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Electronic properties of δ-doped Si:P and Ge:P layers in the high-density limit
using a Thomas-Fermi method
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We present a scalable method for calculating the electronic properties of a δ-doped phosphorus layer in silicon
and germanium. Our calculations are based on an sp3d5s∗ tight-binding model and the Thomas-Fermi-Dirac
approximation. The energy shift in the lowest conduction band states of the Ge band structure is characterized
and a comparison is made to a δ-doped P layer in Si. The results for the δ-doped Si:P layer themselves compare
well to the predictions of more “resource intensive” computational models. The Thomas-Fermi method presented
herein scales easily to large system sizes. Efficient scaling is important for the calculation of quantum transport
properties in δ-doped semiconductors that are currently of experimental interest.
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I. INTRODUCTION

New in situ phosphorus δ-doping techniques in single
crystalline silicon and germanium are achieving unprece-
dented carrier concentrations inside highly confined layers
(δ layers) of the host material [1,2]. δ-doped P layers in Si
(Si:P) and Ge (Ge:P) are ideally one monolayer (ML) thick
and, at very low temperatures, exhibit electronic properties
that are a combination of those of the dopant and the host
material. Through advances in scanning tunneling microscope
lithography [3] and molecular beam epitaxy [4], a new
generation of δ-doped structures is now being realized. These
structures include; δ-doped Si:P layers [5], quantum dots [6,7],
quantum wires [8–10], and δ-doped Ge:P layers [11,12].

Using in situ doping techniques one in four (1/4) atoms
inside a Si(001) ML can be replaced with a substitutional P
donor [1]. The arrangement of the P atoms inside the dopant
plane is inherently disordered [1] and, therefore, at these high
doping densities, we expect the donor electrons to behave
similarly to an inhomogeneous electron gas. However, the
majority of recent computational models of Si:P δ layers
describe the donor electrons via explicit ordered/disordered
arrangements of the P atoms rather than an average donor
electron density. Experimental verification of either type of
model is currently unavailable as recent measurements of the
Si:P δ layer band structure are inconclusive when compared
to the theory [13]. Presently, therefore, it is only through
computational modeling that we can quantitatively investigate
the electronic properties of these Si:P and Ge:P δ layers.

Ge:P δ layers have recently been made with two-
dimensional (2D) carrier concentrations of 1/2–1/4
ML [11,12]. These extremely high doping densities are char-
acteristic of complete substitutional P-doping of the Ge(001)
surface [2]. Currently, however, there is no empirical model for
the electronic properties of these novel Ge:P nanostructures.
Here, we fill in the gap in the literature by applying a
Thomas-Fermi (TF) method to a Ge:P δ layer and compare the
results to those of a Si:P δ layer. There is an a priori argument
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for applying our TF method to a Ge:P δ layer as unlike density
functional theory (DFT) [14], tight-binding (TB) methods are
able to reproduce the band structure of bulk Ge as easily as
that of bulk Si (without the need for ad hoc adjustment of the
on-site atomic energies as in, for example, LDA+U [15]).

Recent empirical and ab initio models of Si:P δ layers
are designed to maximize the completeness of the system’s
mathematical description rather than minimize the use of
computational resources. Here, we show the results of these
methods to be reproducible by a less “resource intensive” TF
model of the donor potential combined with a TB description
of the host material [16]. This TF method scales easily to
the large system sizes that are needed for the calculation of
quantum transport properties in δ-doped semiconductors.

Although a semiclassical model of electronic transport
in Si:P δ layers was reported recently [17], computational
models of quantum transport in Si:P and Ge:P δ layers are
strangely absent from the literature. Such theoretical models
would provide a means of comparison between theory and
experiment, something which is sorely lacking in the present
generation of Si:P δ layer models. The nonequilibrium Green’s
functions formalism could be used to model transport in
these systems [18]. However, this formalism requires the
nanostructures to be divided into source, drain and channel
regions, and results in large system sizes. It is therefore
necessary to combine this formalism with a theoretical
model of δ-doped semiconductors that is computationally
inexpensive, such as those based on TF or effective mass
theory (EMT). Unfortunately, although inexpensive, the EMT
can only be applied to the lowest conduction band (CB) states
(which exhibit parabolic dispersion) and is therefore not able
to describe the higher CB states or their effect on transport in
these systems.

In this paper, we present a scalable method for calculating
the electronic properties of Si:P and Ge:P δ layers. Our
TF method is based on the Thomas-Fermi-Dirac (TFD)
approximation and an sp3d5s∗ TB model. We first calculate
the electronic properties of a Si:P δ layer to: (a) benchmark
the TF method for these δ-doped systems, and (b) provide a
means of comparison for the Ge:P δ layer. We then calculate
the electronic properties of a Ge:P δ layer, reporting on the
band structure, Fermi level, valley splitting, binding energy,
electronic density of states (eDOS) and the variation in these
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properties with doping density. The TF method is outlined in
Sec. II. The results of the method’s application to a Si:P δ layer
are discussed in Sec. III and to a Ge:P δ layer in Sec. IV. We
conclude in Sec. V.

