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Inelastic current noise in nanoscale systems: Scattering theory analysis
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We present a scattering theory description for the inelastic current noise in the presence of electron-vibration
interactions. In this description, we specify elastic and inelastic scattering contributions to the shot noise by
examining charge transfers between scattering states and energy exchange between electrons and vibrations. The
elastic and inelastic scattering processes are further decomposed into current correlations of electrons at the same
energy and those of electrons at different energies. Focusing on the inelastic noise signals defined as steps in
the voltage derivative of the shot noise, we show that single-channel systems have two ranges of transmission at
which the inelastic noise signals exhibit the crossover between positive and negative signs. In a high-transmission
regime, even and odd vibrational modes of mirror-symmetric systems provide upper and lower bounds to the
ratio of the inelastic noise signal to the conductance step. This can be a theoretical justification for models used
to understand the recent noise experiment [Phys. Rev. Lett. 108, 146602 (2012)] and numerical calculations on
gold atomic chains [Phys. Rev. B 86, 155411 (2012)].
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I. INTRODUCTION

Since pioneering experiments measuring inelastic electron
tunneling spectroscopy (IETS) signals [1–5], intense efforts
have been made to understand inelastic transport properties
when conducting electrons interact with local vibrations
[6–50]. The IETS signals are identified as steps in the
differential conductance at a threshold bias voltage equal to
a vibrational energy [26–37]. The same steps also appear
in the voltage derivative of the shot noise [38–48]. These
steps indicate opening of inelastic transport channels, where
electrons can pass through the junction by losing energy.

It is known that the conductance variation undergoes
a crossover from an increase to a decrease when a bare
transmission T evolves from zero to one [27–29]. The similar
crossover behavior in the shot noise has been reported in
a recent experiment of the shot-noise measurement [46].
In Ref. [46], it is observed that inelastic noise corrections
are negative when a measured zero-bias conductance is
approximately below 0.95G0. In contrast, the noise corrections
are exclusively positive for the zero-bias conductance close
to G0.

To understand this crossover, several model systems have
been theoretically investigated [46,47]. The representative
system is a single-level model with a single vibrating scatterer
[43–46]. It is shown that the conductance crossover occurs
when T = 0.5 for the single level symmetrically connected to
single-channel electrodes [28]. Considering the current noise,
the single-level model symmetrically coupled to electrodes
exhibits two crossovers in the inelastic noise correction at
T = (2 ± √

2)/4 [43–46]. Reference [47] studied a two-site
tight-binding model symmetrically connected to electrodes in
order to analyze density functional theory (DFT) calculations
on inelastic signals of Au atomic point contacts. For the out-
of-phase longitudinal vibrational mode that gives a dominant
contribution to inelastic signals, it is found that the two-site
model exhibits the crossover in the conductance at T = 0.5
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and the noise signal crossover at T = (2 ± √
2)/4, as the sym-

metric single-level model does [47]. Although these simple
models can give some qualitative hint on understanding the
inelastic shot noise, it has not yet been clearly understood why
the models exhibit the same crossover behaviors. Furthermore,
performing DFT calculations for a variety of Au atomic chains,
Ref. [47] calculated the ratios of the steps in the inelastic noise
signal to the conductance changes for the chains, and compared
them with the ratio of the two-site model. Reference [47]
concluded that the ratio predicted by the two-site model might
be an upper bound to those of the atomic chains. However,
there is no theoretical justification for why the two-site model,
which is originally designed to study atomic point contacts,
can provide an upper bound to the computed ratios of the
atomic chains varying in configurations and lengths. Thus, it
is needed to find out a general picture that can explain the
aforementioned issues.

Recently, we presented a scattering-state description of
inelastic electron transport in a weak electron-vibration (el-
vib) coupling regime, which is established by converting
nonequilibrium Green’s functions (NEGF) to scattering states
[35]. In this description, we clarified elastic and inelastic con-
tributions to conductance variations in terms of eigenchannel
scattering states and associated scattering matrices. Doing so,
we obtained a general expression for the conductance jump
of single-channel systems. While the inelastic contribution is
proportional to 1 − 2T , the elastic one is always negative.
It leads to conclusion that the conductance crossover can
generally occur below T = 0.5 for single-channel systems.

In this paper, we extend our scattering theory approach
to the inelastic current noise, especially in order to unveil a
unified picture that can comprehensively explain the existing
results in the literature [46,47]. We specify elastic and inelastic
contributions to the current noise by examining charge trans-
fers between scattering states and energy exchange between
electrons and vibrations. Different from the conductance, such
contributions to the current noise can be further decomposed
into current correlations of electrons at the same energy
and those of electrons at different energies. Considering
single-channel systems, we show that the crossover for the
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inelastic noise signal can occur in two ranges of transmis-
sions, i.e., between 0 and (2 − √

2)/4 or between 0.5 and
(2 + √

2)/4. In particular, for mirror-symmetric junctions,
even-parity vibrational modes lead to two crossovers of the
noise correction at T = (2 ± √

2)/4, while there is only one
crossover at T = 0.5 for odd-parity modes. When T is close
to one, our scattering-state description shows that the ratios
of noise correction steps to conductance changes for odd- and
even-parity modes are lower and upper bounds for those of
general cases, respectively.

This paper is organized as follows. In Sec. II, we present
a general argument about how elastic and inelastic scattering
processes compete with each other for transport properties
such as conductance and shot noise. In Sec. III, we summarize
current- and shot-noise expressions in the NEGF formalism
[48]. In Sec. IV, we present our scattering theory description
of inelastic transport. First, we briefly summarize the current
correction due to el-vib scatterings discussed in our previous
work [35]. Second, we explain the scattering-state description
of the inelastic noise correction, focusing on identification of
scattering processes in the noise correction. In Sec. V, we apply
our theory to single-channel systems. Here, we discuss the
crossover of the noise correction in general situations including
the systems investigated in the literature [47]. In Sec. VI, we
make a final conclusion. Technical details and derivations are
discussed in Appendixes A and B.

II. COMPETITION BETWEEN ELASTIC
AND INELASTIC PROCESSES

Before presenting our scattering theory description for the
shot noise, we first discuss the competition between elastic
and inelastic scattering processes in a general perspective
[22–28,43]. Here, we define that electron transport is elastic
(inelastic) if the total energy of conducting electrons is
conserved (not conserved) after electrons pass through the
vibrating region. In Ref. [35], we clarified elastic and inelastic
scattering contributions to the current in the second order
of el-vib couplings, and used their interplay to explain the
conductance crossover. In fact, the competition between elastic
and inelastic scattering processes is not limited only to the
current correction [22–28], but it is generally respected in
other transport properties such as the current noise [43].
When a zero-temperature regime is considered for simplicity,
a many-body state of electrons and vibrons perturbed by el-vib
interactions can be written as

|�〉 = |�0〉 + |�1〉 + |�2〉 . . . , (1)

where |�0〉 is a ground state of no el-vib coupling at zero
temperature, i.e., |�0〉 = |ψ0〉e ⊗ |0〉v where |ψ0〉e and |0〉v
denote electronic and vibronic ground states, respectively.
Note that the vibronic state |n〉v represents that there are n

vibrons excited. |�n〉 (n = 1,2, . . .) is a perturbed state in the
nth order of el-vib couplings. Since electrons emit one vibron
when electrons interact with vibrations once, the first-order
perturbed state is written as |�1〉 = |ψ1〉e ⊗ |1〉v , where |ψ1〉e
denotes the electronic state after losing its energy by one
vibronic quantum �ωλ. At the second order of the el-vib
coupling, two cases are possible: The first case is that electrons
regain the vibronic energy quantum from vibrations, and the

other is that electrons emit another vibron. Thus, the second-
order perturbed state is expressed as a superposition of these
two possibilities, i.e., |�2〉 = |ψ (1)

2 〉e ⊗ |0〉v + |ψ (2)
2 〉e ⊗ |2〉v .

