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Kondo effect of a cobalt adatom on a zigzag graphene nanoribbon
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Based on ab initio calculations we discuss the Kondo effect due to a Co adatom on a graphene zigzag
nanoribbon. A Co atom located at a hollow site behaves as a spin S = 1/2 impurity with dxz and dyz orbitals
contributing to the magnetic moment. Dynamical correlations are analyzed with the use of complementary
approximations: the mean field slave boson approach, noncrossing approximation, and equation-of-motion
method. The impact of interplay between spin and orbital degrees of freedom together with the effect of
peculiarities of electronic and magnetic structure of the nanoribbon on many-body resonances is examined.
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I. INTRODUCTION

Graphene possesses spectacular electronic, optical, mag-
netic, thermal, and mechanical properties, which make it
an exciting material for technological applications [1–5].
Graphene is a semimetal. For use in logic devices a controllable
band gap is very much desired. The presence of a gap would
increase tremendously the on-off ratio for current flow that is
needed for many electronic applications. For example, lack of
the gap prevents the use of graphene in making transistors. A
band gap opening is caused by symmetry breaking [6,7]. The
most effective way within the realm of single-layer graphene
physics is electron confinement, e.g., in nanoribbons (partial
breaking of translational symmetry) [8–11]. The graphene
nanoribbons (GNRs) with varying widths can be realized either
by cutting [12] mechanically exfoliated graphenes [13] or by
pattering epitaxially grown graphenes [14]. The edge geometry
is the key factor which determines the electronic properties
of the nanoribbon. There are two types of nanoribbons,
based on their edges shapes, called zigzag (ZGNR) and
armchair (AGNR) [9,15]. Recently, electronic devices, such
as field effect transistors, have been formed from graphene
nanoribbons [16,17]. ZGNRs are of particular interest, because
due to topological reasons they are forming edge states [18],
i.e., states decaying exponentially into the center of the ribbon
[3,19]. The decay lengths are in the range of a few nanometers
[20]. The edge states have been observed in scanning tunneling
microscopy [21]. The localized nature of these states gives rise
to a flat band extending over one-third of the one-dimensional
Brillouin zone and correspondingly also to a sharp peak in the
density of states right at the Fermi level. As a consequence
a magnetic ground state emerges from a Fermi instability
[22,23]. Recently the spin splitting of the edge density of
states of ZGNRs has been confirmed experimentally [24].
Theoretical studies have shown that the spins on each edge
are ferromagnetically ordered, and those between the edges
are antiferromagnetically coupled, the latter resulting from
the interaction of the tails of the edge states [10,23,25–27].
Modification of the electronic structure can be also introduced
by chemical functionalization, which allows the band gap
engineering and designing different types of magnetic order.
Based on density functional calculations (DFT) Son et al. [22]
have shown that one can modify the band gap of ZGNRs
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by applying transverse electric field and that the electric
field closes the gap for one of the directions selectively
(half metallicity). This conclusion has been confirmed by
calculations of Kan et al. [27] with the use of a hybrid
functional potential (B3LYP), which is viewed as one of the
most accurate methods for estimation of the gap. The predicted
critical fields of transition into half metallicity are much higher
in this method than those from normal DFT calculations. It is
well known that graphene nanostructures are promising for
spintronics due to their long spin relaxation and decoherence
times owing to the low intrinsic spin-orbit interaction [28].
The mentioned possibility of band gap tuning and controlling
magnetism and spin transport of the ribbons by electric field is
the principal advantage of these systems. The pure nanoribbon
has no net magnetic moment. The functionalities of the ribbons
can be enriched by doping the magnetic adatoms. Due to
the open surface controlled adatoms manipulation is within
reach of atomic force microscopy in these systems [29,30].
In the last few years several studies focused on understanding
structural, electronic, and magnetic properties of 3d impurities
in graphene nanoribbons [31–36]. Also vacancies and defects
have been predicted to give rise to magnetic moments [37,38].
The relative stability of local moments depends on the
balance between the Coulomb repulsion, exchange interaction,
position of 3d levels, and hybridization with the neighboring
carbon atoms. Especially the two latter factors are strongly
affected by impurity location: one expects different energetics,
structural, and electronic properties near the edge sites of
GNRs and different when the adatom is located inside the
ribbon. The electronic structure of a nanometer-wide ribbon is
dominated by confinement effects and Van Hove singularities
and this strongly affects the hybridization path. As opposed
to normal metals, the damping of the local levels is energy
dependent and the hybridization self-energy acquires also
significant real contribution near singularities causing effective
shift of local energy levels. Since the chemical potential
of GNRs can be tuned, a formation of local moment can
be controlled by gate voltage and particularly strong gate
dependence is expected near singularities. At low temperature,
the localized spin is screened by conduction electrons and a
narrow Kondo peak appears near the Fermi level. Most of
the early studies on the Kondo effect were carried on for
metallic systems with constant density of states at the Fermi
surface; in the case of graphene structures the details of the
band structure play the decisive role in screening. Recently the
Kondo effect has been observed in graphene both in resistivity
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measurements [39] and by scanning tunneling microscopy
(STM) [40]. As opposed to transport measurements STM
probes local electronic properties of Kondo impurities. The
Kondo resonance observed in tunneling spectroscopy usually
does not show up as a peak but rather as a dip. This is a
consequence of interference of the direct channel into the
localized orbitals of the impurity and an indirect one to the
bands of the host [41]. The Kondo temperature in graphene is
tunable with carrier density from 15–90 K [39,40]. A number
of interesting theoretical studies have been published on this
topic discussing specificity of Kondo screening for the gapless
system, where a critical hybridization is necessary for the
occurrence of this effect [42–44]. Due to valley degeneracy
of the Dirac electrons in perfect graphene the possibility of
a multichannel Kondo effect has been also discussed [45].
Recently there appeared two fundamental, realistic studies of
the Kondo effect of a single Co adatom in graphene based on
first-principles calculations [46,47]. These papers expose the
role of orbital symmetry on dynamical correlations. Along this
line is also the analysis presented in the present paper.

The topic of our study is the Kondo effect in a zigzag
graphene nanoribbon. The crucial requirement of the occur-
rence of the Kondo effect is that the adatom should retain
its magnetic moment in the presence of electrons of the host.
We open our analysis with presentation of the first-principles
electronic structure calculations of the Co impurity in narrow
zigzag GNRs discussing energetics, geometry of adsorption,
magnetic moments, and magnetization densities for different
positions of impurities. We discuss which adsorption site is
most favorable and show the result of optimization of the
adsorption height, and indicate which orbitals most strongly
hybridize with nanoribbon states and which contribute to
impurity magnetic moments. Both the binding energies of the
impurity and the magnitude of the moment strongly depend on
the location of the adatom across a ribbon. Due to the strong
variation of the ZGNR density of states with chemical potential
an interesting question arises of the possibility of driving the
magnetic impurity in and out of the Kondo regime. Another
important problem is how the Kondo screening is affected
by ZGNR edge states and what is the role of polarization of
these states in the spin-orbital Kondo effect. Performing the
calculations for different locations of the chemical potential
with respect to the band gap, also for the case when it crosses
the low-energy singularities of density of states, allows us to
analyze different coupling regimes and track the impact of
symmetry breaking in both orbital and spin sectors. In general
more than one orbital effectively contribute to the magnetic
moment and in the Kondo screening apart from spin also
orbital degrees of freedom are involved. The role of the orbital
of a given symmetry changes both with geometrical location
of impurity and with position of the Fermi level. Static mean
field methods such as density functional calculations (DFT)
cannot describe dynamical electron correlations. Therefore for
simple and intuitive analysis of many-body correlations we use
the multiorbital Anderson-like model in which the impurity
is described by parameters but the nanoribbon electronic
structure and hybridization function are calculated within DFT.
This Hamiltonian is then solved in the next step by commonly
used many-body approximate methods with the well-known
applicability regimes and limitations. The principal method

used in the present work, the slave boson mean field approach
(SBMFA), best describes systems close to the Kondo fixed
point, i.e., for the case of fully degenerate deep atomic levels
at low temperatures [48], but often is also used for a qualitative
insight away from this limit. We adopt the Kotliar-Ruckenstein
formulation [49,50], which is a convenient tool for discussing
the finite Coulomb interaction case and for analysis of
effects introduced by polarization. Two other complementary
methods used by us - the equation-of-motion method (EOM)
[51–54] and the noncrossing approximation (NCA) [55–60] -
allow us to get a deeper insight into the role of charge
fluctuations in many-body physics and are better adopted for
higher temperatures. EOM works in the whole parameter space
except the close vicinity of the Kondo fixed point but it breaks
at low temperatures [53] and NCA gives reliable results in the
wide temperature range, including the region close to TK and in
the range of the lowest temperatures down to a fraction of TK.
It is claimed that this method is not suitable for spin-polarized
systems due to the well-known artifacts resulting from the
neglect of vertex corrections [54].

The paper is organized as follows: Section II presents
density functional theory calculations of electronic and mag-
netic properties of zigzag graphene nanoribbons and analyzes
adsorption of the Co adatom in these structures. In Sec. III the
generalized Anderson model with DFT hybridization function
is described. Next we present numerical results and analyze the
impact of confinement and band gap singularities of electronic
structure as well as the role of orbital physics and magnetic
polarization on the Kondo effect. Finally, we give conclusions
and some final remarks in Sec. IV.

