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Motivated by recent experiments exploring the spin-orbit-coupled magnetism in 4d- and 5d-band transition
metal oxides, we study magnetic interactions in Ir- and Rh-based compounds. In these systems, the comparable
strength of spin-orbit coupling, crystal-field splitting, and Coulomb and Hund’s coupling leads to a rich variety
of magnetic exchange interactions, leading to new types of ground states. Using a strong coupling approach,
we derive effective low-energy superexchange Hamiltonians from the multiorbital Hubbard model by taking full
account of the Coulomb and Hund’s interactions in the intermediate states. We find that in the presence of strong
SOC and lattice distortions the superexchange Hamiltonian contains various kinds of magnetic anisotropies. Here
we are primarily interested in the magnetic properties of Sr2IrO4 and Sr2Ir1−xRhxO4 compounds. We perform
a systematic study of how magnetic interactions in these systems depend on the microscopic parameters and
provide a thorough analysis of the resulting magnetic phase diagram. Comparison of our results with experimental
data shows good agreement. Finally, we discuss the parameter space in which the spin-flop transition in Sr2IrO4,
experimentally observed under pressure, can be realized.
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I. INTRODUCTION

5d transition metal oxides, in which orbital degeneracy is
accompanied by strong relativistic spin-orbit coupling (SOC),
recently received considerable attention, both in experiment
and in theory. In these systems the SOC might be comparable
to, or even stronger than, the Coulomb and Hund’s couplings,
and the crystal-field (CF) interactions arising from surrounding
oxygen atoms in a nearly octahedral environment. As a result of
this unusual hierarchy of on-site interactions, novel quantum
and classical states with nontrivial topology and interesting
magnetic properties might be stabilized. Fascinating exam-
ples of such properties include the Mott insulator ground
state of Sr2IrO4 [1–15], the potential spin-liquid ground
state of Na4Ir3O8 [16,17], the anomalous Hall effect in the
metallic frustrated pyrochlore Pr2Ir2O7 [18–23], nontrivial
long-range order, and moment fluctuations in its sister com-
pound Eu2Ir2O7 [24,25], unusual magnetic orderings in the
honeycomb compounds Na2IrO3 and Li2IrO3 [26–33], and
others.

The main focus of this paper is on developing a theoretical
framework which will allow us to understand the microscopic
nature of magnetism in the iridium compounds described
above. In these systems, the magnetic degrees of freedom are
determined by Ir4+ ions in 5d5 electronic configurations. In
contrast to the 3d-based oxides, in which a Mott insulating
state is established by strong correlations, in iridates with
Ir4+ ions, the Mott insulating state does not occur without
sufficiently strong SOC [2]. This is because the relatively small
Coulomb interaction is too weak to open a charge gap for these
systems with broad t2g bands at a 5/6 filling factor, such that the
systems would be either metals or band insulators. The SOC,
however, splits the t2g bands into J = 1/2 and J = 3/2 bands.
Four out of five electrons fill the lower J = 3/2 band, and
one electron half-fills the J = 1/2 band. Because the J = 1/2
band is relatively narrow, the Coulomb repulsion is sufficient
to open a charge gap in the J = 1/2 band and, therefore, a Mott
insulating state occurs. In an idealized system without lattice

distortions the magnetic degrees of freedom of this insulating
state can be described by the J = 1/2 Kramers doublet.

The superexchange Hamiltonians for layered iridium ox-
ides were first derived in the seminal paper by Jackeli and
Khalliulin [11]. They found that the superexchange Hamil-
tonian describing the coupling between J = 1/2 Kramers
doublet states on the square lattice, like in Sr2IrO4, is predomi-
nantly of isotropic Heisenberg superexchange character, while
anisotropic terms become relevant only in the presence of
lattice distortions. On the honeycomb lattice, like in Na2IrO3,
the interaction between J = 1/2 Kramers doublet states is
highly anisotropic even in the absence of lattice distortions.
The anisotropic part of the superexchange coupling has the
very peculiar form of the Kitaev interaction. This originates
from the competition between SOC and correlation effects,
and is nonzero only in the presence of Hund’s coupling.

In the present study, we go beyond this work and derive
effective superexchange spin Hamiltonians rigorously starting
from the exact eigenstates of the single-ion microscopic
Hamiltonian. Here, we will be primarily interested in the
magnetic properties of the insulating iridium oxides with
tetragonal symmetry, in which the Ir ions occupy a square
lattice, as in the case of Sr2IrO4. While this particular
compound is very interesting and has recently attracted much
attention [1–8,10–15], the approach proposed here cannot
only be easily used to understand the magnetic properties
of other iridates belonging to the Ruddlesden-Popper series
Srn+1IrnO3n+1, but can also be applied to systems with different
lattice geometries.

The magnetic properties of Sr2IrO4 are very unusual.
Below 240 K, Sr2IrO4 is a canted antiferromagnet with a
small in-plane ferromagnetic moment (∼0.1μB ) [1], which,
however, is one to two orders of magnitude larger than that
of the analogous canted antiferromagnet La2CuO4. Another
important experimental finding is that this canting disappears
with pressure [8]. These two observations indicate a very
strong coupling between magnetic properties and the crystal
lattice, which in the presence of SOC can be understood
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FIG. 1. (Color online) Ir-O-Ir bond in the presence of octahedra
rotations in one IrO2 layer. x and y are the global axes adopted for
the intermediate oxygen atoms. xA(B) and yA(B) are local axes on
sublattices A and B. (a) Local Z̃ orbital on Ir ion overlaps with py

oxygen orbital in the global reference frame. (b) Local Ỹ orbital on
Ir ion overlaps with pz oxygen orbital in the global reference frame.

through the coupling of orbital magnetization to the lattice.
Consequently, as the orbital magnetic moment contributes
to the total magnetic moment of Ir ions, there is a strong
dependence of the magnetic degrees on lattice degrees of
freedom.

Two types of lattice distortions are present in Sr2IrO4 even at
ambient pressure: tetragonal distortion and staggered rotation
of IrO6 octahedra (see Fig. 1). The staggered nature of the
IrO6 octahedra rotation leads to a doubling of the unit cell
and the formation of a two-sublattice structure. The tetragonal
distortion moves the electronic ground state away from the
strong SO limit J = 1/2 state by mixing J = 1/2 and J =
3/2 states. Thus in order to understand the magnetism of this
system, one needs first to understand the nature of the magnetic
degrees of freedom. In our approach we identify the magnetic
degrees of freedom by dealing with the exact eigenstates of
the full single-ion microscopic Hamiltonian, which includes
both SOC and CF interactions.

In this work, we will obtain dependencies of the magnetic
interactions on microscopic parameters characterizing the
system. In addition, we will study how the properties of
Sr2IrO4 depend on external pressure [8] and chemical sub-
stitution [9,34,35]. In particular, we will discuss the case when
iridium is substituted with rhodium [34,35]. Rh substitution,
unlike other chemical substitutions, does not change the band
filling. However, it varies the SOC, and the Coulomb and
Hund’s coupling strengths, because on one side the 4d orbitals
of Rh ions are less extended, tending to enhance the electronic
repulsion and thereby increasing correlation effects, and on
the other side, as Rh is a lighter ion, the SOC is smaller.
Thus, when the content of Rh increases, the overall balance of
on-site interactions changes, and as a result one might expect
the appearance of new magnetic phases and doping-driven
phase transitions. Although this direction has been recently
explored experimentally in a few cases [34,35], it still remains
to be investigated theoretically.

The paper is organized as follows. In Sec. II, we intro-
duce the single-ion microscopic model appropriate for the
description of the physical properties of the iridates and
rhodates, in which five electrons or, equivalently, one hole
occupy the threefold degenerate t2g orbitals and experience
strong SOC and crystal-field (CF) interactions. We first obtain
one-particle eigenstates taking into account only SOC and CF
interactions, and then compute two-particle excited eigenstates
fully considering correlation effects. In Sec. III we derive

an effective superexchange Hamiltonian by integrating out
the intermediate oxygen ions and performing a second order
perturbation expansion in the hopping parameters around the
atomic limit. In Sec. IV, we present our results on the magnetic
interactions and show how these interactions depend on
various microscopic parameters of the model. We also discuss
the application of the results obtained to real compounds.
Finally, in Sec. V a summary of the work is presented.