Here, |ψ (1)
2 〉e and |ψ (2)

2 〉e denote electronic wave functions
associated with the first case (emission reabsorption) and
the second one (double-vibron emission), respectively. For
any electronic operator O that does not change the vibronic
occupation, it is shown that the expectation value of O with
respect to |�〉 is expanded as

〈O〉 = 〈�|O|�〉
〈�|�〉 = 〈O〉0 + 〈O〉in

2 + 〈O〉el
2 + · · · , (2)

where 〈O〉0 = 〈�0|O|�0〉, and

〈O〉in
2 = 〈�1|O|�1〉 − 〈�1|�1〉〈�0|O|�0〉, (3)

〈O〉el
2 = 2 Re[〈�0|O|�2〉]. (4)

Here, Eq. (3) is the inelastic correction since it includes only
|�1〉 where electrons lose energy by emitting one vibron. Since
the vibronic state |2〉v associated with |ψ (2)

2 〉e is orthogonal
to |0〉v of the ground state, |ψ (2)

2 〉e does not contribute to
〈O〉el

2 . Thus, Eq. (4) is reduced to 2 Re[e〈ψ0|O|ψ (1)
2 〉e], thereby

implying that it is the elastic process. Since the elastic
correction (4) is a form of interference between |ψ0〉e and
|ψ (1)

2 〉e, it is expected to contain some phase information.
In fact, the elastic corrections to the current and the noise
depend on phases of scattering matrix elements and transition
amplitude between scattering states as shown later. Based
on this general structure that elastic and inelastic scattering
processes compete with each other in the nontrivial lowest
order of el-vib couplings, we will discuss the inelastic current
noise in detail in the following sections.

III. NONEQUILIBRIUM GREEN’S FUNCTION METHOD

The system in which we are interested is the two-terminal
geometry with local vibrations located in a conductor region.
The corresponding Hamiltonian is written as

H = Hel + Hvib + Hel-vib, (5)

where Hel and Hvib are the electronic Hamiltonian describing
the two-terminal setup and the vibronic one of local vibrations,
respectively. Hel-vib is the coupling term between electronic
and vibronic Hamiltonians. The electronic Hamiltonian Hel

is further divided into two electrodes (left and right) HL/R , a
central part HC connected to leads, and a coupling HT between
leads and the central device. In the second quantized form, it
is

Hel = HL + HR + HC + HT , (6)

where

Hα=L,R =
∑

k

εαkc
†
αkcαk, (7a)

HC =
∑
i,j

εij d
†
i dj , (7b)

HT =
∑

α=L,R

∑
k,i

Vαkic
†
αkdi + H.c. (7c)
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Here, c
†
αk (cαk) and d

†
i (di) represent electronic creation

(annihilation) operators for the electrodes and the device part,
respectively. Note that a spin index is not explicitly shown.
Hvib describes local vibrations confined in the device region,
which consists of a collection of harmonic oscillators,

Hvib =
∑

λ

�ωλa
†
λaλ, (8)

where a
†
λ (aλ) is a vibronic creation (annihilation) operator for

the λth mode. The coupling Hamiltonian between electrons
and local vibrations is given by

Hel-vib =
∑

λ

∑
i,j

Mλ
ij d

†
i dj (aλ + a

†
λ). (9)

Next, we consider the nonequilibrium transport theory
based on NEGFs in a weak el-vib coupling regime [23–33]. In
a zero-temperature limit and a regime where a damping rate
of vibrations is much larger than a heating rate, the current
correction due to el-vib interactions is

δI = 2e

h

∑
λ

∫ μL

μR

dε 2 Re Tr
[
CMλReGr,−

0 Mλ
]

(10a)

+ 2e

h

∑
λ

∫ μL

μR+�ωλ

dε Tr[BMλA−
RMλ] (10b)

+ 2e

h

∑
λ

∫ μL

μR+�ωλ

dε Im Tr[CMλA−
RMλ] (10c)

+ 2e

h

∑
λ

∫ μL−�ωλ

μR

dε Im Tr[CMλA+
LMλ], (10d)

where B ≡ Ga
0
LGr

0, C ≡ AR
LGr
0, and D ≡ AR
LAR .

G
r(a)
0 is the retarded (advanced) Green’s function [51] of

the conductor part without el-vib interactions, which is
expressed as G

r(a)
0 (ε) = [ε − HC − �

r(a)
L − �

r(a)
R ]−1. Here,

�r(a)
α denotes the retarded (advanced) lead self-energy of the

electrode α = L,R. 
α = i[�r
α − �a

α] is the coupling function
to leads, and Aα = Gr

0
αGa
0 is the spectral function of the

conductor region originating from the electrode α = L,R [51].
Superscripts ± indicate that energy argument is ε ± �ωλ, and
without ±, the argument is ε. We assume that the left chemical
potential μL is bigger than the right one μR . The first term
[Eq. (10a)] is interpreted as a quasielastic correction to a bare
transmission [48]. Since Eq. (10a) does not contribute to the
conductance step at the threshold bias voltage in the regime of
our interest, it is neglected in the following discussion.

To the second order of el-vib interactions, the shot-noise
correction δS has been derived by using the counting field
method in the full-counting statistics [43–45,48]. The inelastic
noise correction in the single-level model was first investigated
by several groups [43–45], and later it was extended to general
cases where multiple electronic levels and many vibrational
modes are involved in a regime of equilibrated vibrations [48].
Recently, the backaction effect of nonequilibrium vibrational
populations on the shot noise has been investigated [41,42].
Following Ref. [48], we consider situations where multiple
electronic levels are coupled to many vibrational modes in
the regime of zero temperature and equilibrated vibrons. The

noise correction δS has two contributions δSmf and δSvc,
which are classified as mean-field and vertex corrections in
the diagrammatic representation [48]:

δSmf

2e2/h
=

∑
λ

∫ μL

μR

2 Re Tr
[
(1 − 2T )CMλReGr,−

0 Mλ
]

(11a)

+
∑

λ

∫ μL

μR+�ω

dε Tr[(1 − 2T )Gr
0MλA−

RMλGa
0
L]

(11b)

+
∑

λ

∫ μL

μR+�ω

dε Im Tr[(1 − 2T )CMλA−
RMλ]

(11c)

+
∑

λ

∫ μL−�ω

μR

dε Im Tr[(1 − 2T )CMλA+
LMλ]

(11d)

and

δSvc

2e2/h
= −

∑
λ

∫ μL

μR+�ω

dε 2 Tr[BMλD−Mλ] (12a)

−
∑

λ

∫ μL

μR+�ω

dε 2 Re Tr[CMλC−Mλ] (12b)

−
∑

λ

∫ μL

μR+�ω

dε 2 Im Tr[CMλD−Mλ] (12c)

+
∑

λ

∫ μL−�ω

μR

dε 2 Im Tr[CMλD+Mλ], (12d)

where T ≡ AR
L. Similarly to the current, Eq. (11a) repre-
senting the noise correction due to the quasielastic current
[Eq. (10a)] does not contribute to steps in the noise signal.
Thus, it will be ignored in our discussion.

