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Employing the recently developed self-consistent variational basis generation scheme, we have investigated the
bipolaron-bipolaron interaction within the purview of the Holstein-Hubbard and the extended-Holstein-Hubbard
(F2H) models on a discrete one-dimensional lattice. The density-matrix renormalization group method has also
been used for the Holstein-Hubbard model. We have shown that there exists no bipolaron-bipolaron attraction
in the Holstein-Hubbard model. In contrast, we have obtained clear-cut bipolaron-bipolaron attraction in the
F2H model. Composite bipolarons are formed above a critical electron-phonon coupling strength, which can
survive the finite Hubbard U effect. We have constructed the phase diagram of F2H polarons and bipolarons, and
discussed the phase separation in terms of the formation of composite bipolarons.
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I. INTRODUCTION

Bipolarons play an important role in many areas of material
science and biological science [1–3]. Many-body techniques
such as the density-matrix renormalization group (DMRG)
and the quantum Monte Carlo (QMC) have been employed
successfully to investigate bipolarons in Holstein and Fröhlich
systems at half-filling or quarter-filling [2,4–9]. The continuum
Fröhlich bipolarons were also investigated [10–13]. On the
other hand, a proper description of bipolaron-bipolaron (b-b)
interaction in the dilute limit is also very important, as it
gives rich information from an entirely different perspective.
However, studies on the b-b interaction in the dilute limit are
still lacking. The primary reason is that variational approaches
based on the exact diagonalization (VAED), which have been
very successful for polaron and bipolaron problems [14–20],
cannot be applied to even four-electron (two bipolarons)
problems. Chakraborty et al. [21] has recently developed a new
self-consistent scheme of generating variational basis based on
the exact diagonalization (SC-VAED), which makes the b-b
interaction problem tractable in the dilute limit.

In this paper, we have applied the SC-VAED scheme to
Holstein-Hubbard and extended-Holstein-Hubbard (F2H) [19]
systems with four and six electrons. We have also employed the
DMRG method to a four-electron Holstein system to check the
results of the SC-VAED scheme. Our calculations reveal that
the Holstein type of electron-phonon (e-ph) interaction does
not yield the attractive interaction between two bipolarons.
In contrast, the e-ph interaction of extended-Holstein F2
type produces the b-b attractive interaction above a certain
e-ph coupling to form composite bipolarons. Hereafter, we
name these composite bipolarons as b composite. The on-
site Hubbard electron-electron (e-e) interaction U , when
it is small, weakens the interbipolaron binding as well as
the intrabipolaron binding [15,19], producing a lighter b

composite. An increase in U leads to the dissociation of
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the b composite into two repelling bipolarons, and then
into individual polarons. However, above a critical e-ph
coupling, both the interbipolaron and intrabipolaron bindings
survive infinite U . We have constructed the phase diagram
of F2H polarons and bipolarons with respect to e-ph and e-e
interactions, and discussed the phase separation phenomenon
in terms of the b-composite formation.

This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian, which incorporates the e-e and e-ph inter-
actions within the one-dimensional (1D) Holstein-Hubbard
and F2H models. We also provide computational details here.
In Sec. III, we have examined the bipolaron binding for the
four-electron Holstein-Hubbard model, using the SC-VAED
and the DMRG methods. In Sec. IV, we have made a
detailed analysis of the four-electron F2H model on the basis
of calculated binding energies and correlation functions in
different parameter regimes. We have also discussed the results
of the six-electron system within the F2 model. Then we
have constructed the phase diagram of bipolarons with respect
to e-ph interaction strength λ and the on-site Hubbard U .
Conclusions follow in Sec. V.

II. HAMILTONIAN AND COMPUTATIONAL DETAILS

The Fröhlich-Hubbard Hamiltonian on a discrete 1D lattice
[22,23] is defined as follows:

H = −
∑

i,σ

(tc†i,σ ci+1,σ + H.c.) + ω
∑

j

a
†
j aj

+gω
∑

i,j,σ

fj (i)ni,σ (a†
j + aj ) + U

∑

i

ni,↑ni,↓, (1)

where c
†
i,σ (ci,σ ) creates (annihilates) an electron of spin σ

at site i and a
†
j (aj ) creates (annihilates) a phonon at site

j . We take the spin- 1
2 electron (Sz = + 1

2 or − 1
2 ). The third

term represents the coupling of an electron at site i with an
ion at site j with g being the dimensionless e-ph coupling
parameter. fj (i) is the long-range e-ph interaction, the actual
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form of which is given by [23]

fj (i) = 1

(|i − j |2 + 1)3/2
. (2)