II. DENSITY FUNCTIONAL STUDY
OF Co ADATOM ON ZGNR

A. Computational details

Zigzag nanoribbons are quasi-one-dimensional structures
with infinite length and nanometric widths, the latter being
defined by the parameter N indicating the number of zigzag
lines along the ribbon widths. Most of our considerations are
addressed to 4ZGNR (N = 4, Fig. 1), but we also present
some comparative calculations for wider ribbons. To saturate
the edge C dangling bonds the ribbons are passivated by
hydrogen atoms. The following first-principles analysis of
Co adatoms on graphene nanoribbons provides the necessary
input information for analysis of correlation effects, which
we undertake in the next section. Here we discuss which
are the most favorable adsorption sites for the Co atom, the
corresponding electron configurations and magnetic moments,
as well as impurity-induced magnetic polarization of the
ribbon. For simulation of Co impurity we have used a supercell
consisting of four graphene unit cells, which contains one
adatom. To check whether this supercell is sufficiently large
to obtain reliable results, especially concerning magnetic
moment, we have also performed testing calculations for larger
supercells, obtaining similar results. We consider three classes
of high-symmetry adsorption sites presented in Fig. 1: hollow,
in the center of the carbon hexagon (h); top, at the carbon
atom (t); and bridge (b), between two carbon atoms. Unlike
graphene, where an infinite plane ensure the equivalence
of lattice sites, in nanoribbons the number of inequivalent
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FIG. 1. (Color online) Structure of H-passivated 4ZGNR, where
the dark gray and purple/light gray spheres represent the C and H
atoms, respectively. Labeling of carbon atoms across the ribbon with
division into sublattices is introduced. The possible adatom locations
h1, h2, h3 (hollow positions, most favorable); t1, t2: top sites; b1, b2:
bridge positions; and perturbed hollow-like site of the edge h0 are
depicted.

position of impurities within each class increases with the
width of the ribbon. For convenience of the discussion the
different carbon atoms spaced across the ribbon are also
marked in Fig. 1. To get an insight into the interaction of Co
adatoms on nanoribbons we performed spin-polarized density
functional calculations. The main idea of DFT is to describe
the interacting system of fermions via its density and not
via its many-body wave function [61]. The key problem of
DFT formalism is a choice of exchange-correlation potential.
Most of our calculations have been performed using the
semilocal generalized gradient approximation (GGA) with the
Perdew, Burke, and Ernzerhof (PBE) formula for the exchange
correlation [62]. The inclusion of gradient corrections is of
special importance for the considered systems, because large
gradients in the charge density occur at the nanoribbon edges.
Since it is known that local approaches often underestimate
magnetic moments and band gaps, we have also done
some test calculations using the hybrid nonlocal exchange
potential HSE [63–68]. The mixing of nonlocal and semilocal
exchange overcomes the major flaws of LDA or GGA [10,69].
Concerning the choice of the wave function basis set, two
codes have been employed: the Vienna simulation package
(VASP) [70] with the projector augmented wave basis sets
(PAW) [71], and OPENMX, which uses basis sets of localized
pseudoatomic orbitals (LCPAOs) [72]. In the latter case for
the geometrical optimization and the electronic band structure
calculations the LCPAO basis functions were specified by the
choice of two primitive orbitals for s component and one
primitive orbital for p component for hydrogen (H5.0-s2p1)
and three p orbitals for carbon (C5.0-s2p3). The cutoff radius
of 5.0 bohrs has been assumed. The VASP code is widely
used, but due to the plane wave picture it is difficult to
describe the effects of edges and to discuss field-induced
charge accumulation or dipole moments. In both codes the
GGA-PBE exchange-correlation potential has been adopted
[62], which is specified not only by spin densities, but also
by their gradients. In comparison with LSD, GGA’s tend
to improve total energies and structural difference [62]. In

VASP, where smooth pseudopotentials are used, a kinetic
energy cutoff of 400 eV was found to be sufficient to achieve
a total energy convergence of the energies of the systems
to within 1 meV. In OPENMX a real-space grid technique
was adopted in numerical integration with energy cutoff up
to 150 Ry. In both methods the structures were relaxed
until the Hellman-Feynman force became smaller than 10−4

Ha/bohr. Brillouin integration was carried out at an 8 × 1 × 1
Monkhorst-Pack grid and Gaussian smearing of 0.03 eV was
chosen to accelerate electronic convergence in both codes. For
band structure calculations 50 and 200 uniform k points along
the one-dimensional BZ were used in VASP and OPENMX,
respectively. To avoid interaction between images made by
periodic boundary conditions the vacuum region was set
up to 18 Å in the y direction and up to 20 Å in the z

direction; in the x direction the ribbon was treated as infinite.
The adatom-ribbon system lacks inversion symmetry and
therefore has a net electric magnetic moment perpendicular
to the surface. To remove spurious dipole interaction between
periodic images, we self-consistently applied corrections to
the local electrostatic potential and total energy [73]. To
test the impact of correlations on the adsorption energy and
magnetic moments we have performed also some GGA+U

type calculations using the rotationally invariant LDA+U

functional proposed by Lichtenstein et al. [74]. The stability
of the adatom on the relaxed GNR was examined analyzing
adsorption energy defined as

Eads = EZGNR+Co − EZGNR − ECo, (1)

where the first term is total energy of ZGNR with Co adatom,
and the second and third are total energies of clean ZGNR and
isolated Co atom.

B. Electronic and magnetic properties of ZGNR

It is now well established that the zigzag edge GNR
is a semiconductor with two electronic edge states, which
are ferromagnetically (F) ordered, but antiferromagnetically
(AF) coupled to each other [22,25,27]. This configuration is
consistent with the Lieb theorem [75]. It is also well understood
that magnetism of the edges arises from a Fermi instability of
the edges [65]. Our VASP calculations show that for N = 4 the
unpolarized solution has energy by �E = 55.74 meV per edge
carbon atom higher compared to the AF state and 13.23 meV
higher than the F state. The energy difference between parallel
and antiparallel orientations of magnetizations at the edges
decreases with the width (Table I) indicating that the increase
of the overlap of edge states is responsible for relative ordering
of polarizations. The obtained values are in good agreement
with results reported by other groups [78–82].

Figure 2 compares spin density plots of 4ZGNR calculated
with the local exchange potential (GGA-PBE) with the
corresponding picture obtained within the nonlocal approach
(HSE). Estimation of magnetic moment is sensitive to the
choice of exchange potential; for the nonlocal functional
HSE [Fig. 2(b)], much higher values are obtained and slower
decay towards the center of the ribbon. These trends can
be understood as a consequence of the well-known property
of nonlocal potentials, which localize electronic states more
strongly compared to local potentials [63,64]. It is clearly
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TABLE I. Differences between energies of NZGNR states with
antiparallel (AF) and parallel (F) alignment of magnetic moments on
the left and right edges compared with corresponding differences of
energies of AF and nonmagnetic states (N = 3–10) (VASP).

N EAF−F (meV) EAF−NM (meV)

3 −18.61 −39.01
4 −13.23 (−14a, -15b, −11c) −55.74 (−59a)
5 −10.67 −65.10
6 −11.39 (−11.9d, −15a) −69.41 (−85.7d, −81a)
7 −8.83 (−11.2d) −71.64 (−89.4d)
8 −5.88 (−8.4d, −7a) −73.73 (−91.8d, −83a)
9 −4.23 −75.75
10 −3.34 (−5.5e) −77.47

aQuantum-Espresso, PBE, Ref. [78].
bVASP, PBE, Ref. [79].
cSIESTA, PBE, Ref. [80].
dSIESTA, PBE, Ref. [81].
eSIESTA, PBE, Ref. [82].

seen that spin moments are mainly distributed at the edge
carbon atoms. The magnetic moment fluctuation across the
ribbon arises from quantum interference effects caused by
edges. Due to topology of the lattice, the atoms of the two
edges belong to different sublattices of the bipartite graphene
lattice. The spin moments on the C atoms on one edge
are antialigned to the spin moments on the opposite edge
and also the polarizations of neighboring sites belonging to
different sublattices are opposite. Figures 3(a) and 3(b) present
4ZGNR bands calculated with the VASP code decorated with
local spin dependent edge contributions (overlap of the band
eigenstates with pz state localized at A1). Two observations
are striking, first that the top of the valence band and the
bottom of the conduction band are composed mainly of edge
states, especially close to the zone boundary, and second, that
in momentum range 2π/3a < k < π/a (a is ZGNR lattice
constant) the lowest unoccupied conduction band (LUCB) and
the highest occupied valence band (HOVB) are characterized
by opposite spin polarizations. Of course for the right edge
(B4) the spin contributions change roles. We have put also
on Fig. 3(a) bands calculated by the OPENMX code. As one
can expect, substantial differences between dispersion curves
from both codes are only visible for small wave vectors, where

VASP calculations should be superior due to the plane wave
basis set. We have also marked in Fig. 3(a) the direct band
gap (�0) and the energy gap at the zone boundary (�1).
The magnetization-induced staggered potential opens a band
gap. The direct band gap decreases with the increase of
the width of the ribbon due to confinement and decrease
of edge spin polarization [Fig. 3(c)]. The energy gap at the
zone boundary on the other hand is almost not sensitive to
the width, because as stated earlier, the edge states close
to the zone boundary are highly confined at the edge of
ZGNR. The direct band gaps calculated by both codes differ
only slightly; in VASP they are smaller due to the deeper
minimum in the lowest conduction band, which in turn again
is a consequence of more extended character of VASP basis
set. It is known that local or semilocal approximations such as
GGA routinely underestimate semiconductor band gaps, due
to self-interaction errors [64]. For comparison we have also
calculated the band gap with the HSE potential; the obtained
value is surprisingly high (�HSE = 1.58 eV for 4ZGNR),
but agrees with other HSE calculations [76]. It is generally
accepted that band gaps obtained using hybrid functionals are
in much better agreement with experimental data, although
overestimated [68,77].

C. Co adatom

The computational tools we use (VASP, OPENMX) are
developed for periodic structures and therefore we simulate the
single-impurity problem by superstructure calculations. As a
consequence of periodicity the extra features in the generated
band structure can occur, e.g., additional gaps, not related
to finite geometry, but to the assumed superstructure. It is be-
lieved, however, that using large enough supercells one can still
infer some single-impurity properties. This concerns mainly
quantities which depend on the entire density of states and
not just on the behavior near the Fermi level, e.g., occupations
or magnetic moments. With some caution one can get also
an insight into some parts of the electronic structure, where
superstructure does not interfere considerably. In our study we
use a supercell consisting of four replicas of the ZGNR unit
cell (4 × 1). This setup corresponds to a coverage of 1 adatom
per 32 C atoms. Although the adatom-adatom interaction is
not very small, the distance between adatoms is large enough
that the overlap of the electronic states of neighboring atoms
is negligible. Several test simulations were also carried out for

FIG. 2. (Color online) Spin density plots of 4ZGNR showing up (blue/dark gray) and down (green/light gray) spin densities together with
the corresponding values of local magnetic moments calculated with VASP code using (a) GGA-PBE exchange correlation potential and (b)
nonlocal GGA-HSE potential.
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FIG. 3. (Color online) (a), (b) VASP spin-degenerate bands of
4ZGNR with fat bands showing the amplitudes of the projection of
each band on pz orbital of edge atom A1. Broken lines represent
dispersions calculated by OPENMX code. �0 and �1 are direct band
gap and gap of the zone boundary. (c) Width dependence of the
nanoribbon gaps. Inset shows the width dependence of edge magnetic
moments (solid line, VASP; broken line, OPENMX).

an 8 × 1 supercell. Periodic boundary conditions were also
used along the confined direction assuming 20 Å of vacuum
to prevent unphysical interactions. Different positions, as
indicated in Fig. 1, were sampled. Figure 4 presents an example
of the band structure of the 4ZGNR+Co system with the
adatom in the h1 position compared with the band structure of
pure nanoribbons. The bands are decorated by the amplitudes
of projection on atomic pz orbitals of carbon and Co d orbitals.
The strong interaction between cobalt and carbon atoms comes