We note that another contribution showing an asymmetric
behavior with respect to the applied bias voltage is also
ignored [29,30,47,48]. This asymmetric contribution leads to a
logarithmic divergent correction at the threshold bias voltage in
the zero-temperature limit [47–50]. In fact, it indicates that the
lowest-order perturbation theory is not valid at the threshold
bias voltage [47–50]. This divergence might be regularized
by introducing damping of vibrational modes, or using a
resummation scheme of diagrams [47–50]. Away from the
threshold bias voltage, the asymmetric term becomes much
smaller than the symmetric contribution. In addition, it is
known that the asymmetric term is negligible for symmetric
junctions or for cases where the conductor is close to or far
from resonances [28]. We also remark that the Hartree diagram
is not taken into account since it does not lead to step behaviors
at the threshold voltage [30].

IV. SCATTERING THEORY

The current and noise corrections based on NEGFs
can be expressed in terms of scattering states. In the
Landauer-Büttiker formalism [51–53], coherent transport is
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described by scattering states {|�Lm〉,|�Rm〉} and a scattering
matrix S associated with the states. Here, indices {m} denote
transverse modes called quantum channels [51]. The scattering
matrix S is written in the form of a block matrix

S =
(

SLL SLR

SRL SRR

)
=

(
r t′

t r′

)
, (13)

where r and t (r′ and t′) are reflection and transmission sub-
matrices for left-incident (right-incident) waves. Note that the
energy normalization 〈�αm(ε)|�βn(ε′)〉 = δαβδm,nδ(ε − ε′) is
used for scattering states [54]. Scattering states {|�αm〉} are
related to Green’s functions of the conductor part Gr

0 in the
following way [55]:

|�αm〉 = 1√
2π

Gr
0|Wαm〉, (14)

where |Wαm〉 = √
2πVCα|uαm〉 and VCα is the coupling Hamil-

tonian between the conductor and the electrode α. |uαm〉 is the
scattering state when VCα = 0, which is just a sum of the
incident wave and the totally reflected one. 
α is written as

α = ∑

m |Wαm〉〈Wαm|.
Using the Fisher-Lee relation [51,56] or the Mahaux-

Weidenmüller formula [57,58] that connect the scattering
matrix S to Green’s functions, the scattering matrix S can
be expressed as

Sαm,βn = (−δαβδmn + i〈Wαm|Gr
0|Wβn〉

)
= (−δαβδmn + i

√
2π〈Wαm|�βn〉) (15)

in terms of {|Wαm〉} [55].
In this work, instead of using the scattering states

{|�Lm〉,|�Rm〉}, we choose the transmission eigenchannel
representation [54,59,60] {|�Lm〉,|�Rm〉}, in which there is
no interchannel mixing (see Fig. 1). As seen below, el-vib
interactions lead to mixing between different eigenchan-
nel states. The transmission eigenchannel representation is
achieved by diagonalizing the submatrices r, t, r′, and t′.
When the system respects the time-reversal symmetry, it can
be done by choosing unitary matrices UL and UR as follows:
[UT

L rUL]mn = rmδmn, [UT
R tUL]mn = tmδmn, [UT

R r′UR]mn =
r ′
mδmn, and [UT

L t′UR]mn = t ′mδmn. See Refs. [59,60] for details.
Consequently, the original scattering matrix S is transformed
to the scattering matrix S which is decomposed into a
collection of 2 × 2 block scattering matrices Sm = (rm t ′m

tm r ′
m
) for

eigenchannel states {|�Lm〉,|�Rm〉}. |�αm〉 is related to |�αm〉
via |�αm〉 = ∑

n[Uα]mn|�αn〉.

Scattering
Region

|ΦLm : tmrm

incident

reflected transmitted

|ΦRm : incident

reflectedtransmitted
tm rm

FIG. 1. (Color online) Schematic illustration of left-incident and
right-incident eigenchannel scattering states. The scattering state
consists of incident, transmitted, and reflected waves, which are
represented by arrows.

If the system respects the time-reversal symmetry, one can
prove the following relations by using Eq. (14):

�̂|�Lm〉 = r∗
m|�Lm〉 + t∗m|�Rm〉, (16)

�̂|�Rm〉 = t∗m|�Lm〉 + r ′∗
m |�Rm〉, (17)

where �̂ is the time-reversal operator. Note that these relations
are true not only far from the scattering region, but also inside
the conductor.

A. Current corrections

In Ref. [35], using Eqs. (14)–(17), we obtained the current
correction δI in terms of scattering states:

δI = δI1BA + I2BA, (18)

where

δI1BA = 2e

h
(2π )2

∑
λ

∑
m,n

∫ μL

μR+�ωλ

dε

× (R−
n − Tm)|〈�−

Rn|Mλ|�Lm〉|2 (19)

and

δI2BA = −2e

h
(2π )2

∑
λ

∑
m,n

∫ μL

μR+�ωλ

dε

× Re[r ′
mt∗m〈�Rm|Mλ|�−

Rn〉〈�−
Rn|Mλ|�Lm〉]

+ 2e

h
(2π )2

∑
λ

∑
m,n

∫ μL−�ωλ

μR

dε

× Re[r ′
mt∗m〈�Rm|Mλ|�+

Ln〉〈�+
Ln|Mλ|�Lm〉],

(20)

where R−
n = |rn(ε − �ωλ)|2 and Tm = |tm(ε)|2. Here, sub-

scripts 1BA and 2BA indicate that Eqs. (19) and (20) are
calculated from the first and second Born approximations
in a standard scattering theory [22]. This specification was
discussed in detail in our previous work [35], especially
based on charge transfers between scattering states. Here, we
summarize the physical meaning of Eqs. (19) and (20). See
Ref. [35] for the detailed discussion. Equation (19) represents
the inelastic scattering process where a conducting electron is
scattered off by emitting one vibron �ωλ [see Fig. 2(a)]. In
contrast, Eq. (20) describes the elastic scattering contribution
to the current with a vibrational emission-reabsorption process.
The first term of Eq. (20) is a one-electron scattering process
where only one electron is involved in the vibrational emission-
reabsorption process as depicted in Fig. 2(b). In this case,
the energy of each conducting electron does not change. The
second term of Eq. (20) involves successive scatterings of two
electrons with local vibrons [see Fig. 2(c)]. One vibrational
energy quantum �ωλ is transferred from one electron to the
other via the vibrational emission-reabsorption process. While
energies of the two electrons involved in the two-electron
process change (one increases and the other decreases), the
total energy of conducting electrons does not change, so it is
regarded as the elastic process.
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(a)
|ΦLm(ε) Tm − δT in