II. SINGLE-ION HAMILTONIAN

A. One-particle eigenstates

In Sr2IrO4, the Ir+4 ions are sitting inside an oxygen cage
forming an octahedron. The octahedral crystal field splits
the five 5d orbitals of Ir into a doublet of eg orbitals at
higher energy and into the low-lying threefold degenerate t2g

multiplet. In iridates, the energy difference between the eg and
t2g levels is large. Because of this, the five electrons occupy the
low lying t2g orbitals and the on-site interactions, such as the
SOC, Coulomb and Hund’s interactions, and the crystal-field
interactions, lowering the symmetry further, can be considered
within the t2g manifold only. In this limit, the SOC has to be
projected to the t2g manifold, resulting in an effective orbital
angular momentum L = 1.

It is more convenient to describe the low spin state of the d5

configuration of Ir+4 ions by using the hole description. In the
local axes bound to the oxygen octahedron the t2g orbitals of
Ir ions are |X〉 = |yz〉, |Y 〉 = |zx〉, and |Z〉 = |xy〉. Examples
of the lobe structure of the d-wave orbital |xy〉 of Ir are shown
in Fig. 1 (blue lobes). In the absence of interactions, these
one-hole states are completely degenerate. The SOC and CF
interactions, described by the single-ion Hamiltonian

Hλ,� = λ
−→
S · −→

L + �L2
z, (1)

give rise to a splitting of the levels according to the symmetry
of the underlying lattice. In the tetragonal system, the orbital
angular momentum basis is defined by |Lz = 0〉 = |Z〉 and
|Lz = ±1〉 = − 1√

2
(±|X〉 + ı|Y 〉), where the quantization axis

is taken along the tetragonal z axis. In the absence of
tetragonal distortion, the energy eigenstates are the angu-
lar momentum eigenstates |J,Jz〉. The full single-particle
Hilbert space is, thus, given by a six-component vector Ĵ =
{| 1

2 , 1
2 〉,| 1

2 , − 1
2 〉,| 3

2 , 3
2 〉,| 3

2 , 1
2 〉,| 3

2 , − 1
2 〉,| 3

2 ,−3
2 〉}. The vector Ĵ

can be expressed in terms of the basis set of t2g orbitals as

Ĵ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1√
3

0 − ı√
3

− 1√
3

0

− 1√
3

0 ı√
3

0 0 1√
3

− 1√
2

0 − ı√
2

0 0 0

0 − 1√
6

0 − ı√
6

√
2
3 0

1√
6

0 − ı√
6

0 0
√

2
3

0 1√
2

0 − ı√
2

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Â1, (2)

where Â1 = {|X↑〉,|X↓〉,|Y↑〉,|Y↓〉,|Z↑〉,|Z↓〉} is a six-
component vector and ↑ , ↓ indicate spin states. The ground
state is a Kramers doublet |J = 1

2 ,Jz〉 at energy E0 = −λ and
the excited state forms a quartet |J = 3

2 ,Jz〉 at energy E1 = 1
2λ.

However, in Sr2IrO4, the tetragonal distortion is present and is
not small. It arises because the oxygen octahedra are elongated
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along the z axis. In the hole representation, � = �tet > 0 and
the t2g orbitals are split into a singlet state |Z〉 with energy
−� and a doublet state (|X〉 and |Y 〉) with energy �/2. In
the presence of both the tetragonal distortion and the SOC, the
eigenfunctions of the Hamiltonian (1) are given by components
of a vector �̂ = {|�1〉,|�2〉,|�3〉,|�4〉,|�5〉,|�6〉}, which in
terms of t2g orbitals are given by

�̂ = M̂ tet
θ Â1, (3)

where

M̂ tet
θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
2
cθ 0 ı√

2
cθ sθ 0

− 1√
2
cθ 0 ı√

2
cθ 0 0 sθ

− 1√
2

0 − ı√
2

0 0 0

0 − 1√
2
sθ 0 − ı√

2
sθ cθ 0

1√
2
sθ 0 − ı√

2
sθ 0 0 cθ

0 − 1√
2

0 ı√
2

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, for shortness, we denote cθ = cos θ and sθ = sin θ . The
angle variable θ is determined by tan(2θ ) = 2

√
2 λ

λ−2�
and

takes care of the competition between the tetragonal distortion
and the SOC [11].

The eigenstates of the Hamiltonian (1) are given
by the following three doublets: the ground state dou-
blet (|�1〉 and |�2〉) with energy E(1,2) = 1

2 (� − λ
2 ) −

1
2

√
2λ2 + (� − λ

2 )2 = − λ√
2

cot θ , the intermediate dou-

blet (|�4〉 and |�5〉) with energy E(4,5) = 1
2 (� − λ

2 ) +
1
2

√
2λ2 + (� − λ

2 )2 = λ√
2

tan θ , and the upper doublet

(|�3〉 and |�6〉) with energy E(3,6) = � + λ
2 . Note that the

ground state doublet |�1〉 and |�2〉 is different from the
|J = 1

2 ,Jz〉 doublet as well as the Lz = 0 doublet.
In Sr2IrO4, there is also a staggered rotation of neighboring

oxygen octahedra by an angle ±α about the z axis [see
Figs. 1(a) and 1(b)] leading to the formation of a two-sublattice
structure. We denote these two sublattices as A and B. Because
the crystal-field interaction on Ir 5d orbitals is diagonal only
in the local cubic axes bound to the oxygen octahedron, in the
presence of the octahedra rotations, atomic states on sublattices
A and B have to be defined in the local basis. Then, the states
on sublattices A and B are given by

�̂A = M̂ tet
θ

⎛
⎜⎜⎜⎜⎜⎜⎝

|X̃↑e− ıα
2 〉

|X̃↓e
ıα
2 〉

|Ỹ↑e− ıα
2 〉

|Ỹ↓e
ıα
2 〉

|Z̃↑e− ıα
2 〉

|Z̃↓e
ıα
2 〉

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

and

�̂B = M̂ tet
θ

⎛
⎜⎜⎜⎜⎜⎜⎝

|X̃↑e
ıα
2 〉

|X̃↓e− ıα
2 〉

|Ỹ↑e
ıα
2 〉

|Ỹ↓e− ıα
2 〉

|Z̃↑e
ıα
2 〉

|Z̃↓e− ıα
2 〉

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

where the phase factors e± ıα
2 appear after the projection of the

spin states onto the local reference frame. Initially the spin
states are defined in the global reference frame.

B. Two-hole states in the presence of interactions, spin-orbit
coupling, and tetragonal distortion

The many-body part of the single-ion Hamiltonian is given
by the three-band Hubbard Hamiltonian of the form

Hint = U1

∑
i,α

niα↑niα↓ + 1

2
(U2 − JH )

∑
i,σ,α �=α′

niασ niα′σ

+U2

∑
i,α �=α′

niα↑niα′↓ + JH

∑
i,α �=α′

d
†
iα↑d

†
iα↓diα′↓diα′↑

− JH

∑
i,α �=α′

d
†
iα↑diα↓d

†
iα′↓diα′↑, (6)

where U1 and U2 are the Coulomb repulsion among electrons
in the same and in different t2g orbitals, respectively, and JH is
the Hund’s coupling constant. Due to the cubic symmetry, the
relation U1 = U2 + 2JH holds. The annihilation and creation
electron operators, diασ and d

†
iασ , refer to Ir orbitals at site

i, of type α (X, Y , or Z), and with spin σ =↑ , ↓ and
niασ = d

†
iασ diασ . In order to obtain Hint in the hole picture,

we substitute d†
ασ → aασ and nασ → 1 − hασ , where hασ =

a†
ασ aασ , and a†

ασ and aασ are the hole creation and annihilation
operators.