II. METHODOLOGY

A. Hamiltonian of the bulk system

The electronic properties of the bulk Si and Ge are described
in the TB approximation. The Hamiltonian is defined using
an sp3d5s∗ basis set with 18 empirical parameters [19] that
correctly predict the bulk effective masses of Si and Ge [16].
The Hamiltonian is of the form

Ĥbulk =
∑
i,u

ε
(u)
i c

†
i,uci,u +

∑
i,j �=i,u,v

t
(uv)
ij c

†
i,ucj,v + Ĥb.c., (1)

where c
†
i,u and ci,u are creation and annihilation operators,

respectively. The first term in Eq. (1) describes the on-site
energies (ε(u)

i ) of an electron in orbital u on atom i and the
second term the coupling (t (uv)

ij ) between electron orbitals u

and v on first nearest-neighbor atoms i and j . The third term
(Ĥb.c.) describes the boundary conditions, which for periodic
boundaries are of the form

Ĥb.c. =
∑

k,l �=k,u,v

t
(uv)
kl c

†
k,ucl,v, (2)

where k and l are first nearest-neighbor atoms via the
periodic boundaries of the supercell. The Hamiltonian terms
ε

(u)
i and t

(uv)
ij are defined in terms of TB parameters [20].

These parameters are determined through an optimization
procedure that fits to experimentally measured band energies
and effective masses at high-symmetry points in the Brillouin
zone (BZ) [21]. We do not carry out such a procedure here
but instead use previously published TB parameters for Si and
Ge [16].

The sp3d5s∗ basis set comprizes 20 hydrogenic orbitals
for the description of the bulk Si and Ge band structure. In
the Si:P δ layer, the P donor electrons occupy CB states that
are nondegenerate [13] and, therefore, we are able to ignore
electron spin and halve the size of the TB basis set from
20 to 10 orbitals. This results in a Hamiltonian matrix of order
4800 × 4800. To calculate the electronic properties of the δ

layers, the Hamiltonian matrix is diagonalized for all �k points
in the first irreducible Brillouin zone (IBZ) [22]. The speed
of this diagonalization is directly proportional to the order of
the Hamiltonian matrix and the number of �k points sampled
in the first 2D BZ or �k-point grid. We use a �k-point grid of
120 × 120 × 1 to converge the Fermi level to within 1 meV.

To simulate the δ layer, we use a primitive tetragonal (PT)
supercell, which has dimensions a × a × 60a, where a is
the lattice constant of the host material. This is equivalent
to 120 MLs of bulk “cladding” in the positive and negative
z directions perpendicular to the dopant plane. Periodic
boundary conditions are applied in the x and y directions,
and also in the z direction after the bulk cladding. Using
120 MLs of bulk cladding in the z direction, the energies
of the CB states of interest are converged to within 1 meV.
We do not geometry optimize the bulk Si or Ge surrounding
the δ layer as previous DFT investigations have shown that the

TABLE I. Parameters used in the calculations. m0 is the free
electron mass.

εr ml/m0 mt/m0 a (Å)

Si 11.4a 0.9163b 0.1905b 5.430c

Ge 15.36a 1.588d 0.08152d 5.6563c

aReference [25].
bReference [26].
cReference [16].
dReference [27].

effect of the P atoms on the positions of the bulk Si atoms is
negligible [23,24]. However, we expect the incorporation of P
atoms into bulk Ge to have a larger effect on the positions of
the Ge atoms because the Ge nucleus is much larger than the
Si and P nuclei. Also, although we do not geometry optimize
the bulk Ge here, we acknowledge that this approximation
requires further investigation.

B. Hamiltonian of the doped system

The donor electrons are described by a 1D potential that
is added to the on-site energies or diagonal terms of the
Hamiltonian matrix [28,29]. The TFD approximation and a
parametrization of correlation effects are used to calculate the
potential energy of the donor electrons. The dopant plane is
approximated by an infinitely thin sheet with a constant areal
doping density. The validity of the local density approximation
(LDA) is assumed throughout. Within the LDA, the TFD
approximation is exact in the high-density limit. The TF
theory of δ-doped semiconductors has been shown to produce
meaningful results for doping densities in the range of 1012–
1013cm−2 (one to two orders of magnitude lower than the
doping densities considered here) [30]. A derivation of the TF
theory for δ-doped semiconductors is given in Appendix. The
parameters in Table I are used throughout.

For a 2D δ-doped semiconductor, in the TF approximation,
the electrostatic potential energy of the donor electrons can be
written as

VTF(z) = − α2

(α|z| + z0)4
(3)

with

α = (2m̄)3/2e2ν

60π2εrε0�
3

(4)

and

z0 =
(

8α3εrε0

e2nD

)1/5

, (5)

where z is distance perpendicular to the δ layer, ν is the number
of equivalent conduction valleys, εr is the static dielectric
constant, m̄ is the geometric average of the longitudinal (ml)
and transverse (mt ) effective masses [31–34] (m̄ = m

2/3
t m

1/3
l ),

and nD is the areal doping density.
To this TF potential is added an exchange poten-

tial (VX) derived from the Dirac exchange energy func-
tional [35] and a correlation potential (VC). The exchange
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potential is written as

VX(z) = − m̄e4

(4πεrε0�)2

(
9

4π2

)1/3 1

rs(z)
(6)

with

rs(z) =
[

4πā0
3n(z)

3

]−1/3

(7)

and

ā0 = 4πεrε0�
2

m̄e2
, (8)

where rs is the Wigner-Seitz radius, ā0 is the effective Bohr
radius [ā0 = 1.96 nm for Si and ā0 = 3.80 nm for Ge, calcu-
lated using Eq. (8) and the parameters of Table I], and n(z) is
electron density (defined in Appendix). The correlation energy
is approximated using the correlation functional parametrized
by Perdew and Wang [36] for systems having zero spin
polarization. In the high-density limit, this correlation potential
is written as

VC(z) = − 2A

{
ln

(
1 + 1

2Af

)(
1 + 2α1rs(z)

3

)

− f ′

f (1 + 2Af )

[
rs(z)(1 + α1rs(z))

3

]}
(9)

with

f = β1r
1/2
s + β2rs + β3r

3/2
s + β4r

2
s (10)

and

f ′ = β1

2
r−1/2
s + β2 + 3β3

2
r1/2
s + 2β4rs, (11)

where A = 0.031091, α1 = 0.21370, β1 = 7.5957, β2 =
3.5876, β3 = 1.6382, and β4 = 0.49294.