1,mh̄ωλ

|ΦRn(ε − h̄ωλ)
|ΦLn(ε − h̄ωλ)

T −
n + δT in,−

2,n

(b)
|ΦLm(ε)
|ΦRm(ε)

|ΦRn(ε − h̄ωλ)

h̄ωλ

(1) (2)

Tm + δT el,λ
1,m

(c)
|ΦLn(ε + h̄ωλ)

|ΦLm(ε)
|ΦRm(ε)

(1)(2)
h̄ωλ

Tm + δT el,λ
2,m

(d)
|ΦLm(ε) Tm
|ΦLm(ε) h̄ωλ

|ΦRn(ε − h̄ωλ) R−
nPλ

m→n

(e)
|ΦLm(ε)

|ΦRn(ε − h̄ωλ)

|ΦRm(ε)

|ΦLn(ε − h̄ωλ)

h̄ωλ

FIG. 2. (Color online) Schematic explanation of scattering pro-
cesses contributing to current and noise corrections. While solid lines
represent parts of the scattering states that electrons follow when
they transport to the right electrode, dashed lines are the rest of the
scattering states. Blue and red lines indicate vibronic emission and
absorption processes, respectively. Gray solid lines represent electron
transport without interacting with vibrations, which gives a bare
transmission. Orange wiggly lines indicate vibronic energy transfer.
On the left side, scattering states and energies corresponding to arrows
are indicated. Scattering states at the same energy are vertically
shifted for clarity. (a) Inelastic contribution to current [Eq. (19)]. (b)
One-electron scattering process in the elastic contribution to current
[Eq. (20)]. (c) Elastic scattering process involving two electrons
(green and brown circles) in Eq. (20). (1) and (2) indicate the order
of scattering events. Transmission corrections for (a)–(c) scattering
processes are indicated on the right side. (d) and (e) represent inelastic
noise corrections where conducting electrons at two energies differing
by �ωλ are correlated. (d) and (e) correspond to Eqs. (32) and (34),
respectively. Note that (a) and (d) correspond to |�1〉 = |ψ1〉e ⊗ |1〉v ,
while (b), (c), and (e) describe |ψ (1)

2 〉e ⊗ |0〉v of |�2〉 in Sec. II.

For the inelastic process, the right scattering state |�Rn(ε −
�ωλ)〉 should be empty, when the electron is incident at ε from
the left side. Otherwise, the inelastic scattering is prohibited
due to the Pauli exclusion principle. The inelastic scattering,
therefore, can occur when ε ∈ [μR + �ωλ,μL]. Two elastic
scattering processes take place at different energy ranges. Let
us consider elastic corrections at ε. Similar to the inelastic
process, the one-electron process requires an empty right
scattering state |�Rn(ε − �ωλ)〉 that a left-incident electron
at ε can occupy after emitting one vibron. In contrast, the two-

electron process assumes a left-incident electron occupying
|�Ln(ε + �ωλ)〉, which is first scattered off to an empty right
scattering state |�Rn(ε)〉 [35]. Considering these, one can
realize that the one-electron and two-electron elastic processes
can occur at ε ∈ [μR + �ωλ,μL] and ε ∈ [μR,μL − �ωλ],
respectively, as shown in Eq. (20).

These scattering processes can be written as transmission
corrections to a bare transmission Tm(ε) when there is no el-vib
interaction. Considering scattering with the λth vibrational
mode, the inelastic scattering process [Eq. (19)] gives two
transmission corrections at ε and ε − �ωλ:

δT in,λ
1,m (ε) = −Tm

∑
n

Pλ
m→nF(ε), (21)

δT in,λ
2,n (ε − �ωλ) =

∑
m

R−
n Pλ

m→nF(ε), (22)

where

Pλ
m→n = (2π )2|〈�−

Rn|Mλ|�Lm〉|2, (23)

F(ε) = θ (ε − μR − �ωλ)[1 − θ (ε − μL)]. (24)

Here, θ (x) denotes the step function. F(ε) accounts for the
energy window in which the inelastic scattering is possible
as discussed above. When interacting with the λth vibrational
mode, the electron at the left scattering state |�Lm(ε)〉 is inelas-
tically scattered off to the right scattering state |�Rn(ε − �ωλ)〉
with the scattering probability Pλ

m→n. In comparison with the
case where there is no el-vib interaction, the transmission
of the mth eigenchannel at ε is reduced by Eq. (21) in
which the total scattering probability is taken into account by
summing over all right-incident eigenchannels. For electrons
scattered to the right scattering state |�Rn(ε − �ωλ)〉, the
transmission probability to move to the right electrode is given
by the reflection amplitudeRn(ε − �ωλ). Thus, by considering
the scattering probability Pλ

m→n together, the transmission
correction of scattered electrons from the mth eigenchannel
to the nth eigenchannel is given by R−

n Pλ
m→n. Summing over

all incident states |�Lm(ε)〉, the total transmission correction
to the eigenchannel n is given by Eq. (22). In contrast, the
elastic scattering process gives corrections to the transmission
at ε,

δT el,λ
m (ε) = δT el,λ

1,m (ε) + δT el,λ
2,m (ε), (25)

where

δT el,λ
1,m (ε) = −(2π )2

∑
n

Re[r ′
mt∗m〈�Rm|Mλ|�−

Rn〉

× 〈�−
Rn|Mλ|�Lm〉]F(ε), (26)

δT el,λ
2,m (ε) = (2π )2

∑
n

Re[r ′
mt∗m〈�Rm|Mλ|�+

Ln〉

× 〈�+
Ln|Mλ|�Lm〉]F(ε + �ωλ). (27)

Equations (26) and (27) correspond to corrections due to one-
and two-electron elastic processes, respectively. In terms of
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these transmission corrections, the current corrections δI1BA and δI2BA are written as

δI1BA = 2e

h

∑
λ,m

∫
dε δT in,λ

1,m (ε) + δT in,λ
2,n (ε − �ωλ), (28)

δI2BA = 2e

h

∑
λ,m

∫
dε δT el,λ

1,m (ε) + δT el,λ
2,m (ε). (29)

B. Noise corrections

Using Eqs. (14)–(17), one can obtain the scattering state description of the noise correction:

δS = δS in
1 + S in

2 + Sel
1 + Sel

2 , (30)

where

δS in
1

2e2/h
= −(2π )2

∑
λ,m,n

∫ μL

μR+�ωλ

dε(1 − 2Tm)Tm|〈�−
Rn|Mλ|�Lm〉|2 + (2π )2

∑
λ,m,n

∫ μL

μR+�ωλ

dε(1 − 2T −
n )R−

n |〈�−
Rn|Mλ|�Lm〉|2,

(31)

δS in
2

2e2/h
= −2(2π )2

∑
λ,m,n

∫ μL

μR+�ωλ

dε TmR−
n |〈�−

Rn|Mλ|�Lm〉|2, (32)

δSel
1

2e2/h
= −(2π )2

∑
λ,m,n

∫ μL

μR+�ωλ

dε(1 − 2Tm)Re[r ′
mt∗m〈�Rm|Mλ|�−

Rn〉〈�−
Rn|Mλ|�Lm〉]