The e-ph coupling strength λ is defined by [15,23]

λ = ωg2 ∑
l f

2
l (0)

2t
. (3)

If fj (i) = 0 for i �= j , the Fröhlich-Hubbard model becomes
the Holstein-Hubbard model. In our study, the Fröhlich
e-ph interaction is approximated by the extended-Holstein
interaction of F2 type, which corresponds to the case of
fi±(1/2)(i) = 1 and zero otherwise, as defined by Bonča and
Trugman [15] and Chakraborty et al. [19]. The F2 model
couples an electron with two nearest-neighbor ions placed
in the interstitial [15,19]. We set the electron hopping t = 1
for numerical calculations, and so all energy parameters are
expressed in units of t .

The variational basis is generated starting with a state of
bare electrons and adding new states by repeated application of
the Hamiltonian [14,16,18–20]. The off-diagonal terms of the
Hamiltonian generate different configurations of phonons and
electrons for a specific up-spin electron (↑) at position i [14].

All translations of these states on the periodic 1D lattice
are included. In the SC-VAED scheme, we first generate a
relatively small basis set and obtain the ground state energy
and the wave function. Then the states with highest probability
are identified, and a new basis is generated by application
of the Hamiltonian on these chosen highly probable states.
Accordingly the size of the basis is increased. The ground
state energy and the wave function are calculated again. This
process is continued in a self-consistent way, by increasing
the basis size at each cycle until the desired accuracy in the
ground state energy is obtained [21]. At each step, the weight
of m-phonon states for the ground state, |Cm

0 |2, as defined by
Fehske et al. [23] is calculated. The convergence of |Cm

0 |2 is
checked to ensure that the basis contains an adequate number
of phonons required at the given parameter regime. We have
considered lattice sizes up to L = 24 for the four-electron
case and L = 12 for the six-electron case. In principle, for the
four-electron case, we can go beyond L = 24, probably up
to L = 32, but that would take much more computation time
[24]. For the six-electron case, we can go up to L = 18, but
again that would take much more computation time.

With obtained ground state energies and wave functions,
we discuss the b-b interaction in terms of the binding energy
(�) and the e-e correlation function [C↑,σ (i − j )]. � for four-
and six-electron systems are defined by [14,19]

�4 = E4 − 2 × E2, (4)

�6 = E6 − E4 − E2, (5)

where E2, E4, and E6 are ground state energies of two-electron
(one up-spin electron and one down-spin electron), four-
electron (two up-spin electrons and two down-spin electrons),
and six-electron (three up-spin electrons and three down-spin
electrons) systems, respectively. C↑,σ (i − j ) is defined by the
probability of finding the other electron(s) with respect to one
up-spin electron, at the position of which the basis is generated

TABLE I. Ground state energies of the four-electron Holstein
lattice (E4) for different numbers of lattice sites obtained using the
SC-VAED and the DMRG method. ω = 1.0 and λ = 0.5 are fixed.
Converged energy is still higher than twice the ground state energy
of the Holstein bipolaron, −10.8493. Energies are in units of t .

Sites E4 (SC-VAED) E4 (DMRG)

12 −10.77 −10.782
16 −10.81 −10.797
24 −10.83 −10.828
60 −10.846

[14,19]:

C↑,σ (i − j ) = 〈�0|ni,↑nj,σ |�0〉, (6)

where nj,σ is the number operator with spin σ at site j . In
Eq. (6), when i = j , σ =↑ is not considered due to the Pauli
exclusion principle. |�0〉 is the ground state wave function.
Note that, in this work, we have always considered the same
numbers of up-spin and down-spin electrons and limited the
basis states in SC-VAED to ones with total spin S = 0.

III. HOLSTEIN-HUBBARD MODEL

We have calculated ground state energies of four-electron
(two up-spin and two down-spin electrons) Holstein lattices
using both the SC-VAED and the DMRG method. The
former was done in the periodic boundary condition, while
the latter [25] was done in the open-boundary condition.
Results of both methods for different ω and λ do not show
any signature of binding of the two bipolarons, i.e., two
on-site spin-antiparallel (S = 0) bipolarons repel each other.
For all parameter regimes, the ground state energies of the
four-electron Holstein system are higher than twice the ground
state energy of individual Holstein bipolarons.