Finally, the donor potential is written,

V (z) = VTF(z) + VX(z) + VC(z) (12)

and in matrix form as

V̂ =
∑

i

Vi c
†
i ci , (13)

where Vi is the discrete form of V (z) for the z coordinate. The
Hamiltonian describing the doped system is therefore written
as

Ĥ = Ĥbulk + V̂ . (14)

Where the donor potential is treated as an external potential
and added to the diagonal terms of the Hamiltonian matrix
only [28,29], an approximation we believe to be validated by
the results of the TF method as shown in Sec. III.

C. Fermi level of the doped system

Recent measurements of the band structure of a Si:P δ layer
show at least one occupied state in the CB [13]. Because high
density δ-doped Si:P layers exhibit metallic characteristics at
low temperatures (T ≈ 4 K), the Fermi level must be solved
for iteratively. The number of occupied CB states is increased
from zero until the charge neutrality condition is satisfied, i.e.,
inside a finite area, the number of donor electrons is equal to the

number of donor atoms (each donor atom donating one donor
electron). The energy at which charge neutrality is achieved is
defined as the Fermi level.

The total number of donor electrons can be written,

NT (EF) = s

∫ EF

Emin

Z(E) f (E) dE, (15)

where EF is the Fermi level, s is the spin degeneracy, Emin is
the energy of the lowest occupied CB state, Z(E) is the eDOS
evaluated over the first 2D BZ, and f (E) is the Fermi function.
Substituting in for f (E) and setting s equal to one, leads to

NT (EF) =
∫ EF

Emin

Z(E)

[
1 + exp

(
E − EF

kBT

)]−1

dE, (16)

where kB is Boltzmann’s constant and T is temperature. The
area of the first 2D BZ is converted to a real space area and the
number of donors is calculated from the areal doping density.
EF is then solved for iteratively by evaluating Eq. (16) at values
for EF greater than Emin until charge neutrality is achieved.

III. THOMAS-FERMI MODEL OF A δ-DOPED Si:P
MONOLAYER IN THE HIGH-DENSITY LIMIT

One of the earliest applications of the TF theory [37–39]
to δ-doped semiconductors was its application to an n-type δ

layer [30]. Later, the same TF method was applied to p-type δ

layers in GaAs and Si [40] and Si and B δ layers in GaAs [29].
The transport properties of n-type δ layers in Si have also been
studied using this TF method [32]. Si:P δ layers were first
modeled using a DFT method with a planar Wannier orbital
(PWO) basis [41], and later, an antibonding orbital basis [42]
with an sp3s∗ TB model [43]. However, the sp3s∗ basis set is
too small to reproduce the experimentally predicted curvature
of the X conduction valley minima [19]. A self-consistent
three-dimensional (3D) quantum well method [44] combined
with an sp3d5s∗ TB model[16] was therefore recently used
in both studies of disorder and temperature dependence in
Si:P δ layers [45,46]. These investigations used the NEMO 3-D

package [47], which has more recently been applied to δ-doped
Si:P quantum wires [9,48]. Complementary DFT models of
Si:P δ layers and quantum wires have also been proposed using
the SIESTA and VASP packages, with a basis of localized atomic
orbitals (LAO) [23,24,49–51] and a plane-wave basis [23].
However, the applicability of these models to realistic device
architectures is restricted by a N3 scaling in calculation time
(characteristic of DFT). Historically, the EMT has also been
used to study n-type δ-doped layers [33] and was recently put
on a firm theoretical footing for Si:P δ layers [31].

Figure 1 shows the band structure of bulk Si plotted in the
face-centred cubic (fcc) BZ on a path of high symmetry [52]
from L to 	 to Xfcc. Si is an indirect band-gap semiconductor
and has a sixfold degenerate CB minimum at 0.81Xfcc. Figure 2
shows the band structure (CB only) of a Si:P δ layer plotted
in the PT BZ from 0.3M to 	 to 0.6Xpt. Transforming from
an fcc unit cell to a PT supercell projects the ±kz conduction
valleys to 	. These bands are labeled as 1	 and 2	 in Fig. 2.
Doping the bulk system increases the electron confinement
(perpendicular to the dopant plane) and perturbs the ±kz

valleys; lifting their degeneracy and shifting them into the
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FIG. 1. The band structure of bulk Si calculated using an sp3d5s∗

TB method [16]. The energy bands are plotted on a high-symmetry
path in the fcc BZ.

bulk band-gap region. In Fig. 2, the minima of the ±kz valleys
are split by the 1	/2	 valley splitting [24] (which is here equal
to E2	 − E1	). The ±kx and ±ky valleys are also affected by
unit cell representation. The 0.81Xfcc valley minimum appears
at 0.37Xpt in Fig. 2. This valley is labeled as 1
 and is also
shifted into the bulk band-gap region by the 1D confinement.