+ (2π )2
∑
λ,m,n

∫ μL−�ωλ

μR

dε(1 − 2Tm)Re[r ′
mt∗m〈�Rm|Mλ|�+

Ln〉〈�+
Ln|Mλ|�Lm〉], (33)

δSel
2

2e2/h
= 2(2π )2

∑
λ,m,n

∫ μL

μR+�ωλ

dε Re{r ′
mt∗mr ′−

n t−∗
n 〈�Rm|Mλ|�−

Ln〉〈�−
Rn|Mλ|�Lm〉}. (34)

Here, superscripts “in” of Eqs. (31) and (32) and “el” of
Eqs. (33) and (34) mean that Eqs. (31) and (32) are interpreted
as inelastic processes, while Eqs. (33) and (34) are elastic ones.
We first consider Eqs. (31) and (33). They can be understood
as current correlations of electrons at one energy ε. When there
is no el-vib interaction, the shot noise at zero temperature is
written as

S0

2e2/h
=

∑
m

∫ μL

μR

dε Tm(1 − Tm). (35)

If the transmission Tm(ε) is slightly changed by δTm, i.e.,
Tm → Tm + δTm, the shot noise is corrected as S = S0 + δS,
where

δS

2e2/h
=

∑
m

∫ μL

μR

dε(1 − 2Tm)δTm + O(δT 2). (36)

In the previous section, it is discussed that the inelastic
scattering process leads to transmission corrections δT in,λ

1,m (ε)

[Eq. (21)] and δT in,λ
2,n (ε − �ωλ) [Eq. (22)] to bare transmissions

Tm(ε) and Tn(ε − �ωλ), respectively. For the elastic contribu-
tion that consists of one-electron and two-electron processes
as discussed before, δT el,λ

m [Eq. (25)] is added to a bare
transmission Tm(ε). Thus, when these transmission correc-
tions δT in,λ

1,m (ε), δT in,λ
2,n (ε − �ωλ), and δT el,λ

m are plugged into
Eq. (36), one can check that Eqs. (31) and (33) are recovered.

Further, Eqs. (31) and (33) are identified as inelastic and elastic
corrections to the shot noise, respectively, considering that they
are derived from the transmission corrections due to inelastic
and elastic scattering processes.

In fact, the above interpretation [Eq. (36)] is not limited
to electron-vibration interactions, but can be applicable to
other ones. For example, it is known that electron-electron
interactions give rise to the shot-noise correction of the
coherent conductor that contains the factor (1 − 2Tm), as
shown in Eq. (36) [61,62].

In contrast, Eqs. (32) and (34) account for current correla-
tions of electrons at two different energies ε and ε − �ωλ. To
be specific, Eq. (32) describes the current correlation between
an electron of |�Lm(ε)〉 that is not scattered by vibrons,
and another electron that initially occupies |�Lm(ε)〉, but is
transferred to |�Rn(ε − �ωλ)〉 by emitting one vibron [see
Fig. 2(d)]. On the contrary, Eq. (34) is the current correlation
of two electrons exchanging a vibronic energy �ωλ [see
Fig. 2(e)]. The electron of |�Lm(ε)〉 is first scattered off
to the right scattering state |�Rn(ε − �ωλ)〉 by emitting one
vibron. After that, another electron of |�Ln(ε − �ωλ)〉 absorbs
the vibron, thereby being excited to |�Rm(ε)〉. Considering
whether the total electronic energy is conserved or not, it is
obvious that Eqs. (31) and (34) are inelastic and elastic current
correlations, respectively. Note that Eq. (34) is written in the
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interferencelike form of Eq. (4), which is identified as elastic in
Sec. II.

We remark how Eqs. (31)–(34) are related to the mean-field
correction δSmf and the vertex correction δSvc [48]. Equations
(31) and (32) are derived from both δSmf and δSvc. While
Eq. (33) arises solely from the mean-field correction δSmf,
Eq. (34) is derived from the vertex correction δSvc. See
Appendix A for detailed derivations.

This scattering-state description enables us to quantitatively
calculate intrachannel and interchannel scattering contribu-
tions to the inelastic signal as well as elastic and inelastic
ones. It can be complementary to the existing analysis based
on scattering rates [28] that helps qualitatively figure out what
scattering process is dominant in the inelastic signal, which
is known as the propensity rule [28,36,37]. For example, it
is possible that some vibrational modes, which are minor
in the conductance steps, can give visible contributions to
the inelastic noise signals, as reported in Ref. [47]. Different
visibilities of those modes in the conductance and the noise
signal are not understood by calculating scattering rates,
which are in the form of Fermi’s golden rule [28]. Instead,
our description can give a quantitative explanation to those
visibilities by clarifying the interplay of intrachannel and
interchannel scattering contributions, or that of elastic and
inelastic scattering processes. See Appendix B for further
discussions.

V. DISCUSSIONS

We apply our scattering theory description of the current
and noise corrections to single-channel systems. We further
adopt the approximation known as the extended wide-band
limit (EWBL), in which Green’s functions and coupling
functions are replaced by those at Fermi energy εF : Gr

0(ε) ≈
Gr

0(εF ) and 
α(ε) ≈ 
α(εF ) [29,30]. In this approximation,
scattering states and their scattering matrices are replaced by
those at εF . The EWBL can be valid when the density of states
of the system is slowly varying over a few vibrational energies
around εF .

In Ref. [35], we show that the conductance change at the
threshold voltage eV = �ωλ is written as

�Gλ

2e2/h
= (2π )2(1 − 2T − 2R cos2 θλ)

∣∣Mλ
RL

∣∣2
, (37)

whereMλ
αβ = 〈�α|Mλ|�β〉 and θλ = arg[r ′t∗Mλ

RL]. By solv-
ing �Gλ = 0, it is shown that the crossover transmission T c

cr
for the conductance satisfies the following relation:

T = 1 − 2 cos2 θλ

2(1 − cos2 θλ)
. (38)

Since cos2 θλ generally depends on T (and other system
parameters), Eq. (38) does not provide the analytic expression
of the crossover transmission T c

cr . One can nonetheless find
out a possible range of the crossover transmission T c

cr from
Eq. (38). Considering 0 � cos2 θλ � 1, it can be shown that
T c

cr � 0.5, where the equality holds when cos2 θλ = 0. When
cos2 θλ � 0.5, T becomes negative, and it implies that there is
no crossover (see Fig. 3) [35].

FIG. 3. (Color online) Crossover transmissions for the conduc-
tance and the shot noise. Purple dotted line and blue solid line
represent possible crossover transmissions of conductance and noise
corrections, respectively.