FIG. 4. (Color online) VASP energy dispersion curves of
4ZGNR (a) compared with the bands of 4ZGNR with Co impurity
in h1 position (b). The blue/dark gray fat bands highlight carbon pz

contribution and green/light gray the Co d contribution.

from the mixture of these states. Carbon px and py orbitals
are far below EF and have weak hybridization with cobalt.
Figure 5 displays spin- and orbital-resolved Co adatom
densities of states. Both the in-plane orbitals (xy, x2 − y2)
and xz, yz orbitals strongly hybridize with carbon pz states,
which results in covalent interactions. Densities of states of
z2 symmetry (3z2 − r2) for hollow positions show localized
peaks, which indicate small overlap and hybridization with
pz. For Co location closer to carbon sites, e.g., for h0 position
(distance to B1 is by 0.45 Å smaller than for h1), hybridization
of the dz2 orbital increases and broadening of the corresponding
peaks is observed [compare the insets of Fig. 5(d)]. For

FIG. 5. (Color online) Spin- and orbital-resolved densities of
states of Co adatom at h1 position in 4ZGNR. Black denotes spin-up
contributions and green/light gray the spin-down contributions. Insets
of (b) and (c) present yz and xy partial DOS of Co adatom at h0 site
and insets of (d) compare z2 partial DOS in h1 and h0 positions.
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TABLE II. Equilibrium heights above nanoribbon plane and
adsorption energies of Co adatom at different positions of 4ZGNR
(VASP with GGA-PBE).

heq (Å) Eads (eV)

h0 1.7 −1.261
h1 1.53 −1.396
h2 1.53 −1.258
t1 1.83 −0.341
t2 1.85 −0.407
b1 1.79 −0.946
b2 1.85 −0.477

Co at h1, the bonding, almost completely occupied orbitals
dx2−y2 , dxy lie lower in energy than dxz and dyz; the latter are
partially filled and they play an active role in formation of
magnetic moment. Depending on the position of the adatom
some orbitals may swap roles. This can be seen comparing
for example the dxy , dyz partial DOS for h1 and h0 sites
[Figs. 5(b) and 5(c)]. For the h0 position the dyz orbital
becomes fully occupied whereas dxy shifts closer to EF
and takes over the role of magnetic orbital. The reversal of
the roles is a consequence of the change of symmetry and
reduced coordination, which alters hybridization amplitudes
(see hybridization Table V) and consequently modifies the
widths and effective orbital splittings of 3d levels.

To understand the energetics of Co adsorption on graphene
nanoribbons we performed a series of calculations for different
vertical distances of Co and nanoribbon plane. The calculated
equilibrium heights of the adatom together with adsorption
energies are summarized in Table II. The formed covalent
bonds are directional and the bond strength depends on the
adatom coordination. Therefore it is unsurprising that the
adsorption energy is strongly dependent on the adsorption site.
The presented energies are the minimal values obtained after
relaxation. A comparison of total energy curves for different
positions of impurity and a comment on the role of correlations
in adsorption energy are given in Appendix A.

Table III presents GGA-PBE orbital occupations and total
and orbital contributions to magnetic moments of Co for the h0,
h1, and h2 positions, which correspond to the earlier presented
local densities of states (Fig. 5). Magnetic moments of Co at
the ZGNR depend on the adsorption site, but their absolute
values in all cases are much smaller than the moment of
the free atom (MCo ≈ 3 μB [47]). The decrease of magnetic
moment is dictated by electron transfer from 4s to 3d states
and corresponding change of occupancy of the unpaired 3d

orbitals. The spin-down component of the hybrid states is
almost entirely below EF , while a large portion of the spin-up
component lies above EF . As aforementioned, in the case of
hollow sites of ZGNRs magnetic moments come mainly from
dxz and dyz orbitals and their contributions are 1.103 and 0.941
for h1 and h2, respectively; i.e., they do not differ much from
unity. We have checked that the trend of decrease of moment
with moving with the adsorption site to the center of the
ribbon persists in wider ribbons and for N = 12 total magnetic
moment reaches at the centerM = 1.091, which is close to the
value for the Co adatom on graphene (M = 1.083), as shown
in Table IV. Similarly binding energy in the center of a wide

ribbon converges to the value for graphene Eads = −1.2 eV;
for N = 12 amounts value Eh6

ads = −1.23 eV.
Figures 6(a) and 6(b) show LDA spin polarization patterns

induced by the presence of the Co adatom at the h1 and h2

sites calculated for the 8 × 1 supercell. For the twice reduced
supercell (4 × 1) the local polarizations around the impurity
are almost identical to the 8 × 1 case; the differences are only
seen at the border of the supercells. In the case of the 4 × 1
cell the edge magnetic moments at a greater distance from the
impurity do not approach the values for the pure nanoribbon;
this is achieved for the 8 × 1 cell. As is seen from Fig. 6 the
polarization effect is strongest for Co located in the h1 position
and the nearest edge atoms are most sensitive to perturbation.
Our calculations indicate the charge transfer from Co to the
π bands of nanoribbon and no transfer is observed to the σ

bands. The occupation of the neighboring carbon pz orbitals
is increased with adsorption and the spin polarization of the
nearby atoms at the edge is locally suppressed.

III. KONDO EFFECT OF Co ATOM ON HOLLOW SITE

A. Model

Static mean field DFT description of the electronic structure
of Co adsorbed on the nanoribbon does not capture the effects
of dynamic correlations of strongly interacting 3d electrons.
To complement the missing local correlations of adatom
electrons we complete the model by a Hubbard-type term and
exchange [83,84]. The description of the nanoribbon substrate
and its coupling to the impurity is maintained within DFT
formalism. The Kohn-Sham Hamiltonian thereby serves as
the noninteracting reference frame onto which we add local
intra-atomic interactions. As we have presented in the preced-
ing section, in the case of the considered hollow location of
the Co atom the dxz and dyz orbitals are responsible for for-
mation of magnetic moment; their fluctuations in occupations
and spins are essential for low-energy physics. We discuss
therefore the double-orbital Anderson-like Hamiltonian in the
form

H = Hd + Hv + HZGNR, (2)

where the impurity is described by

Hd =
∑
mσ

ε0nmσ + U
∑
m

nm+nm− + (U − J /2)nmnm′

− 2J−→S m · −→S m′ , (3)

where m = xz(yz) and ε0 is the bare energy of local levels,
assumed to be equal for both orbitals; U is the energy of intra-
or interorbital Coulomb interaction and J is Hund’s exchange
coupling. The nanoribbon Hamiltonian reads

HZGNR =
∑
knσ

εknσ c
†
knσ cknσ , (4)

with εknσ denoting DFT ribbon eigenvalues and corresponding
eigenfunctions |knσ 〉. The interaction between nanoribbon
electrons and local levels is described by the hybridization
term

Hv =
∑
knσm

(Vknσmc
†
knσ dmσ + H.c.), (5)
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TABLE III. Magnetic moments and spin occupancies of different Co d orbitals for hollow positions of 4ZGNR (VASP).

h0 h1 h2

d N+ N− M N+ N− M N+ N− M

z2 0.966 0.933 0.033 0.997 0.994 0.003 0.996 0.989 0.007
xz 0.963 0.456 0.507 0.963 0.503 0.46 0.937 0.729 0.208
yz 0.955 0.889 0.066 0.979 0.336 0.643 0.978 0.245 0.733
xy 0.997 0.062 0.935 0.934 0.837 0.097 0.905 0.845 0.06
x2 − y2 0.965 0.926 0.039 0.892 0.763 0.129 0.879 0.782 0.097
tot (d) 1.579 1.332 1.105

where hybridization amplitudes Vknσm are hopping matrix
elements between nanoribbon DFT eigenstates and d or-
bitals. In this work, the realistic ab initio hybridization
is taken from GGA-PBE calculations based on the VASP
code. Hybridization strengths we use are not strictly single-
impurity couplings due to the periodicity of the adopted
first-principles computations schemes, but for large enough
supercells they can approximately play this role. The nearest-
neighbor impurity-nanoribbon hopping integrals are extracted
from DFT data V i

m = ∑
kn〈dm|kn〉εkn〈kn|pi

z〉, where |m〉
denotes adatom orbital, |kn〉 and εkn are DFT eigenstates
and energies of the Co+ZGNR system, and the sum runs
over Kohn-Sham eigenstates in the energy range |E | < 6 eV.
Table V presents hybridization amplitudes in real space with
restriction to the dominant n.n. contributions. For comparison
we present amplitudes for all 3d orbitals. Note the smallness
of the amplitudes to A1 and B2 for dxz in the h1 position
and large amplitudes to these atoms for dyz. Pictorially this
difference can be understood recalling the shapes of these
orbitals. Remembering that the edge states dominate the energy
window near the gap, one can expect distinctly different roles
of dxz and dyz orbitals in Kondo physics for the h1 position.
For h2 the role of edge states is diminished. Comparison of
the amplitudes for h0 and hollow sites helps to understand the
earlier mentioned reversal of the roles between dyz and dxy

when positions of the adatom interchange.
To describe orbital degrees of freedom on the same footing

as spin it is useful to introduce orbital pseudospin T defined
by T = �

†
dτ�d , where τ is the Pauli matrix in orbital space

{dxz,dyz} and �
†
d represents the spin-orbital field operator

�
†
d = [d†

xz+,d
†
xz−,d

†
yz+,d

†
yz−].

B. Hybridization function

The hybridization function describes coupling of impurity
to nanoribbon. Hereafter we restrict ourselves to nearest

TABLE IV. Total magnetic moments of Co atoms located in
hollow positions of NZGNR (N = 4,6,8) compared with magnetic
moment of Co at hollow site of graphene (G) (VASP with GGA-PBE).