We first compute energy eigenvalues of Hint. We consider
ground states with one hole on the Ir ion and excited states,
in which the Ir ion can have two holes or no holes. The
corresponding energies are

E1h = 10U2,

E0h = 15U2,

E
(1)
2h = 6U2 − JH , (7)

E
(0)
2h = 6U2 + JH ,

E
(00)
2h = 6U2 + 4JH .

There are 6 × 5/2 = 15 partly degenerate two-hole states: six
spin singlets and three triplets. Let the vector |I〉 = |I; n〉
denote the two-hole eigenstates. It is convenient to represent
them using the cubic orbital basis,

Î = M̂2Â2, (8)

where

Â2 = {X↑X↓,X↑Y↑,X↑Y↓,X↑Z↑,X↑Z↓,X↓Y↑,X↓Y↓,

X↓Z↑,X↓Z↓,Y↑Y↓,Y↑Z↑,Y↑Z↓,Y↓Z↑,Y↓Z↓,Z↑Z↓}
is the two-hole orbital basis and the transformation matrix
M̂2 can be easily obtained. Explicitly, vector Î consists of the
following elements.

(i) Symmetric state with singlet pairs on the same orbital
S = 0,α = α′,

|I; 1〉 = 1√
3

(a†
X↓a

†
X↑ + a

†
Y↓a

†
Y↑ + a

†
Z↓a

†
Z↑)|vac〉,

with energy equal to E1 = E
(00)
2h = 6U2 + 4JH = Ed .

(ii) Two degenerate antisymmetric states with singlet pairs
on the same orbital S = 0,α = α′,

|I; 2〉 = 1√
2

(a†
X↓a

†
X↑ − a

†
Y↓a

†
Y↑)|vac〉
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|I; 3〉 = 1√
6

(a†
X↓a

†
X↑ + a

†
Y↓a

†
Y↑ − 2a

†
Z↓a

†
Z↑)|vac〉,

with energies equal to E2,3 = E
(0)
2h = 6U2 + JH = Es .

(iii) Three states with singlet pairs on different orbitals
S = 0,α �= α′,

|I; 4〉 = 1√
2

(a†
X↓a

†
Y↑ − a

†
X↑a

†
Y↓)|vac〉,

|I; 5〉 = 1√
2

(a†
Y↓a

†
Z↑ − a

†
Z↑a

†
Y↓)|vac〉,

|I; 6〉 = 1√
2

(a†
Z↓a

†
X↑ − a

†
X↑a

†
Z↓)|vac〉,

with E4,5,6 = E
(0)
2h = 6U2 + JH = Es .

(iv) Nine states with triplet pairs on different orbitals
S = 1,α �= α′,

|I; 7〉 = 1√
2

(a†
X↓a

†
Y↑ + a

†
X↑a

†
Y↓)|vac〉,

|I; 8〉 = a
†
X↑a

†
Y↑|vac〉,

|I; 9〉 = a
†
X↓a

†
Y↓|vac〉,

|I; 10〉 = 1√
2

(a†
Y↓a

†
Z↑ + a

†
Y↑a

†
Z↓)|vac〉,

|I; 11〉 = a
†
Y↑a

†
Z↑|vac〉,

|I; 12〉 = a
†
Y↓a

†
Z↓|vac〉,

|I; 13〉 = 1√
2

(a†
Z↓a

†
X↑ + a

†
Z↑a

†
X↓)|vac〉,

|I; 14〉 = a
†
Z↑a

†
X↑|vac〉,

|I; 15〉 = a
†
Z↓a

†
X↓|vac〉,

with energies E7,...,15 = E
(1)
4 = 6U2 − JH = Et . This gives

three different excitation energies:

�E1 = Ed + E0h − 2E1h = U2 + 4JH ,

�E2 = Es + E0h − 2E1h = U2 + JH , (9)

�E3 = Et + E0h − 2E1h = U2 − JH .

In the presence of the SOC and lattice distortions, the two-
hole states |I; n〉 are mixed, and the true two-hole eigenstates
are obtained by diagonalization of the full on-site Hamiltonian,

Hint+λ,� = Hint + Hλ,�. (10)

To this end, it is convenient first to represent the |I; n〉 states in
terms of the eigenstates of Hλ,�. The two-hole eigenstates of
the SOC part of the Hamiltonian are simply given by product

states |J ,μ〉 ≡ |J1,J1z; J2,J2z〉:
|J ,1〉 ≡ ∣∣ 1

2 , 1
2 ; 3

2 , 3
2

〉
,

|J ,2〉 ≡ ∣∣ 1
2 , − 1

2 ; 3
2 , 3

2

〉
,

|J ,3〉 ≡ ∣∣ 1
2 , 1

2 ; 3
2 , 1

2

〉
,

|J ,4〉 ≡ ∣∣ 1
2 , − 1

2 ; 3
2 , 1

2

〉
,

|J ,5〉 ≡ ∣∣ 1
2 , 1

2 ; 3
2 , − 1

2

〉
,

|J ,6〉 ≡ ∣∣ 1
2 , − 1

2 ; 3
2 , − 1

2

〉
,

|J ,7〉 ≡ ∣∣ 1
2 , 1

2 ; 3
2 , − 3

2

〉
,

|J ,8〉 ≡ ∣∣ 1
2 , − 1

2 ; 3
2 , − 3

2

〉
,

|J ,9〉 ≡ ∣∣ 1
2 , 1

2 ; 1
2 , − 1

2

〉
, (11)

|J ,10〉 ≡ ∣∣ 3
2 , 1

2 ; 3
2 , 3

2

〉
,

|J ,11〉 ≡ ∣∣ 3
2 , − 1

2 ; 3
2 , 3

2

〉
,

|J ,12〉 ≡ ∣∣ 3
2 , − 3

2 ; 3
2 , 3

2

〉
,

|J ,13〉 ≡ ∣∣ 3
2 , − 1

2 ; 3
2 , 1

2

〉
,

|J ,14〉 ≡ ∣∣ 3
2 , − 3

2 ; 3
2 , 1

2

〉
,

|J ,15〉 ≡ ∣∣ 3
2 , − 3

2 ; 3
2 , − 1

2

〉
.

In short, these states can be written as

|J ,μ〉 =
6∑

γ1,γ2=1

mμ
γ1,γ2

b†γ1
b†γ2

|vac〉, (12)

where μ = 1, . . . ,15 refers to the component of the vector Ĵ
and b†γ is an operator creating a hole of the type γ = 1, . . . ,6,

which refers to the component of the single-hole vector Ĵ . The
tensor m̂ has the following nonzero elements:

m1
1,3 = m2

2,3 = m3
1,4 = m4

2,4 = m5
1,5

= m6
2,5 = m7

1,6 = m8
2,6 = m9

1,2 = m10
4,3

= m11
5,3 = m12

6,3 = m13
5,4 = m14

6,4 = m15
6,5 = 1.

If, in addition to the SOC, the lattice distortion is present, the
two-hole states |J̃ ,μ〉 are given by the products of two |�n〉
states. The explicit form of the vector |J̃ ,μ〉 can be easily
obtained from Eq. (11) by the following substitution:

∣∣ 1
2 , 1

2

〉 → |�1〉,∣∣ 1
2 , − 1

2

〉 → |�2〉,∣∣ 3
2 , 3

2

〉 → |�3〉,
(13)∣∣ 3

2 , 1
2

〉 → |�4〉,∣∣ 3
2 , − 1

2

〉 → |�5〉,∣∣ 3
2 , − 3

2

〉 → |�6〉.
The complete Hamiltonian matrix has the same block diagonal
structure in the space of states |J ,μ〉 and |J̃ ,μ〉. Therefore,
below we will omit the tilde sign and use notations |J ,μ〉 in a
general sense.
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In the |J ,μ〉 basis, the Hamiltonian matrix is given by

〈J ,μ′|Hint+λ,�|J ,μ〉 = εμδμ′μ

+
15∑

n=1

En〈J ,μ′|I,n〉〈I,n|J ,μ〉, (14)

where εμ is the energy of the |J ,μ〉 state and the 〈J ,μ|I,n〉
denote components of the overlap matrix. The diagonalization
of (14) gives energy eigenstates of the full Hamiltonian,

|D,ξ 〉 =
15∑

μ=1

cξμ|J ,μ〉, (15)

where ξ = 1, . . . ,15 and cξμ denote the eigenvectors. We
denote the energy eigenvalues as Eξ . The block structure of
the Hamiltonian matrix is given in Appendix A. As a final
remark, we also note that in the limit JH = 0 and � = 0, the
Hamiltonian matrix (14) is diagonal with E1 = · · · = E8 =
−λ/2 + 6U2, E9 = −2λ + 6U2, and E10 = · · · = E15 = λ +
6U2.

