the context of an atomic cluster, R can be
thought of as the typical distance from the cluster center to
the nucleus of a surface atom. δ then represents an appropriate
average distance beyond the nucleus that the valence electron
charge density extends. In the limit of a macroscopic sphere,
δ can be neglected, and the bulk polarizability per atom (α0)
can be expressed in terms of the volume per atom (V0) of the
sphere:

α0 = R3

N
= 3

4π
V0. (22)

Using the experimental value of the bulk bcc unit cell
parameter (4.225 Å) [28], we obtain α0 = 60.75 Bohr3.

Multiplying the cube in Eq. 21 and using Eq. 22 to replace
R by (Nα0)1/3, we obtain〈 α

N

〉
= α0 + 3α

2/3
0 δN−1/3 + 3α

1/3
0 δ2N−2/3, (23)

where we have dropped the δ3 term, which can be shown to be
negligible for all but the smallest clusters (see below).

Before using Eq. 23 to interpret the trends in Fig. 6, it is
worth considering a simple scaling argument [12] regarding the
expected behavior of 〈αq 〉

N
and 〈αp〉

N
with size. As can be seen in

Figs. 4 and 5, both 〈αq 〉
N

and 〈αp〉
N

are dominated by contributions
from the cluster surface. In the presence of an external field,
the induced surface charge on a cluster is proportional to σR2,
where the surface charge density, σ , is proportional to the
external field strength. The charge transfer dipole will then
scale as σR3, where the additional factor of R is the distance
of the induced charge to the cluster center (cf. Eq. 9). 〈αq 〉

N

can therefore be expected to be constant with size since R3 is
proportional to the cluster volume and, therefore, to N . The
local dipole is also dominated by surface contributions, but
the local dipole for the surface atoms scales as σR2d, where d

represents the distance between the induced surface charge and
the nuclei of the surface atoms. Thus, 〈αp〉

N
could be expected

to fall off like 1/R or N−1/3 to leading order.
Turning to the results shown in Fig. 6, it is clear that 〈αq 〉

N

is roughly constant for large cluster sizes, as expected from
the scaling argument. Its value fluctuates about α0, which is
indicated in the figure by the dashed line. Thus, the size-
independent term in Eq. 23 can be identified with 〈αq 〉

N
. The

remaining terms can therefore be related to 〈αp〉
N

. By assuming
δ to be constant and varying its value, we obtain a best fit
to the computed values of 〈αp〉

N
, shown by the dotted curve

in Fig. 6. The fit is extremely good and corresponds to δ =
1.63 Bohr, or 0.86 Å. This is approximately 1

4 of the average
nearest-neighbor separation of 3.7 Å for the Na atoms in the
clusters.

It is interesting to note that the δ2 term in Eq. 23 is sizable
throughout the range of clusters sizes shown in Fig. 6 and
cannot be neglected from the fit. For example, at N = 16
this term has a magnitude of about 6 Bohr3 or about 20%
of the value of 〈αp〉

N
at this size. By N = 80, the δ2 term has

decreased to about 1.7 Bohr3, but this remains about 9% of
〈αp〉
N

. At still larger sizes, the relative contribution of the δ2

term to 〈αp〉
N

decreases further and can ultimately be neglected
in comparison to the linear term. By contrast, the δ3 term
neglected in Eq. 23 has a value of 2.17 Bohr3 at N = 2 or only
2.5% of the total value of 〈αp〉

N
. Its relative contribution falls

off quickly for larger sizes. For this reason it can be dropped
from Eq. 23.

The degree to which the terms in Eq. 23 capture the size-
dependent trends in 〈αq 〉

N
and 〈αp〉

N
is striking. It is essentially

only the dips in 〈αq 〉
N

near N = 2, 8, and 18 that are
not reproduced. These coincide with jellium shell closings
corresponding to filling the 1S, 1P , and 1D shells, respectively
[30]. Such clearly quantum mechanical effects are outside the
essentially classical domain of the model. Discounting these,
the metal sphere model clearly describes the behavior of the
Na clusters very well.
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The results shown in Figs. 4 and 5 are also consistent with
a metallic model. The fact that both 〈αA,p〉 and | dqA

dF
| are close

to zero for the interior atoms in the Na clusters implies that
there is little charge induced on these atoms by an external
field; therefore, the interior atoms are strongly shielded from
the effects of an external field. In the limit of the bulk metal, the
shielding is complete and 〈αA,p〉 and | dqA

dF
| would be exactly

zero for interior atoms. The behavior seen in Figs. 4 and 5 for
the clusters coincides qualitatively very well with this picture.