M Mh1 Mh2 Mh3 Mh4

G + Co 1.083
4ZGNR + Co 1.413 1.178
6ZGNR + Co 1.383 1.209 1.122
8ZGNR + Co 1.376 1.258 1.180 1.115

neighbors of the impurity and consider only dxz and dyz

orbitals. The hybridization then reads

	
h1(2)

mm′σ =
∑
kn

V
∗h1(2)

knσmV
h1(2)

knσm′

z − εknσ

, (6)

where εknσ and |knσ 〉 are DFT eigenenergies and
eigenstates of bare graphene nanoribbon and Vknσm =
(1/

√
Nx)

∑
lh

∑
ah

V ah
m eikah〈klhσ |knσ 〉, where ah are n.n.

vectors connecting the adatom with carbon sites from the
surrounding hexagon, lh labels four carbon chains along the
infinite x direction crossing the hexagon, Nx is the number
of sites in the carbon chain in the x direction, and |kl〉 =
(1/

√
Nx)

∑
eikil |pil

z 〉. All hybridization functions presented
below have been calculated using the VASP code. For pure
graphene 	mm′ ∼ δmm′ due to C6v symmetry of hollow sites. In
nanoribbons, where this symmetry is broken, also off-diagonal
terms occur, but as we have checked due to rapid oscillations
in k space they are much smaller than diagonal elements and
additionally they affect the impurity states in fourth power in
hybridization, whereas the diagonal in second power. Based on

FIG. 6. (Color online) Spin density plots of Co adatom and
4ZGNR matrix (8 × 1 supercell). The blue/dark gray densities
correspond to spin-up and green/light gray to spin-down components.
(a) Co impurity in h1 position. (b) Co in h2 position.
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TABLE V. Nearest-neighbor hybridization amplitudes (in eV) of Co adatom located in hollow positions of 4ZGNR.

h0 h1 h2

d
∣∣VA1

d

∣∣ ∣∣VB1
d

∣∣ ∣∣VA1
d

∣∣ ∣∣VA2
d

∣∣ ∣∣VB1
d

∣∣ ∣∣VB2
d

∣∣ ∣∣VA2
d

∣∣ ∣∣VA3
d

∣∣ ∣∣VB2
d

∣∣ ∣∣VB3
d

∣∣
z2 0.13 0.64 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
xz 0.47 0 0.01 0.48 0.47 0.01 0.01 0.48 0.47 0.01
yz 0.13 0.65 0.92 0.28 0.28 0.9 0.89 0.27 0.27 0.89
xy 0.47 0 0.03 0.31 0.31 0.02 0.02 0.31 0.31 0.02
x2 − y2 0.3 0.52 0.59 0.19 0.16 0.57 0.58 0.18 0.18 0.58

these arguments we neglect in the following, for simplicity of
calculations, the off-diagonal self-energies. The hybridization
function plays the role of embedding self-energy. The real
parts of self-energies are associated with the shift of the
local energies, while the imaginary parts give the broadening
of impurity levels. Figure 7 shows the imaginary part of
the low-energy hybridization functions for the h1 position
together with the corresponding VASP nanoribbon bands
from this range. In the following we refer to the presented
singularities and therefore we introduce their labeling in
Fig. 7(b). More detailed pictures of spin- and orbital-resolved
hybridization with both real and imaginary parts are presented
in Fig. 8. In general the hybridization functions are spin
dependent, which is mainly dictated by spin dependence
of local nanoribbon Green’s functions. The opposite local

FIG. 7. (Color online) Low-energy band structure of 4ZGNR (a)
together with orbitally resolved hybridization functions of Co adatom
in h1 position [(b), (c), (d)]. Black color denotes yz contribution and
green/light gray xz. In (b) labeling of Van Hove singularities used
further in the text is introduced. Panels (c) and (d) present spin-up
and spin-down parts of hybridization, respectively. Insets of (c) and
(d) are zoom views of lowest dispersion curves decorated with xz and
yz contributions.

polarizations at h1 and h3 (Fig. 1) are reflected in the change
of roles of spins in hybridization function 	h1

mσ = 	
h3
mσ . At h2

(Fig. 9), where polarization contributions from the opposite
edges compensate, hybridizations are equal for both spin
orientations. The hybridization functions are rich in structure;
of special importance for the Kondo effect are observed Van
Hove singularities (VHSs) occurring in position of minima,
maxima, or saddle points of the bands. Vanishing of derivatives
of dispersion curves indicates energies where singularities
are expected, but whether the singularity is clearly reflected
in orbital-resolved hybridization depends on the weight of
the contribution of a given symmetry to the bands in the
considered energy range. This fact is illustrated in Figs. 7(c)
and 7(d), where highest conduction and lowest valence bands
are decorated by amplitudes specifying projection of the
eigenfunctions onto the symmetry of a given local orbital. For
example in the energy window presented in Figs. 7(c) and 7(d)
two pronounced singularities are observed (VH1ν and VH2ν)
below the gap for yz symmetry, characterized by peaks in
imaginary parts of hybridizations and discontinuities in real

FIG. 8. (Color online) Orbital- and spin-resolved hybridization
functions for Co at h1 position in 4ZGNR. Solid black lines represent
real parts (Re[	h1

mσ ]) and imaginary parts (Im[	h1
mσ ]) are shown by

green/light gray filled curves.
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FIG. 9. (Color online) Orbital-resolved hybridization function of
Co in h2 position of 4ZGNR. Solid black lines represent real part
and green/light gray filled curves show the imaginary parts of
hybridization.

parts. For xz symmetry on the other hand, similar behavior
is seen only close to the gap. For E = −0.3348 eV (VH2ν)
the xz contribution to the bands is small [see the insets of
Figs. 7(c) and 7(d)]. The character of many-body resonances
is determined by the deepness of the local level with respect
to the Fermi energy and hybridization strength; both of these
values dramatically change near the singularity and therefore
it is expected that an interesting physics emerges in the vicinity
of these energy points.

C. Slave boson mean field approach

The described modeling of a single adatom embedded onto
a graphene nanoribbon by the Anderson-like Hamiltonian
allows us to examine the strong correlations by the well
elaborated techniques with known applicability regimes. Our
main interest focuses on the impact of the details of the
nanoribbon electronic and magnetic structure on the single-
impurity Kondo effect. The basic analysis of variation of
many-body correlations with tuning the chemical potential
is based on the mean field slave boson approach of Kotliar
and Ruckenstein [49]. This approximation concentrates ex-
clusively on many-body resonances taking into account spin
and orbital fluctuations, but neglecting charge fluctuations. In
principle SBMFA strictly applies close to the unitary Kondo
limit, but due to its simplicity this method is also often used for
systems with broken symmetry [85–88]. It is believed that it
captures the essential features of the examined problem also in
this case. SBMFA is unreliable for higher temperatures. This
is a consequence of a break of the required gauge invariance
which is associated with charge conservation, what leads to an
artificial sharp transition to the state with vanishing expectation
value of boson fields [48]. To get some insight into the
higher temperatures regime and to see the influence of charge
fluctuations we complement the analysis in the next section
by presentation of some NCA results (fluctuation of boson
fields) and EOM calculations. For brevity the discussion of
the latter results is restricted only to a single value of chemical
potential.

In Kotliar and Ruckenstein (KR) formalism one introduces
a set of boson operators for each electronic configuration
of the impurity. For the considered two-orbital impurity
there are 16 auxiliary Bose fields projecting onto the empty
(e), single occupied (pmσ ), doubly occupied (dν , with

TABLE VI. Two electron eigenstates of Hamiltonian (3) with the
assigned slave bosons.

Eigenstate Slave boson

|↑,↑〉 dS=1Sz=1 = dS1

(1/
√

2)(|↑,↓〉 + |↓,↑〉) dS=1Sz=0 = dS0

|↓,↓〉 dS=1Sz=1 = dS1

|↑↓,0〉 dT =1Tz=1 = dT 1

(1/
√

2)(|↑,↓〉 − |↓,↑〉) dT =1Tz=0 = dT 0

|0,↑↓〉 dT =1Tz=1 = dT 1

ν = SSz or ν = T Tz, i.e., ν = S1,S0,S1,T 1,T 0,T 1),
triple occupied (tmσ ), and fully (quadruple) occupied (f )
states [50]. For e and p operators the assignment of
eigenstates is clear, for the t operator we use the notation
tmσ ↔ |mσ,m ↑ m ↓〉, and the eigenstates corresponding to
dν are listed in Table VI. In order to eliminate unphysical
states the completeness relation for these operators
I = e†e + ∑

mσ p
†
mσpmσ + ∑

ν d†
νdν + ∑

mσ t
†
mσ tmσ + f †f ,

and the correspondence between fermions and bosons
[Qmσ = p

†
mσpmσ + d

†
SSz(σ )dSSz(σ ) + ( 1

2 )(d†
S0dS0 + d

†
T 0dT 0) +

d
†
T Tz(m)dT Tz(m) + t

†
mσ tmσ + ∑

σ ′ t
†
mσ ′ tmσ ′] has to be imposed

[Sz(±) = 1(1) and Tz[xz(yz)] = 1(1)]. These constraints can
be enforced by introducing Lagrange multipliers λ,λmσ and
the effective SB Hamiltonian then reads

HK−R =
∑
mσ

(E0 + λmσ )nf
mσ + λ(I − 1)

+
∑
mσ

λmσ

(
Qmσ − nf

mσ

) + (U − J )
∑
Sz

d
†
SSz

dSSz

+
∑
Tz

[U + (1 − |Tz|)J ]d†
T Tz

dT Tz

+ (3U − J )
∑
mσ

t†mσ tmσ + (6U − 2J )f †f

+
∑
knσm

(
Vh1(2)

knσmc
†
knσ zmσfmσ + H.c.

) + HZGNR.

(7)

The effective hopping in Eq. (7) is expressed by z+
mσf +

mσ

(zmσfmσ ) with zmσ = [e+pmσ + p+
mσdSSz(σ ) + p+

mσ ( 1
2 )(dS0 +

dT 0) + p+
mσdT Tz(m) + d+

T Tz(m)
tmσ + ( 1

2 )(d+
S0 + d+

T 0)tmσ +
d+
SSz(σ )

tmσ + t+mσf ]/(
√
Qmσ

√
1 − Qmσ ).

The stable mean field solutions are found from the saddle
point of the partition function of (7), i.e., from the minimum
of the free energy with respect to the slave boson parameters
and Lagrange multipliers. The results for the h1 and h2

positions are presented in Figs. 10–15. According to our
earlier DFT discussion we restrict ourselves to the two-
orbital subspace (dxz, dyz) considering the case of triple
electron occupancy (single hole) and choosing a typical for
Co on graphene nanostructure Coulomb interaction parameter
U = 3 eV [46,47,89] and the bare orbital level energy
E0 = −(2U + U)/2 = −7.5 eV. This choice of parameters
yields within the Hartree-Fock approximation the required
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FIG. 10. (Color online) Expectation values of slave boson op-
erators, polarizations, and expectation values of orbital pseudospin
of Co impurity at h2 position of 4ZGNR: (a) triple occupation
slave boson operators |tm|2 = |tm+|2 = |tm−|2; (b) double and full
occupation slave boson operators |dT 0|2, |dT 1|2, |dT 1|2, |dS1|2 =
|dS1|2, |dS0|2 = |dT 0|2, and |f |2; (c) orbital polarization of Co at
h2 site [PO = xz(EF )−yz(EF )

xz(EF )+yz(EF ) , where m(E) = ∑
σ mσ (E) and mσ

denotes spin-orbital partial density of states] and expectation value of
Co orbital pseudospin (Tz). Inset of (a) shows total, spin, and orbital
dxz,dyz occupancies.

triple occupancy (N = 3) and reproduces the DFT magnetic
moments.