The 1D confinement of electrons by the donor potential
shifts the lowest bulk Si CB states into the bulk band-gap
region. Figure 2 shows three main conduction valleys to
be partially occupied, or partly below the Fermi level (EF);
these are the 1	, 2	, and 1
 bands. The energy minima of
these bands and those predicted by other models are shown
in Table II. The energy minimum of the 1	 band or CB
minimum (E1	) is 285 meV below the Fermi level (EF),
which suggests that the Si:P δ layer is metallic. E1	 is 427
meV below the CB minimum of bulk Si and agrees with the
results of all models [excluding DFT1D (LAO) and DFT3D
(LAO)] to within 28 meV. The minimum of the 2	 band (E2	)
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FIG. 2. The band structure of the Si:P δ layer (with nD = 1/4 ML)
(solid lines) and the Fermi level (at T = 4 K) (dashed line). The
energy bands are plotted in the PT BZ and only the 12 lowest
conduction bands are shown. The energy axis has been offset so
that the energy of the bulk Si CB minimum is at energy zero. The
band structure of bulk Si is also shown (dotted lines).

TABLE II. Band energy minima and Fermi levels (meV) for a
range of Si:P δ layer models (with nD = 1/4 ML and T ≈ 4 K).
This work is highlighted in bold. The TB3D model is published in
Ref. [45], however, the results in this table are from the more recently
published Ref. [48].

Model (basis set) E1	 E2	 E1
 EF

DFT1D (LAO) a −296 −288 −165 −72
DFT3D (LAO) b −369 −269 −68 −23
TB3D (sp3d5s∗) c −401 −375 −249 −115
DFT1D (PWO) d −419 −394 −250 −99
TF (sp3d5s∗) −427 −421 −287 −142
EMT1D e −445 −426 −257 N/A

aReference [49] (read directly from plots with an uncertainty of
±3 meV).
bReference [23].
cReference [45].
dReference [41] (read directly from plots with an uncertainty of
±3 meV).
eReference [31] (read directly from plots with an uncertainty of
±3 meV).

compares equally well to DFT1D (PWO) and is within 5 meV
of EMT1D. Interestingly, the 1
 band minimum (E1
) of
the TF method is 30–38 meV lower than those predicted by
the three closest models in Table II. In general, for the band
energy minima, there is good agreement between the models
and the TF method. However, values for EF differ significantly
between the models. This disparity can be explained by the
variation in the method and �k-point grid used to solve for
EF in each model. To calculate EF, we use a similar method
to TB3D and although the TF method predicts a EF which
is 27 meV lower than that of TB3D, this difference can be
explained by the 26 meV discrepancy in the values for E1	 .
The calculated binding energies (EF − E1	) of TB3D and the
TF method agree within 1 meV (see Table III).

TABLE III. Valley splittings and binding energies (meV) for a
range of Si:P δ layer models (with nD = 1/4 ML and T ≈ 4K) and
experiment (with T ≈ 100 K). This work is highlighted in bold. The
TB3D model is published in Ref. [45], however, the results in this
table are from the more recently published Ref. [48].

Model (basis set) E2	 − E1	 EF − E1	

DFT1D (LAO)a 8 224
Experiment b N/A ∼270
TF (sp3d5s∗) 6 285
TB3D (sp3d5s∗) c 26 286
DFT1D (PWO) d 25 320
DFT3D (LAO) e 100 346
EMT1D f 19 470†

aReference [49] (read directly from plots with an uncertainty of
±6 meV).
bReference [13].
cReference [45].
dReference [41] (read directly from plots with an uncertainty of
±6 meV).
eReference [23].
fReference [31].
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A number of factors may contribute to the differences in
the band energy minima shown in Table II. These include the
basis set size [23], central-cell corrections [31,53], and the
methods used to approximate the exchange and correlation
(XC) energies. In the DFT models, the size of the localized
atomic orbital basis set has been shown to be an important
factor in the calculation of the band energy minima. For
example, it was shown that the explicit atom model of Ref. [49]
overestimates the 1	/2	 valley splitting by approximately
50% when compared to a model that used a more complete
basis [23]. Similarly, it is likely that central-cell corrections
(and the resultant valley-orbit interaction) also contribute to the
differences between the models. In TB3D and the TF method
(and EMT1D), the donor atoms are described as point charges
and an infinitely thin sheet of charge, respectively. This is a bad
approximation close to the donor atoms or dopant plane, where
the donor potential is quickly varying. However, in the DFT
models, pseudopotentials are used, which model the valence
and core electrons and therefore incorporate “central-cell”
effects; although central-cell corrections will be weak for Si:P,
which is a shallow donor [31].

Another contributing factor is the arrangement of donor
atoms and whether they are modeled implicitly or explicitly.
All explicit models in Table II use a perfectly ordered
arrangement of donor atoms and therefore, as in the case
of the implicit models, short- and long-range symmetries are
preserved. However, in the implicit models, the variation of the
donor potential inside the dopant plane disappears, as do any
effects of this variation. Finally, excluding EMT1D and the TF
method, each of the models in Table II use different methods
to approximate the XC energy. The band energy minimum,
E1	 , calculated in DFT1D (PWO), shifts by 10±3 meV due to
XC (and short-range) effects. This is compared to a −34 meV
shift in the E1	 of TB3D (see Refs. [45,46]) when XC energy
corrections are made to the donor potential. However, these
energy shifts are relatively small compared to the −130 meV
shift in E1	 that corresponds to adding XC corrections to the
TF potential.