In Fig. 6 we compare the calculated values for 〈α〉
N

to
the corresponding experimental values [7]. The calculated
values track the size-related trends in the experimental values
extremely well, reproducing essentially all of the features,
including the large dips related to shell closings (N = 2, 8, 18)
as well as the smaller fluctuations at larger sizes. For Na and
Na2, the agreement between calculated and measured values is
quantitative (159.16 and 122.5 vs 160.4 and 124.9 Bohr3/atom,
respectively). However, for other sizes the calculated 〈α〉

N
values

are consistently smaller than the experimental values. The only
exceptions are for N = 5 and N = 10, for which the calculated
values (124.8 and 99.9 Bohr3/atom) are somewhat larger than
the experimental values (120.7 and 94.1 Bohr3/atom). Of note
is the fact that the difference is approximately constant with
size. Between N = 11 and 80, the average difference between
the calculated and measured values is 10.2 Bohr3/atom, with
a standard deviation of only 1.8 Bohr3/atom.

The constancy of this difference deserves attention in light
of the decomposition of 〈α〉

N
into 〈αq 〉

N
and 〈αp〉

N
shown in Fig. 6

and discussed previously. The fact that 〈αq 〉
N

is essentially

constant, while 〈αp〉
N

depends strongly on N , suggests that the

difference must be related to 〈αq 〉
N

, yet the calculated limiting

value of 〈αq 〉
N

agrees with the expected bulk value. At the same

time, the size dependence of 〈αp〉
N

is exactly as expected from

the form of Eq. 23. Why, then, is the sum of 〈αq 〉
N

and 〈αp〉
N

not
equal to the measured values?

The difference between the computed and measured val-
ues of 〈α〉

N
cannot be attributed simply to an inadequacy

of the computational framework (the exchange correlation
functional, the basis set, etc.). As noted above, the theory
reproduces the measured values of α very well for Na and
Na2, and the nearly constant value of 〈αq 〉

N
agrees well with

the value expected from the bulk. A different theory-related
problem has to do with calculated PBE-GGA bond lengths.
The PBE-GGA bond length for bcc Na is 3.62 Å [4], compared
to the low-temperature experimental value of 3.66 Å, an
underestimate of about 1%. If cluster bond lengths were
similarly underestimated, the radius of a given cluster would
be underestimated by 1% and the corresponding value of 〈αq 〉

N

by about 3%, or about 2 Bohr3/atom. This is much smaller
than the difference seen in Fig. 6. Furthermore, the calculated
bond length for Na2, 3.09 Å, is in close agreement with the
corresponding experimental value, 3.08 Å [33]. This suggests
that the calculated cluster bond lengths may actually be closer
to the true bond lengths than would be expected from the bulk
comparison. Based on these considerations, it appears clear
that the theory-experiment difference seen in Fig. 6 cannot be
due to poor theoretical bond lengths.

Another possible source of the difference is related to
temperature. Since the radius of a cluster increases with
temperature due to thermal expansion, the cluster’s polariz-
ability could be expected to increase as well. The measured
polarizability therefore depends on the temperature of the
cluster in the experiment. The calculated value, by contrast,
is computed for ground state structures that correspond to
T = 0. Several groups have investigated this effect [4,34–37].
Kronik et al. [4,36], and later Gamboa et al. [37], carried out
DFT-based MD simulations to show directly that the computed
values of 〈α〉

N
for clusters indeed increase with temperature.

However, the cluster temperatures in the experiments that
yielded the data shown in Fig. 6 were reported [7] to be 20 K.
Using the results of Gamboa et al. [37] as a guide, we estimate
that the increase in 〈α〉

N
for clusters at this low temperature

would be well less than 1 Bohr3/atom. In addition, the results
of Ref. [37] indicate that the same increase in temperature can
give very different increases in the polarizability per atom for
clusters of different size. Thus, the temperature effect is not
consistent with a constant difference between computed and
measured values as seen in Fig. 6, assuming all clusters to have
the same temperature in the experiment.

Recently, Aguado et al. [10] used a van der Waals (vdW)
corrected DFT (vdW-DFT) [38] to study NaN structures
between N = 10 and 20. They reported that the energetic
ordering of cluster isomers was somewhat different in vdW-
DFT than in PBE-GGA and resulted in different GM structures
at some sizes. They also reported that values of 〈α〉

N
computed in

vdW-DFT are somewhat larger than in PBE-GGA. Comparing
directly, we find the results in Ref 10 to be 2–3 Bohr3/atom
larger on average than our results for this size range. While
this is the right direction to explain the discrepancy with
experiment, it does not explain the full difference.