Let us look at the obtained ground state energies and cor-
relation functions for ω = 1.0, λ = 0.5 as a typical example.
Twice the ground state energy of a Holstein bipolaron at this
regime is −10.8493 and Table I shows the calculated energies
for the four-electron system at this parameter regime for
different lattice sizes. Note that the converged energy is higher
than twice the ground state energy of the Holstein bipolaron.
This result is quite expected because an intersite spin-parallel
(S = 1) bipolaron, which is formed of two nearest-neighbor
electrons with the same spin, is not favored within the Holstein
paradigm [15,19]. The spin-antiparallel bond helps formation
of two bipolarons by binding up-spin and down-spin electrons
(hence two spin-antiparallel bipolarons are formed from two
up-spin and two down-spin electrons). However, the absence
of a spin-parallel bond in the Holstein model obliterates the
possibility of two bipolarons gluing together.

Figure 1 provides the e-e correlation function C↑,σ (i − j )
for the ground state of the four-electron Holstein system
at λ = 0.5 and ω = 1.0. C↑,σ (i − j )’s calculated for three
different system sizes (12-, 16-, and 24-site) show that the
two bipolarons tend to maintain the maximum separation as
far as the system size allows. It should be noted, that ±L/2 for
different system sizes are the same point. Hence, the sum rule
is satisfied for −L/2 + 1 to L/2 (to avoid double counting for
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FIG. 1. (Color online) The e-e correlation function C↑,σ (i − j )
for the four-electron Holstein lattice (U = 0). The position i and spin
of the electron ↑ is fixed, since the basis has been generated with
respect to it. C↑,σ (i − j )’s for 12-, 16-, and 24-site Holstein lattices
are compared. It should be noted, that ±L/2 for different system sizes
are the same point.

the end point). As shown in Table I, the ground state energy
of the four-electron system is lowered with increasing the
system size, which indicates the repulsive nature of interaction
between the two bipolarons. The finite size effect is evident in
this case, as two bipolarons want to be far apart from each other,
but the finite size of our lattice limits that. Hence, the bigger
the lattice size, the closer the ground state energy is to twice the
energy of the individual bipolarons. The 60-site result by the
DMRG method validates this conjecture further (see Table I).
Therefore the formation of a spin-parallel bipolaron is unstable
within the Holstein paradigm [15], and the scenario remains
the same for the four-electron case too. The on-site Hubbard
U has the same effect on the individual bipolarons, as reported
earlier [14,19], and would not lead to binding between the two
bipolarons.

IV. F2H MODEL

According to earlier calculations [15,19], a longer-ranged
e-ph interaction facilitates the binding of the spin-parallel
bipolaron above a critical e-ph coupling strength λb

c . Here
we have studied the four-electron F2H lattice [15,19], using
the SC-VAED method. First, we have considered the case of
U = 0. Figure 2(a) shows C↑,σ (i − j ) for λ = 0.1 at ω = 1.0.
In this case, we do not obtain b-b binding. Indeed, as shown in
Table II, converged ground state energy of the four-electron F2
lattice for λ = 0.1, − 8.6024 (L = 24), is higher than twice
the ground state energy of the F2 bipolaron, −8.6215. On the
contrary, at larger λ = 1.0 in Fig. 2(b), C↑,σ (i − j ) clearly
demonstrates the formation of a strongly bound b composite,
which is seen to be valid independently of the system size.
In this case, converged ground state energy is −24.5293
(L = 24), which is lower than twice the ground state energy
of the F2 bipolaron, −18.3669.
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FIG. 2. (Color online) The e-e correlation function C↑,σ (i − j )
for the four-electron F2 lattice. Two different system sizes (12 and
24) are considered. (a) ω = 1.0, λ = 0.1 and (b) ω = 1.0, λ = 1.0.
It should be noted, that ±L/2 for different system sizes are the same
point.

Figure 3 shows the binding energy �4 of the four-electron b

composite as a function of λ. We see no b-b binding for small
λ, while above λb−b

c ≈ 0.3, �4 becomes negative, signaling
the formation of b composite. It is notable that, for large λ,
�4 becomes almost independent, at least up to two decimal
places, of the system size (see Table II). The inset of Fig. 3
shows �4’s for smaller system sizes. For small systems of L

= 4 − 8, b composite is apparently formed even for λ < λb−b
c .