III. DERIVATION OF THE SUPEREXCHANGE
HAMILTONIAN

In systems with tetragonal symmetry, the Ir-O-Ir bonds are
close to 180◦. In these systems, in general, the contribution to
the superexchange coupling from direct Ir-Ir hopping may
be neglected because the Ir ions are quite far from each
other. The dominant contribution to the superexchange is
from the hopping via intermediate oxygen ions, so-called
oxygen-assisted hopping. Because intermediate states with
two holes on the oxygen ion have high energy and, thus, can be
neglected, we may integrate out the oxygen degrees of freedom
to obtain an effective oxygen-assisted hopping between Ir
5d states. Then applying a second order perturbation theory
expansion in the effective hopping parameters, we obtain a
superexchange Hamiltonian in the following form:

Hex,n,n′ =
∑

ξ

1

εξ

PHt,n,n′Qξ,n′Ht,n′,nP , (16)

where

P =
∑

σn=±1

|1/2,σn/2; n〉〈n; 1/2,σn/2| (17)

is the projection operator onto the ground states with one hole
at site n. The projection operators onto two-hole intermediate
states |D,ξ ; n′〉 with excitation energy εξ at site n′ are then
given by

Qξ,n′ = |D,ξ ; n′〉〈n′; D,ξ | = D
†
ξ,n′Dξ,n′ . (18)

The excitation energies of the intermediate states are εξ =
E0h + Eξ − 2E1h.

The connection between the Kramers doublet ground states
at site n (γ = 1,2) and the full manifold of states at site n′
(γ ′ = 1,2, . . . ,6) is given by the projected hopping term:

PHt,n,n′ =
2∑

γ=1

6∑
γ ′=1

T
γ,γ ′
n,n′ b†n,γ bn′,γ ′ , (19)

where the elements of the matrix T
γ,γ ′
n,n′ describe an overlap

between |J,Jz〉 or |�γ 〉 states in the absence or in the presence
of the tetragonal distortion, respectively. Explicitly, these
matrices are derived in Appendix B. Next, we apply PHt,n,n′

to the D
†
ξ,n′ state and obtain

PHt,n,n′D
†
ξ,n′

=
2∑

γ=1

6∑
γ ′=1

T
γ,γ ′
n,n′ b†n,γ bn′,γ ′

15∑
ν=1

6∑
γ1,γ2=1

cξ,νm
ν
γ1γ2

b
†
n′,γ1

b
†
n′,γ2

=
2∑

γ,γ ′=1

6∑
γ1=1

15∑
ν=1

T
γ,γ1
n,n′ cξ,ν

(
mν

γ1γ ′ − mν
γ ′γ1

)
b†n,γ b

†
n′,γ ′ . (20)

Here the terms with b
†
n′,γ1

b
†
n′,γ2

for γ1,γ2 > 2 are projected out
by the operator Pn′ . Finally, using the following relation:

PHtQξ,n′HtP = [PHtD
†
ξ,n′ ][PHtD

†
ξ,n′ ]†, (21)

where

PHt,n,n′D
†
ξ,n′ =

∑
σ,σ ′=±1

A
ξ

σ,σ ′b
†
n,σ b

†
n′,σ ′ , (22)

with

A
ξ

n,n′;σ,σ ′ =
6∑

γ1=1

15∑
ν=1

T
σ,γ1
n,n′ cξ,ν

(
mν

γ1σ ′ − mν
σ ′γ1

)
, (23)

we write the exchange Hamiltonian as

Hex,n,n′ =
2∑

σ,σ ′=1

2∑
σ1,σ

′
1=1

15∑
ξ=1

× 1

εξ

{
A

ξ

n,n′;σ,σ ′b
†
n,σ b

†
n′,σ ′A

ξ

n′,n;σ ′
1,σ1

bn′,σ ′
1
bn,σ1

}
. (24)

We note that A
ξ

n′,n;σ ′,σ = (Aξ

n,n′;σ,σ ′ )∗. In the following, in
order to shorten notations, we omit the site indices denoting
A

ξ

n,n′;σ,σ ′ ≡ A
ξ

σ,σ ′ and A
ξ

n′,n;σ ′,σ ≡ (Aξ

σ,σ ′)∗. We also observe

that
∑

ξ
1
εξ

Aξ
σ,σ A

ξ
σ1,−σ1

= 0, since Aξ
σ,σ and A

ξ
σ1,−σ1

connect
different groups of states |D,ξ 〉 and are therefore “orthogo-
nal.” Defining operators Bnσσ ′ = b

†
n,σ bn,σ ′ , we may write the

superexchange Hamiltonian (24) in the form

Hex,n,n′ =
15∑

ξ=1

1

εξ

×{Aξ

↑↑(Aξ

↑↑)∗(Bn↑↑Bn′↑↑ + Bn↓↓Bn′↓↓)

+A
ξ

↑↓(Aξ

↑↓)∗(Bn↑↑Bn′↓↓ + Bn↓↓Bn′↑↑)

+A
ξ

↑↓(Aξ

↓↑)∗(Bn↑↓Bn′↓↑ + Bn↓↑Bn′↑↓)

+A
ξ

↑↑(Aξ

↓↓)∗(Bn↑↓Bn′↑↓ + Bn↓↑Bn′↓↑)}. (25)

Next, we introduce pseudospin operators Sα
n =

1
2

∑
σ,σ ′=±1 τα

σ,σ ′b
†
σ,nbσ ′,n with the Pauli matrices

τα
σ,σ ′ ,α = x,y,z and ρn = ∑

σ=±1 b
†
σ,nbσ,n and express
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operators Bnσσ ′ in terms of pseudospin operators as

Bn↑↑ = Sz
n + ρn,

Bn↓↓ = −Sz
n + ρn,

Bn↑↓ = S+
n , (26)

Bn↓↑ = S−
n .

This allows us to write the superexchange Hamiltonian (25)
on the bond n,n′ in terms of the magnetic degrees of freedom
of Ir4+ as

Hex,n,n′ = JzS
z
nS

z
n′ + JxS

x
nSx

n′ + JyS
y
nS

y

n′

−D
(
Sx

nS
y

n′ − Sy
nSx

n′
) + Wρnρn′ , (27)

where the coupling constants are given by the following
expressions:

Jz = −2
∑

ξ

1

εξ

[Aξ

↑↑(Aξ

↑↑)∗ + A
ξ

↓↓(Aξ

↓↓)∗

−A
ξ

↑↓(Aξ

↑↓)∗ − A
ξ

↓↑(Aξ

↓↑)∗], (28)

Jx = −2
∑

ξ

1

εξ

[Aξ

↑↑(Aξ

↓↓)∗ + A
ξ

↓↓(Aξ

↑↑)∗

+A
ξ

↑↓(Aξ

↓↑)∗ + A
ξ

↓↑(Aξ

↑↓)∗], (29)

Jy = 2
∑

ξ

1

εξ

[Aξ

↑↑(Aξ

↓↓)∗ + A
ξ

↓↓(Aξ

↑↑)∗

−A
ξ

↑↓(Aξ

↓↑)∗ − A
ξ

↓↑(Aξ

↑↓)∗], (30)

D = 2ı
∑

ξ

1

εξ

[Aξ

↑↓(Aξ

↓↑)∗ − A
ξ

↓↑(Aξ

↑↓)∗], (31)