Aguado et al. [10] also considered the effect of quantum
ZPM on calculated polarizabilities. As noted in the Introduc-
tion, this was done by carrying out DFT-based MD simulations
for the clusters. The MD runs were started by placing an
amount of energy equal to the corresponding quantum zero
point energy into each vibrational degree of freedom for the
cluster. By averaging polarizabilities computed for several
configurations selected from the MD run, an average increase
of 2–3 Bohr3/atom over the value of the polarizability for
the GM structure was found for the clusters in the range
N = 10–20. Again, this is too small to account for the full
theory-experiment difference. (Note that a change of this
magnitude added to our results for 〈αq 〉

N
would not seriously

impact the agreement with α0.)
While none of the effects considered above is large enough

to account for the difference between the computed and
measured values of 〈α〉

N
seen in Fig. 6, it is possible that

more than one of these effects could combine to explain the
difference. It may also be possible that a systematic downward
shift in the experimental values of 〈α〉

N
, as deduced from the

beam deflection measurements, is an additional reason for the
theory-experiment difference.

Finally, we return to the near constancy of 〈αq 〉
N

and its
agreement with the value for bulk Na. The remarkable result
is that the per atom polarizability of bulk sodium is already
present in Na clusters down to the smallest sizes studied here.
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This is true despite the fact that nonmetallic characteristics are
also present in these clusters. For example, the HOMO-LUMO
gaps of the smallest clusters (Fig. 3) are quite large, ranging up
to 1 eV. The contribution of 〈αp〉

N
to 〈α〉

N
is significant over the

range of Fig. 6 and vanishes gradually at larger sizes, revealing
ever more clearly the metallic character inherent in the clusters
from the smallest sizes as 〈α〉

N
reaches the proper bulk limit.

We conjecture that the trend-exhibited behavior by the 〈αp〉
N

and 〈αq 〉
N

graphs of Fig. 6 for 〈αq 〉
N

are generic to all elements
that are metals in bulk quantities. Preliminary results for Cu
and K clusters support this conjecture: The values of 〈αq 〉

N
for

these systems are near the corresponding bulk values already
at small sizes and fluctuate about it as the clusters grow in size,
whereas the values of 〈αp〉

N
decrease with the increase in the

cluster size. The implications of the above conjecture are that
the values/behavior of 〈αp〉

N
and 〈αq 〉

N
as exhibited by clusters of

even small sizes can serve as a predictive descriptor of whether
an element, when in bulk quantities, is a metal or nonmetal.
In that, 〈αq 〉

N
and 〈αp〉

N
are different from many other descrip-

tors/properties. For example, to predict the bulk lattice struc-
ture, one needs to consider clusters of much larger sizes, typi-
cally containing thousands or even tens of thousands of atoms.

V. SUMMARY

In this paper we presented the results of extensive, unbiased
searches for the ground-state structures of NaN , with N = 3–
30. The structures we report reproduce almost exactly those
found independently by Aguado and Kostko [26], demon-
strating that careful, unbiased searches can be used to locate
GM energy structures. We then studied the polarizabilities
of the clusters, including structures at N = 38, 40, 50, 55,
60, 70, and 80 taken from Ref. [26], to elucidate trends
out to large cluster sizes. The polarizabilities are calculated
using an analysis scheme that partitions the total cluster
polarizability, 〈α〉

N
, exactly into site-specific contributions. The

individual atomic polarizabilities are then further decomposed
into local (or dipole) and charge-transfer components that can
be summed to give the total charge transfer 〈αq 〉

N
and dipole

〈αp〉
N

polarizabilities for the clusters. Each of these quantities is
independent of the choice of origin of the cluster and represents
a metalliclike and a dielectriclike response of the cluster,
respectively.

The results indicate strong electrostatic screening of the
cluster interior from the effects of an applied field. The

individual site-specific polarizabilities are large for atoms at
surface sites and close to zero for interior sites. This screening
is characteristic of metallic behavior in the clusters. In fact, a
simple model based on the polarizability of a metal sphere is
shown to capture the size trends of the cluster polarizability and
its local dipole and charge transfer contributions over the entire
size range studied here. Remarkably, the calculated values of
〈αq 〉
N

attain an approximately constant value equal to the bulk
limit already at very small cluster sizes, indicating that clear
metallic character is present even in the smallest clusters and
does not grow in with cluster size.

The decomposition of the cluster polarizability into site-
specific contributions allows unique insight into the behavior
of condensed matter at the smallest length scales. As Figs. 4
and 5 indicate, the analysis can be used to directly probe
electrostatic screening and therefore to address questions
related to the metallic character of a system. Such questions
about nanoscale matter are of fundamental, as well as growing
technological, interest. We expect that application of the
site-specific methodology to additional cluster systems will
help to develop a more robust understanding of nanoscale
metallicity.
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[5] S. Kümmel, T. Berkus, P.-G. Reinhard, and M. Brack, Eur. Phys.

J. D 11, 239 (2000).

[6] J. Guan, M. E. Casida, A. M. Köster, and D. R. Salahub, Phys.
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