Let us first discuss the h2 case, where the local nanoribbon
environment is unpolarized. Figure 10 presents expectation
values of slave boson operators, orbital and spin occupations,
orbital pseudospin, and orbital polarization, all quantities
plotted as a function of chemical potential. To interpret the
results it is worth referring to the energy dependence of
the corresponding hybridization functions (Fig. 9). Outside
the singularities (−0.8 < E < −0.4), where the hybridization
function of yz symmetry dominates over xz hybridization,
Kondo physics is governed mainly by spin fluctuations in
the yz sector (Nyz ≈ 1); orbital xz is almost completely
filled (Nxz ≈ 2). We have checked that there are no SBMFA
solutions for the xz channel when the interorbital fluctuation
path is closed [i.e., when the two last terms in (3) are
neglected]. When the interorbital path opens the coupled
spin-orbital fluctuations create resonances in both orbital
sectors. Very crudely one can visualize these processes as
virtual complete filling or emptying of yz orbital by hoppings
resulting in fast SU(2) type spin fluctuations in the yz channel
(broad peak). These fluctuations are however not completely
decoupled from the xz channel. Orbital xz is much weaker
coupled to nanoribbon and hoppings are less frequent. Virtual
creation of a hole on the xz orbital increases the probability

FIG. 11. (Color online) Selected partial orbital DOS of Co at h2

site in 4ZGNR. The vertical red/thin lines indicate positions of Fermi
levels.

of double occupancy of the yz orbital. Temporary reverse of
roles of orbitals is possible. Such orbital fluctuations enable
weak effective spin fluctuations in the xz sector despite its high
occupancy. The average time of such fluctuations is however
relatively long, which is reflected in an observed narrow xz

quasiparticle resonance. The representative density of states
of the h2 impurity in this range (EF = −0.8 eV) is shown
in Fig. 11. When EF moves closer to singularity VH2ν, yz

hybridization does not change considerably, but in the xz sector
the Van Hove singularity manifests strongly. Close to VH2ν

the expectation values of slave boson operators t and orbital
occupations for both symmetries approach each other in con-
sequence of strong enhancement of xz hybridization, but the
symmetric SU(4) case is not realized for any energy because
this would require the equality of both real and imaginary
parts of hybridizations functions. As seen in Fig. 11(b), the
resonances in this region for both orbitals (E = −0.35 eV)
are distinctively different. Interestingly, moving still closer
to the singularity around E = −0.3345 eV, in an extremely
narrow energy range, orbital xz even takes over the dominant
role in many-body processes, which is reflected in a change
of sign of orbital pseudospin. In the region of singularity
strong deviations of orbital occupancies from integer values
are observed which indicates that the system is driven out from
the Kondo state into a mixed valence state. For the chemical
potential above VH2ν again the dominance of the yz orbital
is restored and the system moves into the Kondo state again.
One should remember however that the presented picture in the
vicinity of the singularity should be treated with caution, only
as a crude visualization of tendencies. Around the singularity
the system is pushed into the non-Fermi liquid regime due to
the observed divergences of self-energies, and in principle for a
discussion of this range summation of higher order corrections
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FIG. 12. (Color online) Expectation values of slave boson op-
erators, polarizations, and expectation values of orbital pseudospin
and magnetic moment of Co impurity at h1 position of 4ZGNR:
(a) triple-occupation slave boson operators |tmσ |2; (b) double- and
full-occupation SB operators |dT 0|2, |dT 1|2, |dT 1|2, |dS1|2, |dS1|2,
|dS0|2 = |dT 0|2, and |f |2; (c) local spin polarization of the nanoribbon
around h1 (PSZGNR = ∑

i

i+(EF )−i−(EF )
i+(EF )+i−(EF ) , where iσ denotes local

ZGNR density of states at the n.n. carbon sites around hollow
position), orbital (PO) and spin polarization of Co adatom (PS ); (d)
magnetic moment and orbital pseudospin of Co impurity. Inset of (a)
presents spin- and orbital-resolved contributions to the occupancies
of Co.

to MFA is indispensable [90,91]. When EF moves closer to the
edge and both real and imaginary parts of hybridization are
strongly enhanced for both symmetries, broadening of many-
body resonances results and delta-like structures are observed
at the band edges, which extend into the gap for EF moving
very close to the edge [Figs. 11(c) and 11(d)]. They reflect the
new poles of the impurity Green’s function and these structures
are essential in order to satisfy the sum rules. Of interest
are also the dips occurring for energies where singularities
occur. They emerge due to an interplay of correlations effect
and singular substrate electron density of states. When the
Fermi level crosses the singularity the dip sits at the the Fermi
level, but singularities are also reflected in the spectral function
when the chemical potential is not in close proximity to the
VHS (Fig. 11).

Let us now turn to the h1 case. The spin polarization
of nanoribbon breaks the spin degeneracy. The number of
independent slave boson operators increases (Fig. 12) and
the many-body resonances become spin dependent (Fig. 13).
Again of special interest are the regions around singularities
of DOS. In addition to the earlier described effects, also new
phenomena associated with polarization are observed. The
sharp change of local nanoribbon spin polarization in the
vicinity of VH2ν is revealed in a drastic but opposite change of

FIG. 13. (Color online) (a) Density of states map of Co impurity
in h1 position of 4ZGNR. (b) �, difference of spin-up and spin-
down densities of states of Co at h1 site of 4ZGNR. (c), (d), (e)
Partial orbital densities of states for the selected values of the Fermi
levels. Insets are the zoom views of the spin- and orbital-resolved
DOS.

impurity polarization and suppression of screening processes
of Co magnetic moment. The singularity is most strongly
reflected in the abrupt increase of spin distinction in the yz

orbital channel which is a consequence of clearly exhibited
singularity in the corresponding hybridization function for
one spin direction and only a very weak trace of it for the
opposite spin. Remarkable is the resulting jump and change
of sign of magnetic moment and the fall and next jump of
orbital pseudospin when EF crosses the singularity. All the
anomalies are the consequence of the dramatically enhanced
imaginary part of hybridization and a jump from negative to
positive values of the real part of hybridization. The dramatic
changes of spin or orbital characteristics when the Fermi level
crosses the singularities are of potential interest for spintronics
(orbitronics), because these changes can be induced by gate
voltage.

Figure 13(a) illustrates the evolution of density of states
with the shift of the Fermi level. The clearly seen horizontal
(EF = −0.3348 eV) and vertical (E = −0.3348 eV) straight
lines of reduced intensity reflect the position of VH2ν singu-
larity. In principle STM spectroscopy, which is used to probe
local densities of states, is capably read off the information
encoded in this map, assuming that a suitable treatment of
interference effects of different paths will be performed. We
shortly comment on this point in our conclusions. To highlight
the origin of the peaks of density of states (high-intensity lines),
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FIG. 14. (Color online) Characteristic quasiparticle tempera-
tures TK of Co in 4ZGNR for xz and yz channels vs position of the
Fermi level. Dash-dotted line represents Kondo temperature of Co at
hollow position in graphene. Panel (b) shows details of dependencies
close to VH2ν singularity.

we have put on the map information on the spin-orbital contri-
butions. Figure 13(b) shows the difference of densities of states
for spin up and spin down; this quantity should be detectable
by the spin-polarized STM technique [92]. The representative
spin- and orbital-resolved densities of states, which correspond
to the selected horizontal cross sections (EF = const.) of the
map [Fig. 13(a)] are displayed in Figs. 13(c)–13(e). Since in
the considered energy range yz hybridization is stronger than
for xz symmetry the corresponding many-body yz resonances
are in general broader. Although spin distinction in the xz

hybridization is remarkable (Fig. 8) it is not reflected in clear
distinction of corresponding many-body peaks (Fig. 13). This
observation is in accordance with our earlier interpretation of
the xz resonance as a repercussion of spin fluctuations in the
yz shell transferred to xz by orbital fluctuations. In contrast
to the h2 case, for the h1 position the VH2ν singularity plays
an important role for yz symmetry, especially for majority
spins. The peak splitting of the yz resonance is a combined
effect of spin dependence and singularity-induced dips in the
corresponding densities of states. Figure 14 presents Kondo
temperatures for the h1 and h2 positions. We define TK
through widths and position of quasiparticle resonance [48].

TKm = (1/2)
∑

σ

√
�̃2

mσ + Ẽ2
mσ , where Ẽmσ is the distance be-

tween Fermi energy and quasiparticle resonance and �̃mσ is the
width at half maximum. Since the characteristic quasiparticle
energies are distinctively different for both orbital channels we
show the corresponding characteristic temperatures separately.
The estimated characteristic temperatures are of the order of
20 K and 200 K for the xz and yz channels, respectively,
and they are strongly enhanced or suppressed in the region
of the singularity depending on which side the chemical
potential approaches the singularity. This tendency reflects
the opposite shift of effective orbital energies on both sides
caused by real parts of self-energy, which are discontinuous
and change sign in the singularity point. For comparison we
also plot in Fig. 14 the gate voltage dependence of the Kondo
temperature for pure graphene. In accordance with earlier
reports [46] and discussion on the requirement of critical
hybridization for the occurrence of the Kondo effect in gapless
systems [93], the Kondo effect is not observed for the undoped
graphene. Around EF = −0.2 eV, TK takes a value of 0.1 K;

FIG. 15. (Color online) Dependence of the Kondo state charac-
teristics on the value of exchange parameter: (a), (b) Slave boson
expectation values |tmσ |2 for N ≈ 3 (ε0 = −7.5 eV) and N ≈ 2.7
(ε0 = −7 eV), EF = −0.8. (c) Magnetic moments of Co impurity.
Inset shows orbital occupancies: for ε0 = −7.5 dashed line (Nyz)
and dash-dotted line (Nxz), ε0 = −7 solid line (Nyz) and dotted line
(Nxz). (d) Relative quasiparticle temperatures.

for EF = −0.3 eV, TK reaches 10 K; and since graphene Van
Hove singularities are far away outside the examined energy
range, the Kondo temperature monotonically increases with
lowering of the chemical potential.

Figure 15 illustrates the impact of Hund’s coupling on
Kondo physics. We show two examples N ≈ 3 and N ≈ 2.7.
Insight on the slave boson dependencies and orbital occu-
pancies highlights the stronger impact of Hund’s coupling
for N ≈ 2.7. In this case a remarkable weakening of Kondo
screening is observed for high values of exchange coupling
(increase of magnetic moment). In general one can expect
that an increase of magnetic correlations with the increase
of exchange coupling should result in a decrease of Kondo
temperature, as a consequence of competitiveness of different
correlations. The spin and orbital degrees of freedom fluctuate
less freely in this case. This general tendency is really
observed in most presented cases. For reduced occupancy,
however, the N ≈ 2.7 characteristic temperature T

yz

K changes
nonmonotonically, which is reflected in change of partial
occupancy from slightly below half filling to values above.
For Nyz = 1 a maximum of the Kondo temperature is
observed.