This is attributed to the finite size effect. With the increase in
λ, the polaronic nature of the individual bipolaron increases,
and due to the small size of the lattice, their wave functions
are forced to overlap to exhibit a spurious binding.

Table II presents the ground state energies of four-electron
F2 lattices (E4) for different system sizes and λ. Bipolaron
(two-electron) ground state energies (E2) at the same param-
eters are also provided for comparison. At λ = 0.1, as the
system size increases, the ground state energy approaches
twice the bipolaron energy, −8.6215. This suggests that
the interaction between the two bipolarons is repulsive. An

035146-3



MONODEEP CHAKRABORTY, MASAKI TEZUKA, AND B. I. MIN PHYSICAL REVIEW B 89, 035146 (2014)

TABLE II. Ground state energies of four-electron F2 lattices (E4) at different λ for different system sizes (L) (ω = 1.0 is fixed). Twice the
F2 bipolaron energies are also given in the last column. Energy parameters are in units of t .

E4 2 × E2

λ L = 4 L = 8 L = 12 L = 16 L = 20 L = 24 L = 39

0.1 −7.3136 −8.3763 −8.5402 −8.5831 −8.5996 −8.6024 −8.62147
0.2 −8.9795 −9.3858 −9.4028 −9.3840 −9.3835 −9.3776 −9.41269
0.3 −10.6475 −10.4364 −10.3432 −10.2867 −10.2917 −10.2698 −10.31085
0.4 −12.3300 −11.6105 −11.5521 −11.5469 −11.5586 −11.5578 −11.28980
0.5 −14.0364 −13.2887 −13.2831 −13.2876 −13.2882 −13.2902 −12.33584
0.6 −15.8017 −15.3675 −15.3668 −15.3714 −15.3715 −15.3722 −13.44075
0.7 −17.7584 −17.5801 −17.5891 −17.5956 −17.5956 −17.5960 −14.59928
0.8 −19.9535 −19.8156 −19.8709 −19.8791 −19.8792 −19.8793 −15.80812
0.9 −22.2382 −22.0267 −22.1811 −22.1942 −22.1944 −22.1945 −17.06493
1.0 −24.5580 −24.5270 −24.5292 −24.5279 −24.5292 −24.5293 −18.36692

increase in λ renders more polaronic nature to these repulsive
bipolarons, and makes the numerical task more difficult. Note
that, above λb−b

c ≈ 0.3, the binding energy becomes negative
for all system sizes, and the ground state energy is converged
at least up to two decimal places. The finite size effect is
significant in the F2 system as well for small λ, for which
there is no b-b binding for the same reason as mentioned for
the Holstein system. However, for large λ the finite size effect
becomes much smaller because the spatial extent of constituent
bipolarons and that of b composite (formed out of coalescing
of two bipolarons) are small. Table II amply demonstrates this
fact.

The energy behaves nonmonotonically with L for some
values of λ in Table II. For λ � 0.3, the interaction between
bipolarons is repulsive and the ground state energy of the
system with four fermions should converge to twice the ground
state energy of the system with two fermions (bipolaron); �

should converge to zero as L → ∞.
As λ increases from zero, our numerical calculation suffers

from two types of difficulties:
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FIG. 3. (Color online) The binding energy (�4) of the four-
electron F2 b composite as a function of the e-ph coupling strength
λ for different system sizes. The inset shows �4’s for small system
sizes. ω = 1.0, U = 0, and energies are in units of t .

(a) Because of the finite extent (rather large) of the
bipolaron, two bipolarons can interact with each other along
the opposite path as well as along the confronted path, when
the system size is small under periodic boundary condition.
This effect can produce a false binding.

(b) When two bipolarons are actually not binding, a
significantly larger basis size is required to get the same
accuracy when the system size increases. Therefore, within
a realistic computational effort, it remains very difficult to
obtain a universal scaling law of the value of � with respect
to L.