Figure 3 shows the TF potential with and without XC
corrections, and the Fermi level and band energy minima inside
the donor potential with XC corrections. XC effects increase
the magnitude of the TF potential. The effect of exchange
is far greater than that of correlation at a doping density of
1/4 ML. The exchange potential shifts the energy of E1	

by −125 meV, where as the correlation potential shifts the
energies by only −5 meV. Therefore, at a doping density of
1/4 ML, a TF potential with a Dirac exchange correction is
adequate to describe the Si:P δ layer.

The 1D confinement of the electrons by the donor potential
also lifts the degeneracy of the ±kz valley minima and results
in a valley splitting between the 1	 and 2	 bands, named
the 1	/2	 valley splitting [49]. Understanding this energy
splitting is important in the design of “few-electron” quantum
electronics in silicon [54] and modeling transport properties
in these nanostructures at low-voltage biases [55]. Table III
shows the 1	/2	 valley splitting (E2 − E1) calculated by a
range of Si:P δ layer models. The valley splitting predicted by
the TF method is 6 meV and agrees with that of DFT1D (LAO)
to within 2±6 meV. There is a difference of 20 meV between
the valley splitting calculated by TB3D and the TF method.
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FIG. 3. TF potential for a Si:P δ layer (with nD = 1/4 ML) with
(solid line) and without (dashed line) XC corrections. The Fermi level
and band energy minima are shown inside the potential well for the
donor potential with XC corrections.

There are also differences of 14±6 and 21±6 meV between
the valley splittings calculated by EMT1D and DFT1D (PWO),
respectively, and the TF method. Again, these discrepancies
can be explained by a number of factors; such as basis set size,
central-cell corrections, and especially, valley-orbit coupling.
Interestingly, in Si:P δ layer systems with multiple layers, the
valley splitting has been shown to be inversely proportional
to the spatial extent of donors perpendicular to the doping
plane [50]. Another factor that affects the size of the 1	/2	

valley splitting is the doping density, in proportion to which
the energy splitting can vary nonlinearly [31]. Understanding
this relationship is therefore important for engineering valley
splitting in Si:P δ layers.

Figure 4 shows the changes in Fermi level, band energy
minima, valley splitting and binding energy (EF − E1) as the
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FIG. 4. (Color online) (Left) Band energy minima and the Fermi
level plotted against doping density for a Si:P δ layer. The bulk Si
CB minimum is at energy zero. (Right) Binding energy (red axis) and
valley splitting (blue axis) plotted against doping density for a Si:P
δ layer. The filled squares represent data points used to calculate the
nonlinear fits (dotted lines).
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doping density is varied. The range of doping densities has
been limited at low doping densities by the applicability of
the TF theory, and at high doping densities by experiment. In
Fig. 4, left, the variation in each of the energy-band minima
was fitted with an equation of the form

En = a(nD)b, (17)
where En is the minimum energy of band n, and a and b are
fitting parameters. A goodness of fit (R2) of greater than 0.999
was obtained for the fit of each band energy. For the 1	, 2	

and 1
 bands, the relationship between En and nD is nonlinear
with b restricted to the closed interval [0.73, 0.78]. This agrees
closely to the scaling theory of Ref. [31], which predicts En ∝
(nD)2/3. In contrast, TB3D predicts a linear proportionality
between En and nD; however, this dependence is based on a
relatively small total variation in the doping density—as in this
explicit model the doping density is not a parameter which can
be easily varied—and is therefore expected to be less accurate.
We fitted the Fermi level using Eq. (17) and found that it
also varies nonlinearly with doping density (b = 0.66, R2 =
0.995). This is in contrast to Ref. [31] where no such trend is
evident. From a comparison of the two EF data sets in Fig. 4,
left, it is obvious that the variation in the Fermi level agrees
more closely with the results of Ref. [41] [DFT1D (PWO)].

A consequence of the nonlinear dependence of En on
nD for the band energy minima and Fermi level is that
properties which are calculated directly from these values
(such as the binding energy and valley splitting) exhibit a
similar nonlinearity to changes in doping density. In Fig. 4,
right, the change in the binding energy and valley splitting
has been fitted using Eq. (17), and b has been found to be
0.82 and 1.64, respectively (R2 � 0.999). However, the valley
splitting data has only been fitted for nD � 1/12 ML, as from
an analysis of Fig. 4, right, it is obvious that the nonlinear
variation in valley splitting breaks down at doping densities
less than 1/12 ML—which is possibly due to the weaker
electron confinement at these densities.

Recently published experimental measurements of the Si:P
δ layer band structure performed at T = 100 K confirm the
existence of at least one occupied state at 	 [13]. This state,
named the δ state, has a binding energy of approximately
190 meV at T = 300 K and approximately 270 meV at
T = 100 K. Comparison with the theory is difficult because
all Si:P δ layer models explicitly assume lower temperatures
(T ≈ 4 K) and are buried under approximately 16 nm of
Si cladding as opposed to the 2 nm of Si cladding used
in experiment. However, it is obvious from Table III that
the experimental binding energy of approximately 270 meV
at T = 100 K is in good agreement with the value of 285
meV calculated using the TF method at T = 4 K. It is not
obvious from the experimental measurements whether there
is a valley splitting at 	. However, the energy resolution
of the experimental band structure measurement is low and
energy splittings of less than approximately 100 meV are not
resolvable.