D. Charge fluctuation effects: NCA and EOM approaches

The SBMFA results become worse with increasing tem-
perature due to fluctuations. Some account of fluctuations
is achieved by systematic corrections to the MFA approach
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using, e.g., hybridization expansion or applying the equation-
of-motion method. In this section we briefly analyze the role
of charge fluctuations in the considered many-body processes.
For transparency of considerations we discuss only the case
when the chemical potential is located not too close to any
VH singularity. We limit ourselves to the lowest order in
hybridization self-consistent approximation NCA and EOM
with Lacroix’s decoupling approximation [51]. These methods
apply for higher temperatures, but they give reliable results
also down to a fraction of TK [48,53,55]. They fail however
for T  TK, but in this range in turn SBMFA is valid.

Despite the low-temperature deficiencies the use of these
impurity solvers allows us to get a crude insight into the
full spectrum of the one-particle Green’s functions and not
just the quasiparticle contribution. In the present work we
apply the NCA method for finite U [57–60]. In NCA one
takes into account only diagrams without noncrossing of
substrate electron lines, which correspond to simple hopping
processes, where electron or hole hops into the adatom at
some time and then out at a later time. This leads to a
set of NCA integral equations for the fixed occupation self
energies:

	(0)(z) =
∑
mσ

∫
dε

π
�mσ (ε)f (ε)G(1)

mσ (z + ε),

	(1)
mσ (z) =

∫
dε

π

[
�mσ (ε)f (−ε)G(0)(z − ε) + �mσ (ε)f (ε)G(2)

mσmσ (z + ε) +
∑
σ ′

�mσ ′(ε)f (ε)G(2)
mσmσ ′(z + ε)

]
,

	
(2)
mσm′σ ′(z) =

∫
dε

π

[
�mσ (ε)f (−ε)G(1)

m′σ ′(z − ε) + �m′σ ′(ε)f (−ε)G(1)
mσ (z − ε)

+
{

�m′σ ′(ε)f (ε)G(3)
mσ (z + ε) + �mσ (ε)f (ε)G(3)

m′σ ′(z + ε), m �= m′∑
σ �mσ (ε)f (ε)G(3)

mσ (z + ε), m = m′

]
,

	(3)
mσ (z) =

∫
dε

π

[
�mσ (ε)f (−ε)G(2)

mσmσ (z − ε) +
∑
σ ′

�mσ ′(ε)f (−ε)G(2)
mσmσ ′(z − ε) + �mσ (ε)f (ε)G(4)(z + ε)

]
,

	(4) =
∑
mσ

∫
dε

π
�mσ (ε)f (−ε)G(3)

mσ (z − ε), (8)

where G(p)
mσ (z) = [z − E(p) − 	

(p)
mσ (z)]−1 (p = 1,3 with energies E(1) = ε0 and E(3) = 3ε0 + 3U) and G(2)

mσmσ (z) = [z − E2 −
	

(2)
mσmσ (z)]−1 (E2 = 2ε0 + U), G(4)(z) = [z − E4 − 	(4)(z)]−1 (where E4 = 4ε0 + 6U) are pseudoparticle fermion and boson

propagators. Fermion resolvents correspond to odd occupancies of adatom and boson to even. f (ε) is the Fermi distribution
function and �mσ (ε) = −Im[	mσ (ε)]. The retarded local Green’s functions may be evaluated by analytic continuation from the
corresponding imaginary time propagator and can be expressed as convolution of pseudoparticle Green’s functions:

Gmσ (iω) = (1/Z)
∮
C

dz

2πi
e−z/(kBT )

[
G(0)(z)G(1)

mσ (z + iω) + G(1)
mσ (z)G(2)

mσmσ (z + iω) +
∑
σ ′

G(1)
mσ ′(z)G(2)

mσmσ ′(z + iω)

+
∑
σ ′

G(2)
mσmσ ′(z)G(3)

mσ ′(z + iω) + G(2)
mσmσ (z)G(3)

mσ (z + iω) + G(3)
mσ (z)G(4)(z + iω)

]
, (9)

where Z is the impurity partition function; i.e.,

Z =
∮
C

dz

2πi
e−z/(kBT )

[
G(0)(z) +

∑
mσ

G(1)
mσ (z)

+
∑

mσm′σ ′
G(2)

mσm′σ ′(z) +
∑
mσ

G(3)
mσ (z) + G4(z)

]
. (10)

It is known that noncrossing approximations encounter diffi-
culties in the case of broken symmetry, which can produce at
low temperatures spurious peaks in DOS [54], but we have
not observed such artifacts for the examined case. The com-
plementary method we use, EOM, consists in differentiating
the Green’s functions with respect to time which generates
the hierarchy of equations with higher order GFs (11). For

the discussed N = 3 case apart from single- and two-electron
also three- and four-particle Green’s functions play a role.
In order to truncate the series of EOM equations, we use
the generalized procedure proposed by Lacroix [51], which
approximates the GFs involving two conduction electron
operators by single-particle correlations and the corresponding
Green’s function of lower order:

〈〈c+
knσ cqnσ dm′σO; d+

mσ 〉〉 � −〈c+
knσ dm′σ 〉〈〈cqnσO; d+

mσ 〉〉,
〈〈c+

knσ dmσ cqnσO; d+
mσ 〉〉 � −〈c+

knσ cqnσ 〉〈〈dmσO; d+
mσ 〉〉,

(11)
〈〈d+

m′σ cqnσ cknσO; d+
mσ 〉〉 � −〈d+

m′σ cknσ 〉〈〈cqnσO; d+
mσ 〉〉,

〈〈c+
qnσ cknσ dmσO; d+

mσ 〉〉 � +〈c+
qnσ cknσ 〉〈〈dmσO; d+

mσ 〉〉,
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FIG. 16. (Color online) Comparison of xz (dotted line) and yz

(solid line) contributions to the DOS of Co adatom in h1 position
of 4ZGNR (EF = −0.8) (NCA). The vertical dashed lines in (a)
determine the positions of bare Coulomb peaks and in (b) the positions
of singularities in the interacting self-energies.

where m′ = xz(yz) and O = 1,nm1σ1 ,nm1σ1nm2σ2 . The cor-
relations 〈c+

knσ dm′σ 〉 and 〈c+
knσ cqnσ 〉 occurring in Eq. (11)

play the leading role in the Kondo effect. Upon calculating
these averages self-consistently using the spectral theorem
and corresponding Green’s functions the EOM set is closed
and can be therefore solved. For detailed analysis of EOM
hierarchy and decoupling schemes, see, e.g., Refs. [52,53]. The
one-particle NCA spectrum is assembled in Fig. 16. For the
assumed position of the Fermi level (EF = −0.8 eV) the main
contribution comes from convolution ofG(2) andG(3) functions.
In addition to the many-body resonances located around EF ,
also charge fluctuation peaks are visible reflecting fluctuations
into fully, doubly, singly occupied and empty {dxz, dyz} shell.
Their positions are renormalized and the peaks are broadened
as a result of combined effect of hybridization and many-body
correlations. The Coulomb peaks are only weakly tempera-
ture dependent, whereas significant temperature evolution of
many-body resonances is observed [Figs. 17(a) and 17(b)].
The energy scales of spin-orbital fluctuations and charge
fluctuations are not well separated and especially (N = 3,
N = 4) Coulomb resonances strongly perturb quasiparticle
resonances. The singularities of the nanoribbon spectrum
can influence the physics around Fermi level despite the
fact that they are not located close to EF . The observed
dips are not direct traces of singularities of hybridization
function; they reflect singularities of interacting self-energies,
which describe repeated conversion of doubly (triple) occupied
impurity into single and triple (double and fully) occupied
adatom by emitting or absorbing nanoribbon electron. The
singularities of interacting self-energies however have as a
source corresponding Van Hove singularities of density of
states. Tracing formal generation of singularities via Eq. (8)
one can point out these connections. For example one can
identify that singularities at E = −0.79 eV and E = −0.78 eV
originate from VH3ν of the hybridization function; those
at E = −0.55 eV and E = −0.5 eV come from the VH3c

singularity; and at E = −0.31 eV and E = −0.18 eV in
turn from VH4ν, etc. [see Figs. 7(b) and 16(b)]. The main
features of the EOM spectrum are similar to NCA results.
Charge fluctuation peaks show up more clearly in EOM
and the observed impact of charge fluctuation peaks next

FIG. 17. (Color online) Density of states of Co impurity at h1

position (EF = −0.8). (a), (b) Temperature evolution of orbital partial
densities of states calculated with the use of NCA approximation
(insets are the extended views for T = 0.6 K and 55.7 K). (c), (d)
Comparison of NCA DOS with EOM spectra and SBMFA densities
of states.

to the Fermi level on the many-body resonances is stronger
than in NCA. Similarly to NCA calculations also in EOM
density of states a dip introduced by interacting self-energies,
being a reminiscence of the singularity of the nanoribbon
electronic structure, is visible. The sharp dips appearing in
the presented spectra would certainly be partially smoothed
out if finite-lifetime effects were taken into account, similarly
to the presented temperature effects [Figs. 17(a) and 17(b)].
This remark concerns mainly the impact of singularities on
interacting self-energies, because they probe also electrons
away from the Fermi level. In some cases, in addition to
the dips, peculiarities of electronic structure of the host are
reflected also as additional peaks in the spectral function of
the impurity (see the peak slightly above the Fermi level in
EOM and NCA Co densities of states, Fig. 17). This structure
is due to a new pole of the Green’s function: intersection
of the ω − ε0 line with the real part of self-energy. The real
part of interacting self-energy dramatically changes between
singularities taking values from a wide range of energy and
thus the mentioned intersection is likely in this interval. The
occurrence of additional many-body structures is a combined
effect of correlations and singularities of nanoribbon DOS.
In order to elucidate this point we present in Fig. 18(a)
comparison of DOS calculated in EOM considering the case of
inclusion of dynamical correlations (Lacroix’s decoupling) or
neglect of correlations (〈c†knσ dmσ 〉 = 0), as well as comparing
densities of states calculated with hybridization function from
DFT with the results, where energy-independent hybridization
has been assumed. An additional peak above EF is only found
when both correlations and full structure of hybridization
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FIG. 18. (Color online) Partial xz DOS of Co adatom calculated
by EOM with realistic (DFT) hybridization function of 4ZGNR with
Lacroix’s decoupling (solid blue line), without dynamical correlations
(red dotted line). Dashed black curve presents the corresponding DOS
calculated with Lacroix’s decoupling, but using energy-independent,
constant hybridization function.

function are taken into account. The interesting problem of
the enriched structure of many-body resonances resulting from
peculiarities of electronic structure of the host has been only
announced here and we leave a more detailed analysis of this
problem as an open question for future study.