On the other hand, for λ � 0.4 where the bipolarons attract
each other, although we observe an overestimation of � for
very small lattice sizes, the addition of lattice sites in the
periodic boundary condition does not significantly increase
the numerical complexity. In other words, the effect we have
described above is less significant and consequently we can
observe that electron-electron correlation function for λ = 1.0
shown in Fig. 2(b) shows a very good convergence between
L = 12 and L = 24 and so do their corresponding ground
state energies. For values of λ at which we get a bipolaron
composite, the states with phonons and electrons far away from
the composite center contribute insignificantly to the ground
state, and � (which is negative) would show a convergence
similar to that of the ground state energies. This situation is
the same as in the bipolaron (bound state of two polarons),
where the ground state energy (and hence the �) converges
up to seven decimal places with L = 37 and remains the same
even for higher L [15,19].

Bonča and Trugman [15] showed through their analytical
and numerical considerations that the F2 spin-parallel (S = 1)
bipolaron is stabilized above λb

c = 0.76 at ω = 1.0. On the
other hand, we have found, that in the above case of a four-
electron system, the two bipolarons bind above λb−b

c = 0.3,
which is much lower than λb

c = 0.76. The reason why the b-b
binding takes place at lower λ is due to the presence of an
intersite (S1) spin-antiparallel bond between the two adjacent
on-site (S0) bipolarons which stabilizes the spin-parallel bond
between them.

We substantiate this behavior with our six-electron F2
lattice calculations. Figure 4 shows �6’s of the six-electron
F2 system as a function of λ. It is seen that a b composite of
three bipolarons is to be formed for λ � 0.3. The numerical
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FIG. 4. (Color online) Binding energies for six-electron F2 lat-
tices (�6’s) as a function of λ (ω = 1.0 and U = 0 are fixed). Two
system sizes (L = 6 and L = 12) are considered. The numerical
precision is rather low in the region marked by the ellipse. Energies
are in units of t .

precision is not as high as the four-electron case, and is espe-
cially lower for the region marked by the ellipse. Once there
occurs a b-b binding, the numerical precision is improved,
but at best up to one to two decimal places. Better numerical
precision can be obtained, but that would be too expensive
(basis states of the order of 2–3 × 107) and time consuming
(a few weeks to a month). In any way, the six-electron result
qualitatively validates the fact that the bipolarons glue into a b

composite above a certain λ ∼ 0.3 (for ω = 1.0).
The on-site Hubbard e-e interaction U has an interesting

consequence in the formation of b composite. Due to the
on-site nature of U , it is tempting to expect that U does not
affect the spin-parallel wave function that is responsible for
the b-b binding. However, physics is not so simple. Let us
recall the case of spin-antiparallel bipolaron formation for the
two-electron case of the F2H model. As shown in Fig. 5,
with increasing U , the on-site S0 bipolaron formed at U = 0
transforms into an intersite S1 bipolaron. Now consider two
cases of b-b bindings between S0 bipolarons and between S1
bipolarons. Two S0 bipolarons, once they are bound, would
produce two spin-antiparallel S1 bonds, which stabilizes the
two S1 spin-parallel bonds. On the other hand, above a finite
U , the two resulting neighboring S1 bipolarons would have
either only one S1 spin-antiparallel bond or only one S1
spin-parallel bond, which will not be sufficient to stabilize
the b-b binding. Therefore, with increasing U , the individual
bipolaron transforms from S0 to S1, which would result in the
weakening of b-b binding between the bipolarons. Therefore,
on-site U interaction really influences the b-b binding, i.e.,
with increasing U , the b composite already formed above a
certain λb-b

c would dissociate into individual S1 bipolarons,
and these individual bipolarons would break up into individual
polarons with a further increase in U [15,19].

Figure 6 shows the ground state energies of the F2H
polaron, bipolaron, and b composite of four-electron systems
as a function of U . We have discussed above that, for
λ > λb

c = 0.76, an individual spin-parallel bipolaron can be

-5 50
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FIG. 5. (Color online) The e-e correlation function C↑,↓(i − j )
for the two-electron F2H lattice. Two values of Hubbard U are
considered at ω = 1.0 and λ = 0.5. The red line with circles
represents the formation of an on-site S0 bipolaron for U = 0, while
the blue line with squares represents the formation of an intersite S1
bipolaron for U = 6.0. The b composite formed of two S0 bipolarons
would have two spin-parallel bonds, while that formed of two S1
bipolarons would have either only one S1 spin-parallel bond or only
one S1 spin-antiparallel bond.