IV. ELECTRONIC PROPERTIES OF A Ge:P δ LAYER IN
THE HIGH-DENSITY LIMIT

The similar electronic properties of Ge and Si make
Ge equally attractive for the manufacture of nanoelectronic
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FIG. 5. Band structure of bulk Ge calculated using an sp3d5s∗

TB method [16]. The bands are plotted in the fcc BZ.

devices. Carrying on from the successes of the δ-doped
Si:P fabrication route, δ-doped Ge:P nanostructures are now
being experimentally fabricated on the nanometre scale using
similar in situ techniques [56,57]. Presently, experiments are
focused on highly doped Ge:P monolayers [11,57,58] that
could be used as the channel material in the next generation of
high-speed nanotransistors [59]. Ultrascaled n-type Ge devices
on the Si platform could also be realized through the patterning
of Ge:P δ layers into source and drain contacts or quantum
wires, as has been done for Si:P δ layers [8,9,60].

The bulk Ge band structure is shown in Fig. 5. Ge is an
indirect band-gap semiconductor and has a fourfold degenerate
CB minimum at L in the fcc BZ. Transforming from an fcc unit
cell to a PT supercell folds the conduction valleys at L to M in
the PT BZ. These bands are labeled as 1M and 2M in Fig. 6;
where it is shown that in the Ge:P δ layer band structure, the
lowest CB states of bulk Ge are shifted into the bulk band-gap
region (as a result of the electron confinement by the donor
potential). This electron confinement also results in a valley
splitting of 16 meV between the 1M and 2M energy-band
minima. As the Ge CB minimum is fourfold degenerate, the
1M and 2M bands are each doubly degenerate. Transforming
from an fcc unit cell to a PT supercell also folds the bands
in the ±kx and ±ky directions. The 0.88Xfcc valley minimum
of bulk Ge is projected to 0.24Xpt in Fig. 6 (where this band
is labeled as 1
). The ±kz conduction valleys are folded to
	 and are labeled as 1	 and 2	. The degeneracy of these
bands is lifted and there is a valley splitting of 6 meV between
them—which is equal to the 1	/2	 valley splitting of the
Si:P δ layer. Interestingly, the conduction valley at 	 in the
bulk Ge band structure is not shifted into the bulk band-gap
region to the same degree as the conduction valleys at M

and X. This band is labeled as 3	 in Fig. 6. Instead, the
1	 and 2	 bands form the local minima at 	 in the Ge:P
δ layer band structure. Therefore, at low-voltage biases, we
expect the transport properties of the Ge:P δ layer to be most
strongly affected by the 1M and 2M bands at M and 1	 and
2	 bands at 	.

The donor potential for the Ge:P δ layer is shown in Fig. 7.
At a doping density of 1/4 ML the donor potential of the Ge:P
δ layer is broader in z than that of the Si:P δ layer (which
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FIG. 6. The band structure of the Ge:P δ layer (with nD = 1/4 ML) (solid lines) and the Fermi level (at T = 4 K) (dashed line). The energy
bands are plotted in the PT BZ and only the 12 lowest conduction bands are shown. The energy axis has been offset so that the energy of the
bulk Ge CB minimum is at energy zero. The band structure of bulk Ge is also shown (dotted lines).

is possibly due to the larger effective Bohr radius of Ge).
However, the magnitudes of the donor potentials inside the
dopant plane are similar; they are 0.85 and 0.78 eV for Ge and
Si, respectively. Because the magnitude of the donor potential
in Ge is greater than that in Si, we expect the CB minimum
(E1M ) of the Ge:P δ layer to be shifted further into the bulk
band-gap region than the CB minimum of the Si:P δ layer.
However, from a comparison of the two band structures—the
opposite is true—the 1	 band in Fig. 2 is shifted further into
the bulk band-gap region than the 1M band in Fig. 6. This can
be explained by the broadening of the Ge:P δ layer potential,
which decreases the confinement perpendicular to the dopant
plane.

Figure 8 shows the eDOS of the Ge:P and Si:P δ layers.
Ignoring energies around −0.25 eV, the eDOS of the Ge:P
δ layer is greater than that of the Si:P δ layer on the closed
interval [−0.4, 0.0] eV. This can be explained by the greater
number of partially occupied bands, or conducting modes,
in the Ge:P δ layer band structure and suggests a higher
conductivity for the Ge:P δ layer than the Si:P δ layer at
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FIG. 7. Donor potential for a Ge:P δ layer (solid line) and Si:P δ

layer (nD = 1/4 ML) (dashed line). The Fermi level and band energy
minima are shown inside the potential well for the Ge:P δ layer.

low-voltage biases. The larger eDOS for the Si:P δ layer
around E = −0.25 eV is due to the filling of the Si:P
1
 band (E1
,Si:P = −287 meV) before the Ge:P 1
 band
(E1
,Ge:P = −192 meV).