IV. CONCLUSIONS

The issue of geometrical and electric control of magnetic
properties of the Kondo impurity on an ultranarrow zigzag
graphene nanoribbon via peculiarities of its electronic struc-
ture discussed in the present paper is of potential importance
for spintronics. Experiments on Kondo physics in graphene
nanoribbons are still missing, but we believe that the results
presented in this paper will stimulate the experimental effort
in this direction. The presented scheme of calculations, which
is similar to some other slightly different earlier approaches
[46,47,94,95], combines the first-principles calculations with
the addition of missing correlations by a Hubbard-type term
and next solving the many-body problem by the well-known
impurity solvers. The basic input quantity for many-body
analysis - the hybridization function, is determined by impurity
matrix hopping amplitudes and local nanoribbon DFT Green’s
functions, both quantities achievable from most output files of
DFT programs (e.g., in the VASP code almost directly from
the PROCAR file).

We have shown that the Kondo effect of the Co impurity
in graphene nanoribbons is controlled not only by spin but
also by the orbital degrees of freedom. Our DFT analysis
indicated that only two from five d orbitals are responsible
for magnetic properties of the Co impurity. For the preferred
hollow positions of the Co atom and chemical potential lying in
the vicinity of the gap this role is played by dxz, dyz orbitals. In
the nanoribbon the C6v symmetry of pure graphene is broken
and dxz and dyz couple differently to the nanoribbon matrix.
The presence of the edge states in ZGNR introduces local
magnetic polarization close to the edge and consequently

breaks also impurity spin degeneracy in this region. The
electronic structure of ZGNR is rich in Van Hove singularities
and this property can be exploited for electric control of
magnetic properties. If the Fermi level crosses the singularities
the drastic changes of hybridization functions result which
in turn reflect in strong variation of many-body resonances,
leading in some cases to transition from Kondo-like behavior
into mixed valence or even resulting in complete destroying
of resonances. For symmetry reasons the specific singularity
exhibits differently in different spin and orbital channels
and therefore not all channels are equally influenced by its
presence. Crossing the singularity by the Fermi level results in
some cases in an interchange of the roles of orbitals or spins
leading to reversal of spin or orbital pseudospin. Since the
chemical potential can be shifted by gate voltage, this opens
a path of electric field control of these properties. Our present
study shows that the unconventional electronic and magnetic
features of zigzag graphene nanoribbons not only raise new
fundamental issues in many-body physics of adatoms, but
also that ZGNRs with impurities can be promising objects
for potential applications in spintronics.

A key question concerns the capability to make measure-
ments of the described effects. To check our predictions exper-
imentally, the detection methods of sufficient subnanometer
spatial resolution together with single-spin sensitivity are
required. It has been proved for many systems that using atomic
force microscopy a controllable move of a single atom and its
deposition in a selected position on the surface is possible
[29,30,96]. This gives us hope that a similar adatom site
engineering in graphene nanostructures is also within reach of
present-day technique. The Kondo effect has been observed by
STM spectroscopy for many impurities on different surfaces
[97–99], including graphene [40], but experiments on Kondo
physics in graphene nanoribbons are still missing. Since
no fundamental principle precludes such measurements, we
believe that they will be performed in the near future. Kondo
temperatures can be extracted from the half-widths of STM
lines. Typically the STM spectra of Kondo resonances on
metallic substrates display Fano profiles [99] resulting from
the interference between the direct paths from the tip to the
host and those via many-body state of impurity. In graphene
nanoribbons, the situation is complicated, because similarly
to the earlier presented pronounced energy dependence of
hybridizations (with VH anomalies in the low-energy range),
analogous energy dependencies are expected for tip-ZGNR
mixing functions, which should have a strong impact on
interference conditions. Our preliminary results show that the
STM picture of the adatom at a given site can change by
shifting the chemical potential from Fano-like line shape to
Kondo-like. The spin-dependent features of Kondo resonances
[e.g., map in Fig. 13(b)] should be possible to observe by
spin-polarized scanning tunneling microscopy (SP-STM) [92].
In particular, a huge change of spin polarization expected for
example for the h1 site when the chemical potential crosses the
VH singularity [Fig. 12(c)] should be detectable by a drastic
change of spin-polarized STM contrast. Similar changes of
orbital polarizations [Figs. 10(c) and 12(a)] are much more
difficult to observe experimentally, but considerable variation
of orbital polarization of STM spectra should be visible with a
change of tip-adatom distance, because different symmetries
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of adatom resonances have different space dependence in the
vertical direction. For orbital symmetries of the same vertical
dependencies (e.g., dxz and dyz) presumably the same role
would be played by horizontal STM probing in the close
tip-substrate distance range. In analogy to spin-polarized tips,
the orbitally polarized tips (tip apex characterized by different
orbital occupations of states) can allow orbital selectivity. As
far as we know, such experiments have not yet been carried
out. The theoretical basis of STM measurements of transition-
metal (TM) impurities on graphene nanoribbons requires de-
tailed examination; this is currently analyzed and will be soon
published. One of the interesting results presented by us was
a decrease of efficiency of Kondo screening near the singular-
ities, i.e., increase of effective magnetic moment and possible
flips of partially screened magnetic moments in this range. The
changes of magnetic moments are associated with the variation
of spin polarizations [Figs. 12(c) and 12(d)] and in this sense
SP-STM spectroscopy also detects these changes, but it does
not give information on the moments themselves. Magnetic
moments depend on the total adatom density of states and
this is not probed by this technique. A promising method for
single spin detection is magnetic resonance force microscopy
(MRFM) [100,101], where the information of the spin state
is transferred to the state of the driven cantilever with a small
magnetic material on its tip. We expect that the aforementioned
gate-induced magnetic moment flips near singularities should
be observed by a phase shift of the oscillation of the cantilever,
monitored by an optical interferometer. Given the steady
improvement in experimental technique, the measurements of
this type will certainly be soon possible. Similar effects, but
induced by transverse time dependent magnetic field (cyclic
adiabatic inversion), have been already reported [101].
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APPENDIX A: ADSORPTION ENERGIES
AND MAGNETIC MOMENTS: COMPARISON

OF DFT AND GGA+U RESULTS

Figure 19(a) shows the DFT total energy curves for different
positions of adatom. Similarly as in graphene [46], our
DFT study indicates that the Co adatom in ZGNRs prefers
hollow sites. In these positions, the coordination number
is maximized and the impurity is not associated with a
particular sublattice, but instead binds three carbon atoms from
each. Since nanoribbon polarization is nonuniform, adsorption
energy also depends on Co spin polarization, but as shown
in the example of the h1 position [inset of Fig. 19(a)], the
adsorption curves for different spin orientations do not differ
significantly. Nevertheless the predicted spin orientations of
Co adatoms deposited at the h1 and h3 positions of 4ZGNR
are opposite, whereas at the ribbon center (h2), where no net
magnetic polarization of ZGNR occurs, the energies for both
Co spin orientations are degenerate. We have also checked that

FIG. 19. (Color online) (a) LDA total energy curves for different
positions of Co adatom on 4ZGNR. Inset is the zoom view of spin-
resolved energy curves for h1 position presented close to minimum.
(b) GGA+U total energy curves for h1 position for selected values
of U . (c) Comparison of GGA+U energy curves for LS (h1) and HS
(t2) states for U = 4 eV and in the inset for U = 3 eV.

within DFT, hollow sites are also preferred for Co in armchair
nanoribbons. In pure graphene not only cobalt, but also other
3d adatoms including Fe and Ni were predicted to adsorb in
this position [73,102]. This fact was explained as a result of the
negligible role played by s orbitals in binding energy at this
site, due to their decoupling from the low-energy states, which
is forced by symmetry [104]. In nanoribbons the hexagonal
symmetry is broken, but still in the low-energy range only
weak coupling with s orbitals is observed. Following Power
et al. [33] we have also checked that at the edge a new
type of metastable adsorption site is realized (h0, Fig. 1),
where impurity connects to three edge zigzag atoms. This
position is however only reached after relaxation along the
path starting from the adatom originally siting at the t1 or t2
positions.

In Sec. IIC we have illustrated the role of dxz and dyz orbitals
in forming the magnetic moment of Co at hollow sites of
ZGNR. We have examined that the same pair of orbitals plays
also the role of magnetic orbitals in AGNRs, independent of
the distance from the edge. Bearing in mind that due to C6v

symmetry this pair of orbitals (E1) plays the dominant role in
forming magnetic moments of Co in hollow positions also in
pure graphene [46], one can conclude that symmetry-breaking
perturbations introduced by nanoribbon edges are not strong
enough to destroy the picture of magnetic dominance of
E1 orbitals at hollow sites of nanoribbons. Similarly as in
graphene, the crystal field acting on Co in hollow positions in
ZGNRs is such that dxz and dyz,orbitals are partially occupied.
It seems that this situation persists also in some other TM
atoms. We have performed some testing DFT calculations
for selected atoms, which confirm the dominant role of this
pair of orbitals in magnetic properties of impurities, especially

035424-16



KONDO EFFECT OF A COBALT ADATOM ON A ZIGZAG . . . PHYSICAL REVIEW B 89, 035424 (2014)

for atoms with high electron filling of the d shell, but often
contributions of other orbitals to magnetic moment are also not
negligible. The total magnetic moment of Fe for example at h1

site of 4ZGNR is 2.346 μB (in pure graphene 2.00 μB [103])
with 0.781 and 0.810 contributions of dxz and dyz, respectively.
The d electron occupation of Fe (N Fe

d = 6.46) is smaller than
in Co and in this case also dxy and dx2−y2 minority spin
orbitals are partially shifted above EF contributing to magnetic
moment 0.396 and 0.346, respectively. For Ni with still higher
d-electron filling (NNi

d = 8.56), the magnetic moment at the
h1 position of 4ZGNR is small (0.22 μB , with contribution of
0.12 from dyz and residual almost equal shares from the dxz,
dxy , and dx2−y2 orbitals). At the h2 site the magnetic moment of
Ni vanishes, similarly as in the case of pure graphene [103]. To
get an insight into the case of an atom with less than half filling
of the d shell, we have checked vanadium (N V

d = 3.95) with
magnetic moment 3.1 μB (magnetic moment of V in graphene
is 3 μB [103]). For V all d orbitals have their spin minority
components partially shifted above EF and they all contribute
to the magnetic moment (Mz2 = 0.97, Mxz = 0.53, Myz =
0.23, Mxy = 0.73, Mx2−y2 = 0.56). For all considered TM
adatoms the electron transfer from their 4s orbitals to 3d

orbitals is observed; in the case of atoms from the top of
the series (Fe, Co, Ni) this leads to reduction of magnetic
moments, whereas for vanadium, which represents the lower
part of series, an increase of magnetic moment in comparison
to the free atom value results.