W = −2
∑

ξ

1

εξ

[Aξ

↑↑(Aξ

↑↑)∗ + A
ξ

↓↓(Aξ

↓↓)∗

+A
ξ

↑↓(Aξ

↑↓)∗ + A
ξ

↓↑(Aξ

↓↑)∗]. (32)

The last interaction term W gives a constant energy shift and we
will omit it. It is also convenient to rewrite the remaining terms
introducing the following notations: δJz = Jz − Jy , δJxy =
Jx − Jy on x bond and δJz = Jz − Jx , δJxy = Jy − Jx on y

bond. Then, Hex,n,n′ can be written as

Hex,n,n′ = JSnSn′ − D
(
Sx

nS
y

n′ − Sy
nSx

n′
)

+ δJzS
z
nS

z
n′ + δJxy(Sn · rn,n′ )(Sn′ · rn,n′ ), (33)

where rn,n′ is the unit vector along the n,n′ bond. In this form
the nature of interactions between pseudospin moments S is
more clear. The first term describes the Heisenberg isotropic
interaction with a coupling constant J = Jy on the x bond. We
note that for any possible set of microscopic parameters, the
isotropic exchange is the dominant exchange and has AFM
nature. The second term is a Dzyaloshinsky-Moriya (DM)
interaction with a coupling constant D, which leads to a spin
canting in the xy plane proportional to the ratio D/J . The
third term describes an additional Ising-like interaction of z

components of spins. δJz > 0 favors AFM ordering of spins
along the z axis and works as an easy axis anisotropy. δJz < 0
supports FM ordering of spins along the z axis and works
as an easy plane anisotropy. The last term is a pseudodipolar
interaction. Finally, the total superexchange Hamiltonian is
given by

H =
∑
〈n,n′〉

Hex,n,n′ , (34)

where summation is over all bonds of the lattice.

IV. RESULTS AND DISCUSSIONS

A. Application to Sr2IrO4

Below we present our results on how the exchange coupling
constants Jx,Jy,Jz and anisotropic couplings δJxy,δJz and D

depend on the microscopic parameters of the system. We first
note that the main role of the Coulomb repulsion is to determine
the overall energy scale for the couplings. In all computations
we take U2 = 1.8 eV, which lays inside the range of values,
1.5–2.5 eV, characteristic for iridates [13,15]. We will mostly
set the SOC constant to be equal to λ = 0.4 eV—the value
associated with Ir ions in the literature; however, we will also
consider the smaller value λ = 0.22 eV, which was suggested
in the experimental work by Haskel et al. [8].

Sr2IrO4 is also characterized by various structural distor-
tions, the most important of which are the tetragonal distortion
and rotations of the oxygen octahedra. Both of them are present
even at ambient pressure. In calculations we either consider
the tetragonal distortion and the angle of rotation to be equal to
� = 0.15 eV and α = 0.2 rad, respectively, or we study how
the exchange parameters depend on these quantities.

Finally, we consider the hopping parameter between Ir ions
to be equal to teff = 0.13 eV, which is slightly lower than
the values 0.2–0.3 eV suggested by ab initio calculations.
These values of hoppings give too large values of exchange
couplings if all other parameters are set as we described above.
We believe, however, that hopping parameters obtained within
density functional theory are often reduced when correlations
are taken into account.

The effect of Hund’s coupling. In Fig. 2(a) we plot
the anisotropic couplings δJxy,δJz and the DM interaction
constant D as functions of Hund’s coupling, JH , in the absence
of octahedral rotations, α = 0. In this case, the components of
the vectors A

ξ

σ,σ ′ (23) satisfy the following conditions:

∑
ξ

1

εξ

(Aξ

↑↑)2 =
∑

ξ

1

εξ

(Aξ

↓↓)2,

(35)∑
ξ

1

εξ

(Aξ

↑↓)2 =
∑

ξ

1

εξ

(Aξ

↓↑)2.

This symmetry reflects the fact that in the absence of the
octahedra rotations there is no spin dependent hopping and,
consequently, no DM interaction. The anisotropic terms δJz

and δJxy are also zero at α = 0 and JH = 0 eV, but they acquire
finite values at JH �= 0. We note that the Ising-like interaction,
δJz < 0, makes the xy plane the pseudospin’s easy plane.

In Fig. 2(b) we plot the exchange couplings Jx,Jy,Jz

as functions of the Hund’s coupling. On the x bond, the
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FIG. 2. (Color online) (a) Anisotropic exchange couplings δJxy,δJz and the DM constant D in meV (shown by red diamond, green circle,
and blue square lines, respectively) as functions of Hund’s coupling, JH . (b) The exchange couplings Jx,Jy,Jz in meV (shown by gray square,
cyan circle, and magenta diamond lines, respectively) as functions of Hund’s coupling, JH . The microscopic parameters of the model are
considered to be α = 0 rad, � = 0.15 eV, U2 = 1.8 eV, λ = 0.4 eV, and teff = 0.13 eV.

isotropic exchange J = Jy . It is antiferromagnetic for all
considered values of JH and its strength varies in the range
J ∈ (78–95) meV for JH ∈ (0–0.5) eV. This compares well
not only with an estimate J = 51 meV obtained by ab initio
many-body quantum-chemical calculations [36], but also with
experimental findings in Sr2IrO4, for which resonant inelastic
x-ray scattering [5] and resonant magnetic x-ray diffuse
scattering measurements [7] indicate the isotropic exchange
to be J � 60 meV and J � 100 meV, respectively.

The effect of staggered rotations of IrO6 octahedra. The
dependencies of the anisotropic couplings δJxy,δJz and D

and the exchange constants Jx,Jy,Jz on the strength of the
staggered rotations of the IrO6 octahedra, α, are presented in
Figs. 3(a) and 3(b). We first note that the isotropic exchange
coupling J = Jy ∈ (64–87) meV remains in good agreement
with experimental estimates in the whole range of values of
α considered. However, most importantly, the DM interaction
becomes the dominant anisotropy even at small α. At α � 0.2
rad (11.5◦), the DM interaction is already about 23 meV, which
roughly corresponds to one-third of the isotropic interaction
[see Fig. 3(b)]. Such a large ratio between the DM interaction
and the isotropic Heisenberg exchange is very unusual and has
never been observed in 3d transition metal oxides.

The other anisotropic interactions, both the pseudodipolar
in-plane interaction, δJxy , and the Ising-like term, δJz, remain

relatively small at finite values of α. We note that δJz changes
sign above some angle of octahedra rotation, αc � 0.1 rad, but,
as it remains a subdominant interaction, the magnetic moments
remain lying in the xy plane.

The effect of tetragonal distortion. Significant changes in
the superexchange parameters are caused by the tetragonal
distortion. At ambient pressure the tetragonal distortion is
about � � 0.1 eV; however, larger values can be easily reached
under pressure [8]. In Fig. 4(a) we plot the dependencies
of the anisotropic exchange couplings δJxy,δJz and the DM
coupling, D, on the strength of the tetragonal distortion,
�. An increased tetragonal distortion leads to a substantial
decrease of both D and δJz, but the overall hierarchy of
anisotropic interactions remains the same. We see that if α was
not changing under pressure, the magnetic anisotropy would
remain an easy plane anisotropy for all values of the tetragonal
distortion.

In Fig. 4(b) we present the results on how the isotropic
exchange depends on � at different values of α. We see
that the isotropic part of the exchange coupling increases
with increasing strength of the tetragonal distortion. We also
see that its dependence on � has a quantitatively similar
character for all α, with the largest values of J reached at
α = 0. Importantly, for all values of α and �, the isotropic
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15
20
25
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85

JX,JY,JZ
b

FIG. 3. (Color online) (a) Anisotropic exchange couplings δJxy,δJz and DM constant D in meV (shown by red diamond, green circle, and
blue square lines, respectively) and (b) the exchange couplings Jx,Jy,Jz in meV (shown by gray square, cyan circle, and magenta diamond
lines, respectively) as functions of the rotation angle α. The other microscopic parameters are considered to be � = 0.15 eV, U2 = 1.8 eV,
JH = 0.3 eV, λ = 0.4 eV, and teff = 0.13 eV.
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FIG. 4. (Color online) (a) Anisotropic exchange couplings δJxy,δJz and DM constant D in meV (shown by red diamond, green circle, and
blue square lines, respectively) as functions of the tetragonal CF splitting computed for α = 0.2 rad. (b) The dependencies of the isotropic
exchange J on the strength of the tetragonal CF splitting �. Green square, orange circle, blue diamond, and magenta triangle lines correspond
to α = 0, 0.1, 0.2, and 0.3 rad, respectively. The other parameters are λ = 0.4 eV, U2 = 1.8 eV, JH = 0.3 eV, and t = 0.13 eV.

exchange remains the dominant interaction with respect to the
anisotropic terms.