In Figure 9, the change in the Fermi level, band energy
minima, binding energy and valley splitting with doping
density is shown for the Ge:P δ layer. The 1M and 2M energy
minima, Fermi level, valley splitting and binding energy have
been fitted using Eq. (17). However, because the energy
minima of the 1	, 2	, 3	, and 1
 bands are greater than
the CB minimum of bulk Ge (which is offset at energy zero in
Fig. 9, left,) these minima have been fitted using an equation
of the form

En = a(nD)b + c, (18)

where En is the minimum energy of band n, and a, b, and
c are fitting parameters. The energy minima of the 1M ,
2M , 1	, 2	, 3	, and 1
 bands have been fitted with an
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FIG. 8. eDOS of the Ge:P δ layer (heavy solid line) and Si:P δ

layer (dashed line) (with nD = 1/4 ML), and eDOS of bulk Ge (light
solid line) and bulk Si (dotted line). A Gaussian smearing of 25 meV
has been applied for visualization.
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R2 � 0.9996 and the fitting parameter b has been found to
be restricted to the closed interval [0.81,0.91]. Therefore the
nonlinear proportionality between the band energy minima
and the doping density for the Ge:P δ layer is different to that
of the Si:P δ layer. The Ge:P δ layer exhibits a greater rate of
change in its band energy minima with doping density. Using
the nonlinear fits of the energy-band data, we can estimate
the value of the CB minimum at a doping density of 1/2 ML
(which would otherwise be difficult to do due to the mixing of
the CB and VB energy eigenvalues at this density). We find that
the CB minimum of the Ge:P band structure is approximately
−700 meV (relative to the CB minimum of bulk Ge) at a
doping density of 1/2 ML. The fits to the band energy minima
also suggest that the levels of the 1M/2M and 1	/2	 bands
converge at a density greater than 1/3 ML (although this is
difficult to validate without explicitly calculating the band
energy minima at higher density). However, the rate of change
of the 1	 and 2	 energy minimum with doping density is
greater than that for the other bands, which is possibly due to
a greater sensitivity in the ±kz valleys to the stronger electron
confinement in z at higher doping densities. At nD � 1/16
ML, the energy minima of the 1	/2	 bands becomes lower
than that of the 3	 band and the 1	/2	 bands become the
new local minimum at 	. The rate of change of the 3	 energy
minimum with doping density is smaller than that for the other
bands.

The Fermi level has been fitted using Eq. (17) but with a
reduced set of data points (filled squares). It is obvious from
Fig. 9, left, that the simple nonlinear trend proposed using
Eq. (17) breaks down at nD > 1/8 ML. This discrepancy is
due to the filling of the 1	, 2	, and 1
 bands at these higher
doping densities. Therefore, unlike the case of the Si:P δ layer,
Eq. (17) is unable to describe the dependence of the Fermi level
on doping density. Similarly, in Fig. 9, right, Eq. (17) is also
unable to describe the dependence of the binding energy on
doping density as the binding energy is calculated directly

from the CB minimum and the Fermi level. At a doping
density of 1/4 ML, the binding energy of the Ge:P δ layer
is found to be 70 meV smaller than that of the Si:P δ layer. The
1M/2M valley splitting has been fitted for nD � 1/16 ML
using Eq. (17) and b has been found to be 1.74 (R2 = 0.9996).
The 1	/2	 valley splitting has been fitted for nD � 1/12 ML
and b has been found to be 1.70 (R2 = 0.9991). Both energy
splittings show a similar nonlinear trend to the 1	/2	 valley
splitting of the Si:P δ layer.

V. CONCLUSIONS

We have presented a scalable method for the calculation
of electronic properties in Si:P and Ge:P δ layers. In the
derivation of the TF potential, self-consistency is achieved by
insisting that the potential is related to the charge density by
Poisson’s equation. The computational expense of the calcula-
tions is thereby reduced—compared to other TB models—by
removing the need to iteratively solve for the electrostatic
field. The TFD theory is exact in the high density limit and
we have found that this TF method is able to reproduce the
results of more “resource intensive” computational models
of Si:P δ layers. Therefore the TF method is both scalable
to large system sizes and adequate to describe the physics
of highly doped Si:P nanostructures. This is ideal for the
calculation of quantum transport properties in these δ-doped
semiconductors.

The Ge:P δ layer was shown to have conduction valley
minima at M , 	, and 0.24X in the PT BZ. A Ge:P δ state,
analogous to the Si:P δ state [13], is predicted at M with a
1M/2M valley splitting of 16 meV. As this energy splitting
is larger than the 1	/2	 valley splitting of the Si:P δ layer,
we expect experimental measurements to be more sensitive
to the valley splitting of the lowest CB states in the Ge:P δ

layer. The binding energy of this Ge:P δ state is found to be
70 meV smaller than the binding energy of the Si:P δ state
and we therefore expect that this difference is experimentally
resolvable. The Ge:P δ layer exhibits a larger number of
occupied conducting modes compared to the Si:P δ layer.
This suggests a higher conductivity for the Ge:P δ layer at
low-voltage biases.

In the future, the TF method could be extended to δ-doped
Si:P and Ge:P quantum wires, source and drain contacts, and
other finite δ-doped nanostructures. Central-cell corrections
(and the resultant valley-orbit interaction) could be included in
the model to more accurately describe the electron confinement
perpendicular to the dopant plane and the corresponding
1	/2	 valley splitting. Electron spin could also be included
via the TB model and the validity of the XC corrections could
be investigated. However, these extensions would require
higher precision in the experimental results than that which
is currently available to successfully evaluate the validity of
including these effects.
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APPENDIX: DERIVATION OF THE ELECTROSTATIC
POTENTIAL ENERGY OF THE DONOR ELECTRONS IN

THE THOMAS-FERMI APPROXIMATION

This appendix gives a derivation of the electrostatic po-
tential energy of the donor electrons in the Thomas-Fermi
approximation. In the following, n is the electron density, z

is a coordinate that is perpendicular to the dopant plane and
all quantities are expressed in SI units. For a more detailed
explanation of the Thomas-Fermi theory and the Thomas-
Fermi theory of semiconductors see Refs. [39] and [30].