Following Ref. [48], the inelastic noise signal is defined as

�S ′
λ ≡ dδ S

dV

∣∣∣∣
�ωλ+η

− dδ S

dV

∣∣∣∣
�ωλ−η

, (39)

where η stands for a small positive value. The inelastic noise
signal in the EWBL is

�S ′
λ

2e3/h
= (2π )2[(8 − 8 cos2 θλ)T 2 + (10 cos2 θλ − 8)T

+ (1 − 2 cos2 θλ)]
∣∣Mλ

RL

∣∣2
. (40)

�S ′
λ is also decomposed into inelastic and elastic scattering

contributions �S ′
λ = �S in′

λ + �Sel′
λ , where

�S in′
λ

2e3/h
= (2π )2(6T 2 − 6T + 1)

∣∣Mλ
RL

∣∣2
, (41)

�Sel′
λ

2e3/h
= (2π )2[2(2T − 1)R cos2 θλ

+ 2RT cos 2θλ]
∣∣Mλ

RL

∣∣2
. (42)

Here, Eqs. (31) and (32) [Eqs. (33) and (34)] give rise to �S in′
λ

[�Sel′
λ ]. While �S in′

λ is determined only by T , �Sel′
λ depends

on the phase information of the system via θλ, as discussed
in Sec. II. In contrast to the conductance variation where the
elastic contribution is always negative, the elastic term �Sel′

λ

can be either positive or negative. From Eq. (40), it is readily
shown that the crossover transmission T n

cr for the inelastic
noise signal satisfies

T = (4 − 5 cos2 θλ) ±
√

9 cos4 θλ − 16 cos2 θλ + 8

8(1 − cos2 θλ)
. (43)

We plot two solutions of Eq. (43) (blue solid lines) in Fig. 3. As
shown, the crossover for the noise signal can occur between 0
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and (2 − √
2)/4 or between 0.5 and (2 + √

2)/4. The crossover
transmission T n

cr can not exceed (2 + √
2)/4.

A. Mirror symmetry

Now, we focus on systems with the mirror-reflection
symmetry along the transport direction. Mirror-symmetric
systems are of particular interest because bridge junctions
in many experiments roughly respect this symmetry. As
discussed in Ref. [35], one can analytically calculate the
crossover transmissions since cos2 θλ is just a number for
mirror-symmetric systems. For mirror-symmetric systems,
vibrational modes are either even or odd mirror symmetric.
When R denotes the mirror-reflection operator, even and odd
mirror-symmetric modes satisfy the following relations [35]:

RMλ
evenR† = Mλ

even, (44)

RMλ
oddR† = −Mλ

odd. (45)

Moreover, left-incident and right-incident scattering states are
related to each other as |�L,R〉 = R|�R,L〉 [35,60]. Using these
relations, it is found that cos2 θλ = 0 (1) for even (odd) modes
[35]. It means that the elastic contribution to the conductance
variation, which is −2R cos2 θλ in Eq. (37), vanishes for even
vibrational modes, while it becomes −2R for odd modes.
From Eq. (38), it is shown that even vibrational modes exhibit
the crossover of the conductance step at T = 0.5, while odd
modes do not show any crossover in the conductance step
(see Fig. 3).

The inelastic noise signal also exhibits different crossover
behaviors, depending on whether vibrational modes are even
or odd. For even vibrational modes (cos2 θλ = 0), the inelastic
noise signal changes its sign at T = (2 ± √

2)/4. In contrast,
odd vibrational modes (cos2 θλ = 1) have only one transition
between positive and negative noise signals at T = 0.5. This
result is consistent with the fact that sign changes in the
inelastic noise signal take place at T = (2 ± √

2)/4 in the
single-level model [46] and the two-site model interacting with
the even-parity mode [47], both of which are symmetrically
coupled to electrodes. While the aforementioned models deal
only with even modes, the parity effect on the crossover
behavior of the noise signal is observed in tight-binding models
of N -site atomic chains [47]. For chains with an even number
of sites (N = 2p) where even vibrational modes dominantly
contribute to conductance and noise corrections, it is reported
that the noise signal crossover occurs at T = (2 ± √

2)/4.
By contrast, the crossover of the noise signal at T = 0.5 is
observed for chains of an odd number of sites (N = 2p + 1)
where odd modes are dominant in conductance and noise
corrections. Our theory shows that the crossover behaviors
reported in the previous studies [46,47] are not coincident,
but they are generally expected in any single-channel system
respecting the mirror symmetry.

Reference [47] also performed DFT calculations on gold
atomic chains varying in lengths and configurations. The
computed ratios of �S ′

λ to e�Gλ for the atomic chains are
compared with the ratio predicted by the two-site model [47].
The calculated ratios do not exactly match those of the two-site
analytic model. Rather, it seems that the ratio of the analytic

model might be an upper bound to the ratios calculated from
DFT results. From Eqs. (37) and (40), the ratio of �S ′

λ to eδGλ

is given by

�S ′
λ

e�Gλ

= 8(1 − ρ)T 2 + (10ρ − 8)T + (1 − 2ρ)

1 − 2T − 2(1 − T )ρ
, (46)

where ρ = cos2 θλ. Since the out-of-phase longitudinal mode
in the two-site model of Ref. [47] is even mirror symmetric, it
is readily noticed that ρ = cos2 θλ = 0. Thus, Eq. (46) gives
the same expression as the ratio obtained from the two-site
model in Ref. [47]:

�S ′
λ

e�Gλ

−→
even

8T 2 − 8T + 1

1 − 2T . (47)

Our theory also predicts the ratio �S ′
λ/e�Gλ for odd vibra-

tional modes, which is not investigated in Ref. [47]:

�S ′
λ

e�Gλ

−→
odd

1 − 2T . (48)

In Fig. 4, the purple dashed line and the blue solid one represent
Eqs. (47) and (48), respectively, in a high-transmission regime
(0.9 � T � 1.0) that the atomic chains of Ref. [47] belong to.
For general cases where the mirror symmetry is broken, cos2 θλ

can have a nonzero value less than unity, i.e., 0 < cos2 θλ < 1.
In this case, the ratio �S ′

λ/e�Gλ of Eq. (46) is located between
Eqs. (47) and (48) (see the green region in Fig. 4). Our theory
confirms that Eq. (47) is indeed an upper bound to the ratio
�S ′

λ/e�Gλ as speculated in Ref. [47]. Furthermore, Eq. (48)
is predicted to be a lower bound to the ratio �S ′

λ/e�Gλ in a
high-transmission regime.

Note that the ratios �S ′
λ/e�Gλ for some chains simulated

in Ref. [47] are out of the region determined by Eq. (46). It
might be because the gold atomic chains are not strictly single-
channel systems, but are multichannel with one dominant

FIG. 4. (Color online) The ratio �S ′
λ/eδGλ in a high-

transmission regime. Purple dashed line and blue solid line indicate
the ratios �S ′

λ/eδGλ of cos2 θλ = 0 and cos2 θλ = 1, respectively.
When cos2 θλ < 1, the ratio is located in the green region.

035413-8



INELASTIC CURRENT NOISE IN NANOSCALE SYSTEMS: . . . PHYSICAL REVIEW B 89, 035413 (2014)

channel and a few minor channels. If it is true, our single-
channel result [Eq. (46)] can not be applied. In fact, three
configurations [L18.20, L19.20, and L20.20] of Ref. [47] have
bare transmissions larger than unity, implying that they are
multichannel. Further, some other cases such as L20.50 and
L26.50 of Ref. [47] have the ratios slightly outside the region
determined by Eq. (46). For these cases, Eqs. (33) and (34),
which are generalized for multichannel systems, can be used
to verify possible effects of minor channels on such deviations.