Magnetic phase diagram. Finally, we compute a magnetic
phase diagram of the model (33). The model allows for two dis-
tinct magnetic phases: a coplanar (or collinear) two-sublattice
antiferromagnet with spins lying in the xy plane and a collinear
phase with spins pointing along the c axis. The coplanar phase
is characterized by a spin canting angle φ, which is simply
given by φ = 1/2 tan−1 (D/J ). The dependence of the spin
canting angle φ (in units of α) on � computed for α = 0.2 rad,
corresponding to the angle of octahedral rotations at ambient
pressure, and JH = 0.3 is presented in Fig. 5(c). We can see
that in the cubic case, � = 0, the ratio φ/α is equal to unity
and, therefore, spins are canted exactly like the IrO6 octahedra.
At finite �, the ratio φ/α is smaller than one, suggesting that
in the presence of the tetragonal distortion the spin structure
has an additional rigidity with respect to canting.

A magnetic structure can be determined by minimizing the
classical energy taking into account all exchange couplings

present in the model. Assuming that in the presence of a
staggered rotation of oxygen octahedra, the magnetic structure
is defined by two magnetic sublattices, A and B, and that the
orientation of the magnetic moments can be described with the
help of four angles, θA,θB,φA,φB , we can write the classical
energy as

Ecl(θA,θB,φA,φB) = Jz cos θA cos θB

+ (Jx + Jy)

2
sin θA sin θB(cos φA cos φB + sin φA sin φB)

−D sin θA sin θB(cos φA sin φB − sin φA cos φB). (36)

One can easily check that the contribution of the pseudodipolar
interaction to the classical energy cancels out. Thus, for any
set of microscopic parameters, the classical ground state is
determined by the competition between the DM interaction
and the Ising-like anisotropy in the presence of a dominating
AFM isotropic exchange.
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FIG. 5. (Color online) Mean field magnetic phase diagram in the parameter space of rotation angle α and the SOC coupling λ computed (a)
in the absence of the tetragonal distortion, � = 0, eV and (b) in the presence of the tetragonal distortion, � = 0.15 eV. In both parameter sets,
the obtained magnetic structure is coplanar antiferromagnet with varying spin canting angle φ = [π − (φA − φB )]/2, where φA and φB are the
polar angles of spins on sublattices A and B. The color on the plots indicates the scale for which the angle φ changes with dark blue being the
smallest and gray being the highest value of the angle φ. The canted spin order is stabilized by a staggered rotation of oxygen tetrahedra in the
presence of the SOC. (c) The dependence of the spin canting angle φ = 1/2 tan−1 (D/J ) (in units of α) on the strength of the tetragonal CF
splitting � computed for λ = 0.22 eV (orange square line) and λ = 0.4 eV (purple circle line). The other microscopic parameters are chosen
to be U2 = 1.8 eV, JH = 0.3 eV, teff = 0.13 eV, and α = 0.2 rad.
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In Figs. 5(a) and 5(b) we present a mean field magnetic
phase diagram, where for each set of parameters the magnetic
structure is determined by minimizing Ecl with respect to
θA,θB,φA,φB . We considered two cases: Fig. 5(a) displays a
phase diagram computed in the absence of tetragonal distortion
(� = 0 eV) and Fig. 5(b) displays a phase diagram computed
in the presence of the tetragonal distortion (� = 0.15 eV).
In both cases we considered the Hund’s coupling to be
equal to JH = 0.3 eV. Both phase diagrams contain only
the coplanar antiferromagnet with varying canting angle φ =
[π − (φA − φB)]/2, where φA and φB are polar angles of spins
on sublattices A and B. The color on the plots indicates the
magnitude scale of the angle φ: dark blue colors correspond
to the smallest and light gray colors correspond to the highest
values of the angle φ. As we discussed above, in the absence
of the tetragonal distortion, the canting of magnetic moments
rigidly follows the octahedral rotation and the canting angle
φ is exactly equal to the rotation angle α for all values of the
SOC strength [see Fig. 5(a)]. However, once the tetragonal
distortion is present, the canting angle φ becomes smaller than
α. Moreover, the ratio φ/α decreases with decrease of the SOC
constant [see Fig. 5(b)].

We have to note that our findings are not in full agreement
with the phase diagram presented by Jackeli and Khalliulin
in Ref. [11], which shows that at large values of tetragonal
distortion the spin-flop transition from the in-plane canted
spin state happens to a collinear antiferromagnetic order
along the z axis. Instead, we found that at the considered
set of parameters the tetragonal distortion may lead to a
disappearance of the ferromagnetic moment and a stabilization
of the antiferromagnetic order in the easy xy plane.

Our findings are, however, in qualitative agreement with
both pressure experiments in Sr2IrO4 [8] and the x-ray
resonant magnetic scattering study comparing the magnetic
and electronic structures of Sr2IrO4 and Ba2IrO4 [9]. The first
study shows that when the tetragonal distortion due to pressure
becomes relatively strong, about 17 GPa, the ferromagnetic
order disappears. This magnetic transition was not attributed
to the gradual disappearance of the IrO6 rotations under
pressure, because it would have likely resulted in some kind
of structural transition which was not observed. They also
found that the application of pressure up to at least 40 GPa
does neither destroy the insulating behavior nor, probably,
the antiferromagnetic order. However, the direction of the
antiferromagnetic order parameter was not determined. The
second study shows the general robustness of the basal-plane
antiferromagnetic order in single-layer iridates. They found
that, in both Sr2IrO4 and Ba2IrO4, the antiferromagnetic
component is oriented along the [110] direction despite the fact
that moving from Sr2IrO4 to Ba2IrO4 the tetragonal distortion
is nearly doubled.

B. Application to Sr2Ir1−xRhxO4

In this section we take a look at the properties of the
Sr2Ir1−xRhxO4 family of compounds, which results from
substituting Sr2IrO4 by Rh ions [34]. Doping iridates with
Rh ions does not change the band filling since Rh and
Ir are in the same family of elements. However, the 4d

orbitals of Rh are smaller than the 5d orbitals of Ir, which

leads to a higher Coulomb repulsion, Hund’s coupling, and
tetragonal CF splitting. Smaller atoms (such as Rh) also
have reduced relativistic effects, including SO coupling. The
effective hopping is reduced both due to a smaller overlap of
the less extended 4d orbitals as well as due to the increased
Coulomb repulsion. All of this increases the importance of
correlation effects and CF splitting as compared to that of
SOC.

We also note that Sr2RhO4, the limiting case of Rh
doping, shares with Sr2IrO4 the structural feature of staggered
octahedra rotations about the axis perpendicular to the Rh/Ir
planes. The angles of rotation are similar to each other:
∼9.4◦ for Sr2RhO4 and ∼12◦ for Sr2IrO4 [34]. This structure
is preserved at intermediate levels of doping. As a result
in the doped compounds the same interaction components
are present as in pure Sr2IrO4 (Coulomb, Hund, SOC, CF,
oxygen-assisted hopping, and lattice distortions). Thus we
expect the magnetic Hamiltonian to have the same structure
of interactions. What changes is the overall energy balance of
on-site interactions, which in the Rh-doped iridates eventually
leads to the appearance of different magnetic phases compared
to those in pure iridium compounds.