The TF energy density functional is written as

ETF[n(z)] = T [n(z)] + Uee[n(z)] + UeN[n(z)],

where T [n(z)] is the kinetic energy density functional and
Uee[n(z)] and UeN[n(z)] are the electron-electron and electron-
nuclear potential energy density functionals, respectively,

T [n(z)] =
∫

t dz, (A1)

where t is the kinetic energy per unit volume,

t =
∫ pF

0
n(z)

[p(z)]2

2m̄

3[p(z)]2

[pF(z)]3
dp . (A2)

In the local density approximation,

n(z) = n0 = N

V
, (A3)

where N is the number of electrons inside a real-space volume
V . As a consequence of the uncertainty principle,

N = 2

h3
V . (A4)

Here, V is the total volume of occupied phase space,

V = 4πν

3
[pF(z)]3V,

where pF(z) is the maximum momentum of an electron at z

and ν is the degeneracy of the conduction valley minima.
Substituting this into Eq. (A4), we have

N = 2

h3

4πν

3
[pF(z)]3V

and, recalling Eq. (A3), we also have

n(z) = 8πν

3h3
[pF(z)]3 . (A5)

Rearranging Eq. (A5), we obtain

[p(z)]5 =
[

3h3

8πν
n(z)

]5/3

. (A6)

Substituting Eqs. (A5) and (A6) into Eq. (A2) leads to

t = ck[n(z)]5/3, (A7)

where

ck = 3

10m̄ν2/3
(3π2

�
3)2/3 .

Substituting Eq. (A7) into Eq. (A1), the kinetic energy density
functional can be written as

T [n(z)] = ck

∫
n(z)5/3 dz .

The electron-electron potential energy density functional is
defined as

Uee[n(z)] = e2

8πεrε0

∫∫
n(�r ′)n(�r)

|�r − �r ′| d�r d �r ′ .

For an infinite plane of charge, this can be written as

Uee[n(z)] = − e2

4εrε0

∫∫
n(z) n(z′) |z − z′| dz dz′ .

The electron-nuclear potential energy density functional is
defined as

UeN [n(z)] = e

∫
n(�r)VN(�r) d�r .

For an infinite plane of charge this can be written as

UeN [n(z)] = − e2nD

2εrε0

∫
n(z) |z| dz .

Substituting these into the TF energy-density functional, we
get

ETF[n(z)] =ck

∫
n(z)5/3 dz − e2nD

2εrε0

∫
n(z) |z| dz

− e2

4εrε0

∫∫
n(z) n(z′) |z − z′| dz dz′ . (A8)

The variational principle can be used to find n(z) for the
ground-state energy by minimizing Eq. (A8) subject to the
constraint that N is constant. This is written as

δ(E − μN ) = 0

or

μ = ∂E

∂N
,

where μ is the chemical potential energy. The total number of
electrons can be written as

N =
∫

n(z) dz .

From this and Eq. (A8), it follows that

μ = 5

3
ck{n(z)}2/3 − e2nD

2εrε0
|z| − e2

2εrε0

∫
n(z)|z − z′| dz .

(A9)

We define the electrostatic part of Eq. (A9) as

VTF(z) = − e2nD

2εrε0
|z| − e2

2εrε0

∫
n(z)|z − z′| dz . (A10)

Therefore

μ = 5
3ck[n(z)]2/3 + VTF(z) . (A11)

The self-consistency of the electrostatic field in z is then
achieved by insisting VTF(z) and n(z) are related by
Poisson’s equation:

∂2

∂z2
�(z) = −ρ(z)

εrε0
, (A12)

∂2

∂z2
[e�(z)] = −eρ(z)

εrε0
, (A13)
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∂2

∂z2
VTF = −eρ(z)

εrε0
. (A14)

Taking the double derivative of Eq. (A10) in z,

∂2

∂z2
VTF(z) = e2

εrε0
n(z) − e2nD

εrε0
δ(z), (A15)

where

ρ(z) = e[nDδ(z) − n(z)]. (A16)

Rearranging Eq. (A11) for n(z),

n(z) =
(

3

5ck

)3/2

[μ − VTF(z)]3/2,

and substituting it into Eq. (A15),

∂2

∂z2
VTF(z) = e2

εrε0

(
3

5ck

)3/2

[μ − VTF(z)]3/2 − e2nD

εrε0
δ(z).

(A17)

The solution to Eq. (A17) is of the form

VTF(z) − μ = − α2

(α|z| + z0)4
,

where

α = (2m̄)3/2e2ν

60π2εrε0�
3

and

z0 =
(

8α3εrε0

e2nD

)1/5

.

Setting μ equal to zero results in the following expression for
the electrostatic potential energy of the donor electrons:

VTF(z) = − α2

(α|z| + z0)4
.
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[6] M. Füchsle, S. Mahapatra, F. A. Zwanenburg, M. Friesen, M. A.
Eriksson, and M. Y. Simmons, Nat. Nanotechnol. 5, 502 (2010).
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