We also briefly remark that there is a discrepancy between
the crossover transmission reported in the experiment [46]
and the theoretically predicted one. Reference [46] discussed
that the conductance fluctuation induced by intrinsic disorder
[63] could account for the discrepancy. As suggested by
Refs. [46,47], it would be a possible future direction to include
the effect of the conductance fluctuation in theoretical and
numerical investigations.

B. Examples

In the previous section, we discussed possible values of T c
cr

and T c
cr without specifying cos2 θλ that is generally a function

of T , and we considered the mirror-symmetric cases where
cos2 θλ is either 0 or 1. In this section, we consider general
situations where the mirror symmetry is broken. When cos2 θλ

is specified for a given system, crossover transmissions T c
cr

and T n
cr can be obtained by calculating points where Eqs. (38)

and (43) intersect with cos2 θλ, respectively. We take two
simple models, (1) the single-level model and (2) the N = 1
atomic chain, to illustrate how cos2 θ depends on T and other
parameters, and how crossover transmissions are determined.

1. Single-level model

First, we revisit the single-level model coupled to a single
local vibration [28,35,43–45]. It is shown that cos2 θ is given
by

cos2 θ = (
R − 
L)2

4ε2 + (
R − 
L)2 (49)

= T
1 − T

(1 − γ )2

4γ
, (50)

where γ ≡ 
R/
L is a dimensionless parameter measuring
a relative strength of couplings to left and right electrodes.
Note that the maximum transmission is given by Tmax = 4γ /

(1 + γ )2. In fact, the constraint cos2 θ � 1 of Eq. (50) leads to
T � Tmax.

Crossing points of Eqs. (38) and (43) with Eq. (50) are
crossover transmissions for the conductance and the noise
signal, respectively. Figure 5 illustrates how Eq. (50) intersects
with Eqs. (38) and (43) for γ = 0.1, 3 − 2

√
2, 0.5, and 0.8.

Note that Eqs. (50) and (38) cross once, thereby implying
that there is only one crossover for the conductance step. In
contrast, the number of the crossovers for the inelastic noise
signal can change, depending on γ . When γ � 3 − 2

√
2, there

are two crossing points of Eqs. (43) and (50). On the other
hand, when γ < 3 − 2

√
2, Eq. (50) intersects once only with

the lower branch of Eq. (43).
All of these observations are well consistent with phase

diagrams of the single-level model [28,35,43]. Here, we redraw

FIG. 5. (Color online) Schematic illustration of crossover trans-
missions for the nonsymmetric single-level model. Equation (50)
(yellow dashed lines) for γ = 0.1, 3 − 2

√
2, 0.5, and 0.8 is plotted

with Eq. (38) (purple dotted line) and Eq. (43) (blue solid lines).
For γ = 3 − 2

√
2, Eq. (50) meets the upper branch of Eq. (43) at

T = 0.5.

the phase diagram for the inelastic noise signal �S ′
λ in Fig. 6,

emphasizing signs of elastic and inelastic contributions �Sel′
λ

and �S in′
λ . For γ > 3 − 2

√
2, it is shown that there are two

phase boundaries (green solid lines) separating �S ′
λ > 0 and

�S ′
λ < 0 in Fig. 6(b). The upper phase boundary of �S ′

λ =
0 ends at (γ,T ) = (3 − 2

√
2,0.5) where it meets Tmax. For

γ < 3 − 2
√

2, there is only one phase boundary in a low-
transmission regime.

FIG. 6. (Color online) Phase diagram of inelastic noise signals
�S ′

λ for the single-level model. (a) Blue dashed line and purple
dotted line represent �S in′

λ = 0 [Eq. (41)] and �Sel′
λ = 0 [Eq. (42)],

respectively. The first and second signs in parentheses denote those
of �S in′

λ and �Sel′
λ , respectively. Phase boundaries �S ′

λ = 0 (green
solid lines) are located in the region where �S in′

λ and �Sel′
λ have

opposite signs. (b) The phase diagram drawn together with Tmax =
4γ /(1 + γ )2 (black dashed line). Blue and purple regions indicate
�S ′

λ > 0 and �S ′
λ < 0, respectively. Tmax and the upper boundary of

�S ′
λ = 0 meet at (γ,T ) = (3 − 2

√
2,0.5).
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ε0

|1
ε0

|2
ε0

|3

t t

FIG. 7. (Color online) Schematic illustration of the N=1 atomic
chain model. Three orbitals |1〉, |2〉, and |3〉 constitute the device
region. t is a hopping parameter between nearest neighbors. The
central atom is allowed to vibrate.

2. N = 1 atomic chain

As the second example, we consider the tight-binding
model for the shortest atomic chain, i.e., the N = 1 chain,
which can be a simple model with odd mirror-symmetric
vibrations. The central region consists of three orbitals: |1〉
and |3〉 are located at outermost atoms of electrodes and |2〉
is at a central atom vibrating between electrodes (see Fig. 7).
The corresponding Hamiltonian is

HC =
3∑

i=1

ε0d
†
i di +

∑
i=1,2

[td†
i di+1 + H.c.], (51)

where di and d
†
i are electronic annihilation and creation

operators of the ith site, respectively. The hopping parameter
t is taken to be real for simplicity. Considering a longitudinal
motion of the central atom, its vibrational mode is odd mirror
symmetric. The el-vib coupling Hamiltonian is written as

Hel-vib = M
∑
i=1,2

[(−1)i+1d
†
i di+1 + H.c.](a + a†). (52)

When left and right coupling functions are simply given by

L|1〉〈1| and 
R|3〉〈3|, respectively, one can show that

cos2 θλ

=
(
�ε̃3 − 2�ε̃t̃2 + 1

4�ε̃γ
)2

(
�ε̃3 − 2�ε̃t̃2 + 1

4�ε̃γ
)2 + 1

4 (�ε̃2 − t̃2)2(1 − γ )2

(53)

and

T = γ t̃4∣∣(�ε̃ + i
2

)2(
�ε̃ + i

2γ
)
�ε̃ − t̃2

(
2�ε̃ + i

2 [1 + γ ]
)∣∣2 ,

(54)

where �ε̃ = (εF − ε0)/
L, t̃ = t/
L, and γ = 
R/
L.
cos2 θλ [Eq. (53)] implicitly depends on T [Eq. (54)] via
system parameters such as �ε̃, t̃ , and γ .

For the symmetric coupling γ = 1, Eq. (53) becomes
unity (cos2 θλ=1) as predicted in the previous section. Note
that cos2 θλ is indeterminate at �ε̃ = 0,±√

2t̃2 − 0.25. Since
r ′tMλ

RL = 0 for �ε̃ = 0,±√
2t̃2 − 0.25, θλ is not defined.

In this perfect transmission case, one can directly calculate
�Gλ and �S ′

λ by using original expressions (26), (27), and
(31)–(34).

Next, we consider nonsymmetric cases, i.e., γ �= 1. For
simplicity, we assume that nonsymmetric electrode couplings
do not alter the hopping parameter t and the vibrational mode
in the conductor region. In Fig. 8, trajectories of Eqs. (53) and
(54) (yellow dashed lines) are plotted by tuning the parameter
�ε̃ for γ = 0.2, 0.5, and 0.9. Here, t̃ is 0.5. Figure 8 illustrates
how crossover transmissions for noise signals qualitatively
change as γ varies. For γ = 0.2, cos2 θλ intersects four times
only with the lower branch of Eq. (43). When we increase γ to
0.5, cos2 θλ meets both upper and lower branches of Eq. (43).
As γ approaches 1, crossing points with the lower branch
disappear, and crossover transmissions of the upper branch
become closer to 0.5, which is the crossover transmission for
the odd mirror-symmetric case.