formed. For λ = 0.65 (<λb
c ) in Fig. 6(a), the energy of the

four-electron b composite is the lowest at small U . However,
with increasing U , it becomes higher than twice the energy of
the bipolaron and then even higher than four times the energy
of the polaron. In contrast, for λ = 0.85 (>λb

c ) in Fig. 6(b), it
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FIG. 6. (Color online) Ground state energies of b composite of
four-electron (E4), bipolaron (E2), and polaron (E1) in the F2H lattice
(L = 6) as a function of U . The blue solid line represents the energy
of b composite, the red dotted line represents twice the energy of the
bipolaron, and the flat black line represents four times the energy of
the polaron. (a) Energies at λ = 0.65, which is less than λb

c = 0.76.
(b) Energies at λ = 0.85 (>λb

c ). Energy parameters are in units of t ,
and ω = 1.0 is fixed.

035146-5



MONODEEP CHAKRABORTY, MASAKI TEZUKA, AND B. I. MIN PHYSICAL REVIEW B 89, 035146 (2014)

0 0.2 0.4 0.6 0.8 1

λ

0

5

10

15

U

Po
la

ro
ns

Bipolaro
n

Bipolaro
n-composite

cλ  = 0.76
b

ω=1.0

FIG. 7. (Color online) Phase diagram of F2H polarons with
respect to e-ph coupling strength λ and on-site e-e interaction U

(ω = 1.0 is fixed). The blue dashed line separating the b composite
from bipolarons is a qualitative guide for the eye.

is observed that the four-electron b composite is always lower
in energy than individual bipolarons and polarons. This feature
indicates that the b composite formed above λb

c remains glued
even for very large U .

Figure 7 displays the phase diagram of F2H polarons
with respect to λ and U . There are three distinct regimes:
(i) individual polarons, (ii) individual bipolarons, and (iii) b

composite. Independent bipolarons at very small λ break into
repulsive polarons with increasing U . At larger λ and U = 0,
repulsive bipolarons coalesce into the b composite. With
increasing U , this again dissociates into repulsive bipolarons,
and then into repulsive polarons with a further increase in U .
However, beyond a certain critical λb

c = 0.76, the b composite
survives the effect of infinite U . Higher U results in lighter b

composite, as U would significantly bring down the effective
mass of the system and make it more mobile.

While the dashed line in Fig. 7 is qualitative in nature
because its numerical accuracy is not very high, it should
be noted that the phase boundary between the polarons and
bipolarons (represented by the red solid line) is quite accurate
as it is obtained from the bipolaron (two-electron) calculation
[15,19]. Also the vertical line representing the critical λ, above
which the stability of b composite is unaffected by U , is an

analytical result by Bonča and Trugman [15]. The change of
curvature of the dashed line is more of a numerical artifact.

We conjecture that the formation of b composite and its
evolution with U are closely related to phenomena of phase
separation observed in various systems, such as colossal
magnetoresistance (CMR) manganites and high-Tc supercon-
ductors [26,27]. Bonča and Trugman [15] suggested that, for
a system with λ > λb

c , a third electron (polaron) could stick
to already formed bipolaron, which would bring about the
phase separation. Recently, Hohenadler et al. [8] also showed
that the extended e-ph interaction yields the phase separation.
Our study corroborates this scenario. We have demonstrated
through calculations for four-electron and six-electron F2H
systems that the longer-range e-ph interaction induces the
gluing of bipolarons so as to produce a stable b composite,
which is reminiscent of the phase separation phenomenon. Our
study thus sheds light on the microscopic description of phase
separation in the presence of both e-ph and e-e interactions.

V. CONCLUSIONS

We have investigated four- and six-electron Holstein-
Hubbard and F2H systems, treating the electron-electron
and electron-phonon interactions on an equal footing in the
framework of the SC-VAED method. The Holstein type of
on-site e-ph interaction does not support the formation of b

composite, as confirmed by both the SC-VAED and the DMRG
calculations. In contrast, the F2H type of e-ph interaction
leads to the formation of b composite above a certain e-ph
coupling strength λb-b

c ≈ 0.3 (at ω = 1.0). We have shown that,
with increasing Hubbard U , this b composite is dissociated
into individual bipolarons and then into individual polarons.
However, above a critical λb

c = 0.76 (at ω = 1.0), the b

composite survives the effect of U , forming coalesced S1
bipolarons. Our unbiased study of e-ph and e-e interacting
systems would provide insight into the understanding of
phase separation physics, which is central to many areas of
condensed matter physics.
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