Let us note that a reduced hopping simply leads to a
decrease of the energy scale of all interactions (both the
isotropic term and the anisotropies). The effects of reduced
SOC are more intricate since SOC is the only interaction that
mixes the orbital and the spin degrees of freedom of the holes.
Thus we also expect the energy scale of the anisotropies to be
reduced as compared to the isotropic term. This, however, does
not diminish the importance of the anisotropic terms as their
essential role is to break the SU(2) symmetry of the isotropic
interaction.

In Figs. 6(a) and 6(c) we plot the dependencies of the
anisotropic and isotropic interactions, respectively, on the
strength of λ. We adjust all other parameters in accordance
with the rhodium doping picture discussed above: � = 0.2 eV,
α = 0.2 rad, JH = 0.5 eV, U2 = 2.5 eV, and teff = 0.1 eV.
A similar set of parameters might be realized at low Rh
doping. As expected, the overall energy scale of the magnetic
interactions is decreased due to Coulomb repulsion and smaller
hopping. In Fig. 6(a) we also see that once the SOC becomes
too small relative to other interactions to effectively mix the
orbital and spin degrees of freedom the anisotropic interactions
quickly drop and reach zero in the limit of no SOC.

The behavior of the isotropic interaction is more interesting
as it is weakly nonmonotonic as a function of SO coupling.
This can be explained when we look at different values of �.
Gray, cyan, and magenta lines in Fig. 6(c) show the isotropic
interaction corresponding to � = 0.1, 0.2, and 0.3 eV, respec-
tively. Since cubic orbitals have different hopping amplitudes
due to the staggered rotations of the octahedra and the orbital
symmetries (see Appendix B), the orbital composition of the
ground state also determines the isotropic part of the exchange
Hamiltonian. As the orbital composition is very sensitive to
the interplay between the SOC and the CF, the small changes
in their relative contribution lead to a nonmonotonic behavior
of J .

Figure 6(b) shows the dependence of the DM anisotropy
on the staggered rotation angle α computed for λ = 0.2, 0.3,
and 0.4 eV (respectively, black, cyan, and blue lines). As is
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FIG. 6. (Color online) (a) Anisotropic exchange couplings δJxy,δJz and the DM constant D (in meV) as functions of SOC constant λ

shown by red diamond, green circle, and blue square lines, respectively. (b) The DM constant D (in meV) as function of rotation angle α. Black
square, cyan circle, and blue diamond lines correspond to λ = 0.2, 0.3, and 0.4 eV, respectively. (a),(b) The tetragonal field is considered to
be equal to � = 0.2 eV. (c) The isotropic exchange J (in meV) and (d) the spin canting angle φ (in units of α) as functions of SOC constant
λ. Gray square, cyan circle, and magenta diamond lines correspond to � = 0.1, 0.2, and 0.3 eV, respectively. (a),(c),(d) The rotation angle is
considered to be equal to α = 0.2 rad. The remaining parameters are JH = 0.5 eV, U2 = 2.5 eV, and teff = 0.1 eV.

the case for the pure Sr2IrO4 compound the DM interaction
depends heavily on the angle but, as we discussed above, the
overall range of DM interactions is smaller.

Finally, in Fig. 6(d) we present the spin canting angle
φ (in units of α) as a function of the SOC constant λ for
various values of the tetragonal distortion �. As expected, the
canting angle is zero in the limit of zero SOC and is increasing
with increasing λ, demonstrating the key role of SOC in the
entanglement of the spin and lattice degrees of freedom. As
we discussed above, the spin canting angle is suppressed by
the tetragonal distortion.

Our findings are in a qualitative agreement with experi-
mental findings for the Sr2Ir1−xRhxO4 family of compounds
showing that Rh doping rapidly suppresses the magnetic
transition temperature TC from 240 K at x = 0 to almost
zero at x = 0.16 [34]. The disappearance of long range
magnetic order at small doping in real compounds is a rather
complicated phenomenon, related to both the reduction of
magnetic interactions but also to the more metallic behavior of
doped compounds. This aspect, however, cannot be considered
in our approach based on the assumption of a Mott insulator.
We can only speculate that in Rh-doped iridates the splitting
between the J = 1/2 and the J = 3/2 states is substantially
smaller than in pure iridium systems and, consequently, these
two manifolds are strongly mixed by both Hund’s coupling
and tetragonal CF. The latter leads to a wider bandwidth and
more metallic behavior. Interestingly, at high Rh doping, the
system again becomes insulating, however for rather different

reasons. There is an energy level mismatch for the Rh and Ir
sites that makes the hopping of the carriers between Rh and Ir
ions more difficult. The randomness of the Rh/Ir occupations
gives rise to Anderson localization and an insulating state [34].
The magnetically ordered phase reappeared at x > 0.4, but
because of frustration it has rather low ordering temperature
TC of the order half a kelvin. This magnetic phase needs to be
studied in detail both experimentally and theoretically.

V. CONCLUSION

In this paper we provided a theoretical framework for
the derivation of the effective superexchange Hamiltonian
governing magnetic properties of transition metal oxides with
partially filled 4d and 5d shells. We particularly focused on
iridates and rhodates—materials which exhibit a rich variety
of behavior owing to the interplay of correlation effects,
strong SOC, and lattice distortions. Our approach allows
one to relate the nontrivial magnetic behavior observed in
these materials to their microscopic parameters. We show
that the pseudospin superexchange interactions governing the
magnetic properties of this class of insulating materials have
anisotropic components of unusual types, leading not only to
a dimensional reduction in pseudospin space (i.e., easy plane
or easy axis anisotropy), but also to the chiral DM interaction
and to additional frustration by bond-dependent interactions.

How to derive exchange couplings from a given Hubbard-
type Hamiltonian in the Mott-insulating regime is generally

035143-10



INTERPLAY OF MANY-BODY AND SINGLE-PARTICLE . . . PHYSICAL REVIEW B 89, 035143 (2014)

well understood. What gives rise to a certain complexity
in our case is the combination of interactions and single-
particle energy shifts operating in different Hilbert subspaces.
We restrict our consideration to the case of a ground state
configuration of a single hole per transition metal ion in a
pseudospin doublet state in one of the d-orbital multiplets.
The exchange process then involves intermediate states with
either zero holes or two holes. The latter states are governed
by the Coulomb interaction components, especially the Hund’s
coupling. These ionic eigenstates need to be constructed and
must be projected onto the single-particle states describing
the hopping processes. The resulting exchange couplings
are then given by summation over all relevant intermediate
eigenstates of the corresponding hopping element squared over
the excitation energy of the intermediate state.

The proposed theoretical approach can be applied to
compute exchange couplings in iridium and rhodium oxides
with different lattice geometries. Many of these systems have
been suggested as candidates for either interesting magnetic
orders or spin-liquid behavior in the Mott insulator regime.
Although the approach is quite general and can be applied to a
variety of compounds, in this paper we focused on the single-
layer Sr2IrO4 and Sr2Ir1−xRhxO4 compounds, which have
received much attention recently. For these systems we first
derive the isotropic and anisotropic interactions analytically
and then study their dependencies on microscopic parameters
such as Hund’s and SOC coupling, and the strength of the
lattice distortions.

Our results are the following. First, the overall strengths of
the exchange couplings calculated by us appear to be in good
agreement with experimental data, where available. While the
Ising-like and pseudospin anisotropic interactions are typically
not larger than 10% of the isotropic exchange, the DM coupling
is unusually large. It may be as large as 50% of the isotropic
exchange coupling for realistic values of the octahedra rotation
angle. This emphasizes the importance of the SOC.

We computed the magnetic phase diagram of the model
in the approximation of treating the pseudospins as classical
objects. We show that for the parameter set most closely
corresponding to the actual microscopic parameters of Sr2IrO4,
the magnetic ground state of this compound is a coplanar
canted antiferromagnet. This finding is in agreement with the
experimental observation of the weak ferromagnetic moment
accompanying the ground-state antiferromagnetic order in
Sr2IrO4. We computed the spin canting angle and show that
its magnitude scales with the angle of the staggered rotations
of the IrO6 octahedra, as observed experimentally.