We also notice that �ε̃ = 0, which implies the particle-hole
symmetry, is of particular interest for nonsymmetric junctions
(γ �= 1). In this case, cos2 θλ always vanishes, irrespective
of γ (<1) and t̃ , and thus it is expected that T c

cr = 0.5 and
T n

cr = (2 ± √
2)/4 for any nonsymmetric coupling.

VI. CONCLUSIONS

In this paper, we have presented the scattering-state de-
scription of the inelastic shot noise in a regime of a weak
el-vib coupling and equilibrated vibrons. As discussed in
the inelastic current, the inelastic shot noise is determined

(a) (b) (c)

FIG. 8. (Color online) Crossover transmissions of the conductance and the shot noise for the N=1 chain model: (a) γ = 0.2, (b) γ = 0.5,
and (c) γ = 0.9. Purple dotted line, blue solid line, and yellow dashed line denote trajectories of Eqs. (38), (43), and (53), respectively.
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by the interplay of elastic and inelastic scattering processes.
The elastic and inelastic contributions to the current noise are
further decomposed into current correlations of electrons at
the same energy and those of electrons at two energies that
differ by the vibrational energy �ωλ.

Applied to single-channel systems, our description enables
to find out two ranges of transmission at which the crossover
in the inelastic noise signal can take place. In particular, for
mirror-symmetric systems, we have shown that even-parity
modes lead to the crossover at T = (2 ± √

2)/4, while the
crossover occurs at T = 0.5 for odd-parity ones. Consider-
ing the ratio �S ′

λ/eδGλ, we have confirmed that the ratio
�S ′

λ/eδGλ of the even-parity mode is indeed an upper bound

to ratios of general cases in a high-transmission regime as
speculated in Ref. [47], and further we have predicted that the
ratio �S ′

λ/eδGλ of the odd-parity mode is a lower bound.
Our scattering-state description is formulated for general

situations involving many electronic states, many vibrational
modes, and multiple conducting channels, so that it can be
used to analyze first-principles calculation results, especially
when specification of interchannel and intrachannel scattering
processes is crucial to understand the results.
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APPENDIX A: DERIVATION OF EQS. (31)–(34)

Using Eqs. (14)–(17), one can show that

δSmf

2e2/h
= (2π )2

∑
λ,m,n

∫ μL

μR+�ωλ

dε[(1 − 2Tm)Rm − (1 − 2T −
n )T −

n ]|〈�−
Rn|Mλ|�Lm〉|2 (A1a)

− (2π )2
∑
λ,m,n

∫ μL

μR+�ωλ

dε(1 − 2Tm)Re[r ′
mt∗m〈�Rm|Mλ|�−

Rn〉〈�−
Rn|Mλ|�Lm〉] (A1b)

+ (2π )2
∑
λ,m,n

∫ μL−�ωλ

μR

dε(1 − 2Tm)Re[r ′
mt∗m〈�Rm|Mλ|�+

Ln〉〈�+
Ln|Mλ|�Lm〉] (A1c)

and

δSvc

2e2/h
= (2π )2

∑
λ,m,n

∫ μL

μR+�ωλ

dε 2(Tm − 1)T −
n |〈�−

Rn|Mλ|�Lm〉|2 (A2a)

+ 2(2π )2
∑
λ,m,n

∫ μL

μR+�ωλ

dε Re{r ′
mt∗mr ′−

n t−∗
n 〈�Rm|Mλ|�−

Ln〉〈�−
Rn|Mλ|�Lm〉}. (A2b)

The prefactors of transition amplitudes |〈�−
Rn|Mλ|�Lm〉|2 in δSmf and δSmf can be written as follows:

(1 − 2Tm)Rm − (1 − 2T −
n )T −

n = (1 − 2T −
n )R−

n − (1 − 2Tm)Tm + 2(T −
n − Tm) (A3)

and

2(Tm − 1)T −
n = −2R−

n Tm − 2(T −
n − Tm). (A4)

Thus, by canceling out terms proportional to 2(T −
n − Tm) in δSmf and δSmf, one can finally obtain Eqs. (31)–(34).

APPENDIX B: MULTICHANNEL SYSTEMS

For multichannel systems, corrections to the conductance and the noise are decomposed into intra channel and inter channel
scattering contributions

δG = δGintra + δGinter, (B1)

�S ′ = �S ′
intra + �S ′

inter. (B2)
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The intrachannel scattering contributions are simply a collection of each eigenchannel contribution, which is the same form
of the single-channel result:

δGintra

2e2/h
= (2π )2

∑
λ,m

(1 − 2Tm − 2Rm cos2 θλm)
∣∣Mλm

RL

∣∣2
, (B3)

�S ′
intra

2e3/h
= (2π )2

∑
λ,m

[(8 − 8 cos2 θλm)T 2 + (10 cos2 θλm − 8)T + (1 − 2 cos2 θλm)]
∣∣Mλm

RL

∣∣2
, (B4)

where Mλm
RL = 〈�Rm|Mλ|�Lm〉 and θλm = arg[r ′

mt∗mM
λm
RL]. Unfortunately, the interchannel scattering terms are not simplified

as the intrachannel ones. When the mirror symmetry along the transport direction is respected, the interchannel scattering
contributions can be written in the form of Fermi’s golden rule:

δGinter

2e2/h
= (2π )2

∑
λ,m�=n

2
√
RmTm√

RnTm ± √
RmTne−i(�θm+�θn)

cos
(
θr
m − θr

n + 2ϕλ
mn

)|〈Rm|Mλ|Ln〉|2, (B5)

�S ′
inter

2e2/h
= (2π )2

∑
λ,m�=n

2(1 − 2Tm)

√
RmTm√

RnTm ± √
RmTne−i(�θm+�θn)

cos
(
θr
m − θr

n + 2ϕλ
mn

)|〈Rm|Mλ|Ln〉|2

+ (2π )2
∑

λ,m�=n

(1 − 2Tm)
−√

RnTm ± √
RmTne

−i(�θm+�θn)

√
RnTm ± √

RmTne−i(�θm+�θn)
|〈Rm|Mλ|Ln〉|2

− 2(2π )2
∑

λ,m�=n

RnTm|〈Rm|Mλ|Ln〉|2 ± 2(2π )2
∑

λ,m�=n

√
RmTmRnTne

i(�θm+�θn)|〈Rm|Mλ|Ln〉|2, (B6)

where the upper (lower) sign is for even (odd) mirror-symmetric modes. Here, θr
m = arg[rm], θ t

m = arg[tm], �θm = θr
m − θ t

m,
and ϕλ

mn = arg[〈Rm|M|Ln〉]. Note that rmt∗m + r∗
mtm = 0 for the unitarity of the scattering matrix. It implies that rmt∗m is purely

imaginary, and exp[i�θm] = ±1.
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