It is well known that adsorption geometries can be very
sensitive to the effects of correlations [104]. The adsorption is
governed by contributions to chemical bonding from s against
those from d orbitals. Coulomb repulsion suppresses the role of
d orbitals in chemical bonding [89,104]. Figure 19(b) presents
examples of total energy curves of Co placed in the h1 position
obtained within the GGA+U type approach. The estimated
adsorption energy significantly lowers with the increase of U ,
taking for U = 3 eV values −1.16 and −0.87 eV for the h1

and h2 positions, respectively, compared with corresponding
DFT values −1.39 and −1.25 eV. The inset of Fig. 19(b)
compares the height dependencies of magnetic moments for
U = 0 and U = 2 eV. The increase of the overlap of impurity
to ribbon states with the decrease of vertical distance results in
a reduction of magnetic moment. Close to the nanoribbon
surface the occupation of weakly hybridized 4s states is
less favorable than these of strongly hybridizing 3d orbitals.
Hybridization lowers the energy of the orbitals and due to
increased delocalization, the Coulomb repulsion is reduced.
In consequence of the 4s-3d charge transfer also the observed
decrease of magnetic moment results. We also show that
similarly to the analogous calculations for pure graphene [46],
the Coulomb interaction contribution to the adsorption energy
can change the preference of impurity sites. It is illustrated in
Fig. 19(c), which compares Co adatom potential energy curves
for high-spin state (HS, S = 3/2) (t2 position) and low spin
(LS, S = 1/2) (h1 position) calculated for U = 2 eV and U =
4 eV. As is seen, GGA+U calculations predict a shift of global
minimum from LS to HS state, which is associated with the
change of the preferred site and an increase of equilibrium ver-
tical position of the adatom. The energy difference of minima
for these two electronic states for U = 4 eV is ∼0.1 eV and is
smaller than the corresponding value in pure graphene (0.2 eV

[46]). More realistic estimations should take into account the
height dependence of effective Coulomb interaction caused by
a change of screening processes [104]. It is expected that effec-
tive Coulomb interaction is reduced close to the carbon surface,
due to increase of delocalization. One can conclude that DFT
results should be treated with caution, only as a good approxi-
mation in the restricted range of low vertical distance of adatom
from nanoribbon plane. It is not resolved yet which of the con-
figurations is closer to experiment, but even supposing that the
LS state of the Co adatom is only a local minimum, the energy
barrier between the minima (∼0.12 eV) is high enough to trap
the adatom at this position at low temperatures. In the present
paper we restricted ourselves to a discussion of Kondo physics
only at hollow positions (spin-orbital S = 1/2 Kondo effect).
The Kondo screening of the high-spin case would run by a
completely different scenario [46]. It is worth mentioning that
there are examples where both LDA and GGA+U calculations
are consistent and predict the same hollow site adsorption. This
is the case for, e.g., NiH impurity [104], which has an electronic
configuration like Co discussed here, and therefore the present
calculations can be indirectly addressed also to this system.

The Coulomb interaction parameter is also essential for an
estimation of magnetic moments, because it greatly affects the
orbital arrangements above EF . This is illustrated in Fig. 20,
where we additionally show the effect of Hund’s coupling.
Coulomb interaction enhances the magnetic moment of the
Co adatom at ZGNR and J reduces it. In the inset of Fig. 20
we show magnetic moment dependencies of the Co atom on
the height for three values of U . Increase of the overlap of
impurity to ribbon states with the decrease of the vertical
distance results in a reduction of magnetic moment. Close to
the nanoribbon surface the occupation of weakly hybridized
4s states is less favorable than those of strongly hybridizing
3d orbitals. Hybridization lowers the energy of the orbitals
and due to increased delocalization the Coulomb repulsion is
reduced. In consequence of 4s-3d charge transfer the decrease
of magnetic moment results; for finite U the vanishing of

FIG. 20. (Color online) GGA+U estimations of total magnetic
moment of Co impurity in 4ZGNR for different values of Coulomb
interaction parameter U . Inset shows magnetic moment of Co placed
at h1 position of 4ZGNR at a distance h from the nanoribbon plane.
The dots represent additional effect of exchange J = 0.9 eV for h0

(circle), h1 (square), and h2 (triangle).
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magnetic moment with lowering of the distance from the
ribbon plane proceeds rapidly.

APPENDIX B: VARIATION OF KONDO TEMPERATURE
WITH NANORIBBON WIDTH

Here we give some examples of Kondo temperatures of the
Co adatom for nanoribbons of different widths. For brevity,
instead of showing all the orbital- and spin-dependent hy-
bridizations, we present as an assisting picture only the width
evolution of total density of states of NZGNR [Fig. 21(a)].
In wider ZGNRs the interactions between the edge states
are less pronounced, staggered sublattice potentials weaken,
band gaps decrease, and a reduction of DOS in the examined
low-energy range is observed. Correspondingly decrease also
hybridization functions (not shown), and this leads to an overall
drop of TK with the increase of N . Apart from this general
tendency the modifications of Kondo temperature depend on
the position of chemical potential with respect to singularities.
To focus our attention, let us restrict ourselves to only two
representative positions of Fermi energies EF = −0.25 and
EF = −0.8 eV. The former point lies in the energy range
between the two Van Hove singularities (VH1ν and VH2ν)
and the latter is chosen more distant from any singularity.
For EF = −0.25 eV the edge states dominantly contribute
to the band structure [Fig. 21(b)] and correspondingly these
states play the crucial role in hybridization functions. For
h1 hybridization is mainly due to edge states and Kondo
temperature in this case is higher than in the center of the
ribbon [TK(h1) > TK(hc)]. The edge contribution decreases
when one moves towards the center of the ribbon and the
TK(hc) curve drops with the increase of N much faster than
TK(h1). Comparing the evolutions of Kondo temperatures for
these two types of sites it is important to remember that we
monitor the central site, which is more and more distant from
the edge with the increase of N . For EF = −0.8 eV the role
of edge states is nonsignificant [Fig. 21(b)] and the central
and edge hybridizations do not differ so drastically in this
case, which is reflected in the smaller differences of Kondo
temperatures for edge and central positions. For EF = −0.8 eV
the Kondo temperature for the h1 site is smaller than for hc

FIG. 21. (Color online) (a) Density of states of NZGNR: N = 4
(blue line/gray line), N = 8 (black), N = 14 (green/light gray line).
(b) Highest valence bands (HV) of NZGNR (εHV

kσ ) (solid lines, right
axis of ordinates) and the corresponding edge state contributions
|〈pA1

zσ |kσHV 〉|2 (dashed lines for spin up and dotted lines for spin
down, left axis of ordinates). Assignment of the line colors to the
ribbon widths is the same as in (a).

FIG. 22. (Color online) Characteristic quasiparticle tempera-
tures TK of Co in NZGNR [(a), (b)] and NAGNR [(c), (d)] for xz

[(a), (c)] and yz [(b), (d)] channels. Dots represent the results for
central hollow location (hc) and squares for hollow positions next to
the edge (h1). Dotted lines correspond to EF = −0.25 eV case and
solid lines to EF = −0.8 eV. Inset of (a) is a zoom picture of the band
structure of 14ZGNR and illustrates a crossing of the Fermi level
(EF = −0.8 eV) by the next valence band. The upper horizontal axes
show the nanoribbon widths expressed in graphene lattice constant
units a (a = 1.42 Å).

and this can be attributed to different manifestation of VH2ν

singularity in both cases. It is slightly surprising that despite
the location of the singularity far away from the considered
energy, still its considerable impact on many-body resonance
is observed [compare Figs. 11(a) and 13(c)]. In the h1 position
[Fig. 13(c)] a dip in the DOS is seen for energy corresponding
to VH2ν, which effectively narrows the resonance, whereas
for the central position [Fig. 11(a)] the influence of VH2ν

is only minor at least for the yz sector. Of interest is
also the observed nonmonotonic behavior of characteristic
temperatures with N . The jump for N = 14 is a consequence
of entering of the next band on the Fermi level [see the inset
of Fig. 22(a)], which is equivalent to locating of the VH3ν

singularity at E ≈ −0.75 eV [Fig. 21(a)]. Since the role of
edges is different in zigzag and armchair nanoribbons [105],
we also show for comparison in Figs. 22(c) and 22(d) a few
examples of width dependence of cobalt Kondo temperature
for armchair graphene nanoribbons. The differences between
central-hollow and edge-hollow cobalt Kondo temperatures
are smaller for AGNR due to the absence of edge states in this
structure. The band structure of GNRs is strongly influenced
by quantum confinement effects. It is known that distinctively
different confinement conditions for ribbon widths N = 3p,
3p + 1, and 3p + 2 (p is an integer) are reflected, e.g.,

035424-18
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in separation of gap size hierarchy for different categories
and varied forms of the eigenfunctions with energies close
to the gap [105]. In the examined dependencies this fact

is reflected in the oscillatory character of the TK(N ) decay
with N . More details will be discussed in a forthcoming
publication.
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[87] S. Lipiński and D. Krychowski, Phys. Rev. B 81, 115327

(2010).
[88] P. Trocha, Phys. Rev. B 82, 125323 (2010).
[89] A. N. Rudenko, F. J. Keil, M. I. Katsnelson, and A. I.

Lichtenstein, Phys. Rev. B 86, 075422 (2012).
[90] A. K. Zhuravlev and V. Yu. Irkhin, Phys. Rev. B 84, 245111

(2011).
[91] V. Yu Irkhin, J. Phys.: Condens. Matter 23, 065602 (2011).
[92] A. C. Seridonio, F. M. Souza, and I. A. Shelykh, J. Phys.:

Condens. Matter 21, 0953003 (2009).
[93] M. Vojta and R. Bulla, Phys. Rev. B 65, 014511 (2001).
[94] R. Korytar, M. Pruneda, J. Junquera, P. Ordejon, and N.

Lorente, J. Phys.: Condens. Matter 22, 385601 (2010).
[95] M. Karolak, T. O. Wehling, F. Lechermann, and A. I.

Lichtenstein, J. Phys.: Condens. Matter 23, 085601 (2011).
[96] S. W. Hla, J. Vac. Sci. Technol. B 23, 1351 (2005).
[97] T. Jamneala, V. Madhavan, W. Chen, and M. F. Crommie,

Phys. Rev. B 61, 9990 (2000).
[98] K. Nagaoka, T. Jamneala, M. Grobis, and M. F. Crommie,

Phys. Rev. Lett. 88, 077205 (2002).
[99] N. Knorr, M. A. Schneider, L. Diekhöner, P. Wahl, and
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