Finally, we studied how the properties of the pure iridium
systems are changed with Rh doping. We show that Rh
doping significantly modifies the hierarchy of many-body and
single-particle interactions: the weaker SOC combined with
a stronger Coulomb interaction on Rh sites lead to overall
smaller magnetic interactions and a weaker coupling between
magnetic and structural degrees of freedom.
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APPENDIX A: STRUCTURE OF THE
HAMILTONIAN MATRIX (14)

The block structure of the Hamiltonian matrix has the
following form. States |J ,1〉 and |J ,10〉 form the first block.
The eigenstates are

|D,1〉 = c1,1|J ,1〉 + c1,10|J ,10〉,
(A1)

|D,10〉 = c10,1|J ,1〉 + c10,10|J ,10〉,
where c1,1, c1,10, c10,1, and c10,10 are the components of eigen-
vectors which are obtained by diagonalizing (14). We denote
the eigenvalues of this block as E1 and E10.

The second block involves states |J ,8〉 and |J ,15〉. The
Hamiltonian matrix for (8,15) is identical to the one for (1,10).
Therefore,

|D,8〉 = c8,8|J ,8〉 + c8,15|J ,15〉,
(A2)

|D,15〉 = c15,8|J ,8〉 + c15,15|J ,15〉,
with c8,8 = c1,1, c15,15 = c10,10, c8,15 = c1,10, and c15,8 = c10,1.
The eigenenergies of this block are simply E8 = E1 and
E15 = E10.

The third block involves the three states
|J ,2〉, |J ,3〉, and |J ,11〉. The eigenstates are given
by

|D,2〉 = c2,2|J ,2〉 + c2,3|J ,3〉 + c2,11|J ,11〉,
|D,3〉 = c3,2|J ,2〉 + c3,3|J ,3〉 + c3,11|J ,11〉, (A3)

|D,11〉 = c11,2|J ,2〉 + c11,3|J ,3〉 + c11,11|J ,11〉,
and eigenvalues are E2, E3, and E11.

The fourth block consists of (7,6,14) states and is equivalent
to the (2,3,11) block. The eigenstates are given by

|D,7〉 = c7,7|J ,7〉 + c7,6|J ,6〉 + c7,14|J ,14〉,
|D,6〉 = c6,7|J ,7〉 + c6,6|J ,6〉 + c6,14|J ,14〉, (A4)

|D,14〉 = c14,7|J ,7〉 + c14,6|J ,6〉 + c14,14|J ,14〉.
The fifth block consists of (4,5,9,12,13) states. The eigen-

states are given by

|D,4〉 = c4,4 |J ,4〉 + c4,5 |J ,5〉 + c4,9 |J ,9〉 + c4,12 |J ,12〉 + c4,13 |J ,13〉 ,

|D,5〉 = c5,4 |J ,4〉 + c5,5 |J ,5〉 + c5,9 |J ,9〉 + c5,12 |J ,12〉 + c5,13 |J ,13〉 ,

|D,9〉 = c9,4 |J ,4〉 + c9,5 |J ,5〉 + c9,9 |J ,9〉 + c9,12 |J ,12〉 + c9,13 |J ,13〉 ,
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|D,12〉 = c12,4 |J ,4〉 + c12,5 |J ,5〉 + c12,9 |J ,9〉 + c12,12 |J ,12〉 + c12,13 |J ,13〉 ,

|D,13〉 = c13,4 |J ,4〉 + c13,5 |J ,5〉 + c13,9 |J ,9〉 + c13,12 |J ,12〉 + c13,13 |J ,13〉 . (A5)

Note that the same block structure survives in the presence of
the lattice distortions.

APPENDIX B: HOPPING OPERATOR
FOR 180◦ Ir-O-Ir BOND

We first consider the hopping operator on the square lattice
in the simplest case with no tetragonal distortion, � = 0,
and no rotations of the IrO6 octahedra. Without loss of
generality we consider x bonds, and then using symmetry
arguments we obtain transfer matrix elements along y bonds.
Along an x bond the hopping occurs either through py or pz

orbitals of oxygen. The py orbital overlaps with |Z〉 = |xy〉
and pz orbital overlaps with |Y 〉 = |zx〉 orbitals of iridium.
Correspondingly, we denote the hopping amplitudes as tZ,y

and tY,z. However, on the undistorted lattice tZ,y = tY,z and
to simplify notations we denote the hopping amplitude as
t . Integrating over the oxygen ions, the effective hopping
between Ir ions can be approximated as teff = t2/�pd , where
�pd is the charge-transfer gap. In our calculations we consider
teff = 0.13 eV. The effective hopping Hamiltonian between Ir
ions along the x bond is then given by

Hx
t = teff

∑
n

(
a
†
Zσ,naZσ,n+x + a

†
Yσ,naYσ,n+x + H.c.

)
. (B1)

Expressing operators a
†
Zσ,n, etc., in terms of b

†
γ,n operators, we

get

Hx
t =

∑
n

∑
γ,γ ′

T
γ,γ ′
n,n+x(b†n,γ bn+x,γ ′ + H.c.), (B2)

where the elements of the effective transfer matrix, T
γ,γ ′
n,n+x ,

between γ and γ ′ orbitals can be written as

T
γ,γ ′
n,n+x = teff

(
τ

γ,γ ′
Z + τ

γ,γ ′
Y

)
. (B3)

Here we use the following notation:

τ
γ,γ ′
Z = γ ′ 〈J,Jz|T̂ |py

σ 〉〈py
σ |T̂ |J,Jz〉γ ,

(B4)
τ

γ,γ ′
Y = γ ′ 〈J,Jz|T̂ |pz

σ 〉〈pz
σ |T̂ |J,Jz〉γ ,

where T̂ are hopping operators connecting neighboring Ir and
O orbitals. In matrix form τZ,τY are given by

τ̂Z = 1

3

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 −√
2 0 0

0 1 0 0
√

2 0
0 0 0 0 0 0

−√
2 0 0 2 0 0

0
√

2 0 0 2 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(B5)

and

τ̂Y = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0
√

2 0 −√
6

0 2
√

6 0 −√
2 0

0
√

6 3 0 −√
3 0√

2 0 0 1 0 −√
3

0 −√
2 −√

3 0 1 0
−√

6 0 0 −√
3 0 3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B6)

In the presence of tetragonal distortion and octahedra
rotations, as in the case of Sr2IrO4, the transfer matrix elements
are more conveniently described using the global coordinate
system. The hopping between γ and γ ′ states is then given by

T̄
γ,γ ′
n,n+x = teff

(
τ̄

γ,γ ′
Z + τ̄

γ,γ ′
Y

)
, (B7)

where modified transfer matrices are defined as

τ̄
γ,γ ′
Z = γ ′ 〈�B |T̂ |py

σ 〉〈py
σ |T̂ |�A〉γ , (B8)

τ̄
γ,γ ′
Y = γ ′ 〈�B |T̂ |pz

σ 〉〈pz
σ |T̂ |�A〉γ .

Explicitly, ˆ̄τZ and ˆ̄τY are given by

ˆ̄τZ = c2
α

⎛
⎜⎜⎜⎜⎜⎝

s2
θ 0 0 sθ cθ 0 0
0 s2

θ 0 0 sθ cθ 0
0 0 0 0 0 0

sθ cθ 0 0 c2
θ 0 0

0 sθ cθ 0 0 c2
θ 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(B9)

and

ˆ̄τY = 1

2

⎛
⎜⎜⎜⎜⎜⎝

c2
θ e

2ıα 0 0 −sθ cθ 0 cθe
2ıα

0 c2
θ e

−2ıα −cθe
−2ıα 0 −sθ cθ 0

0 −cθe
−2ıα e2ıα 0 sθ 0

−sθ cθ 0 0 s2
θ e

2ıα 0 −sθ

0 −sθ cθ sθ 0 s2
θ e

−2ıα 0
cθe

−2ıα 0 0 −sθ 0 e−2ıα

⎞
⎟⎟⎟⎟⎟⎠

. (B10)
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