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Tunable all-angle negative refraction using antiferromagnets
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We show how all-angle negative refraction can occur in a uniaxial antiferromagnet close to the magnon
resonance frequency. This behavior is based on the fact that, in such cases, the antiferromagnet acts as an
indefinite permeability medium, i.e., not all its permeability tensor components are of the same sign. If an
external magnetic field is applied, the angle of refraction becomes tunable, and can be made to change sign.
We illustrate these effects using the example of MnF2 at low temperature, and show that in this system negative
refraction should occur with a large figure of merit.

DOI: 10.1103/PhysRevB.89.035135 PACS number(s): 42.25.Bs, 71.36.+c, 78.20.Ls

I. INTRODUCTION

When a beam of electromagnetic radiation passes from
vacuum (or air) to a negatively refracting medium, it returns to
the same side of the surface normal as the incident beam [1].
With a suitable medium, this is possible for all incident
angles, both positive and negative, and the resulting effect
is referred to as all-angle negative refraction. Although studies
of this phenomenon have traditionally concentrated on double-
negative media in which both the permittivity and permeability
are negative [2,3], one of the simplest ways of inducing
all-angle negative refraction is to make use of anisotropic
indefinite media, in which the permittivity or permeability
tensor of the refracting medium contains principal components
having opposing signs, leading to a hyperbolic dispersion
relation [4,5]. We stress here that the wave vector and power
flow directions are not parallel in anisotropic media. The beam
direction is determined by power flow direction, and we define
positive or negative refraction accordingly.

Suitable media based on indefinite permittivity may be
formed from multilayers [6–11] or aligned parallel nanowire
structures [12–15]. In addition, the intrinsic layered structure
of graphite has been shown to lead to an indefinite permittivity
in the ultraviolet region [16]. At far-infrared frequencies,
the phonon response in certain natural anisotropic crystals
can also lead to an indefinite permittivity tensor, so that
all-angle negative refraction is possible around the optic
phonon frequencies in such crystals [17–23].

Phenomena based on hyperbolic dispersion in media with
indefinite permeability have received rather less attention. A
structure consisting of an array of split ring resonators was
reported by Sun et al. [24], and multilayer structures that
include natural magnetic materials have also been proposed
[25–27]. We should also expect the magnon response in certain
natural magnetic crystals to lead to indefinite permeability,
in a manner analogous to the way that the phonon response
leads to indefinite permittivity in anisotropic crystals such as
quartz. In the present paper we consider the case of uniaxial
antiferromagnets, confirming that all-angle negative refraction
should indeed be possible in such materials. In addition, we
show that the angle of refraction should be tunable by applying
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an external magnetic field. We show simulations for the case of
MnF2, which, at low temperature, should display such behavior
at terahertz frequencies with low losses, corresponding to a
large figure of merit.

II. ALL-ANGLE NEGATIVE REFRACTION IN AN
INDEFINITE PERMEABILITY MEDIUM

The principle of negative refraction in indefinite permit-
tivity media has been discussed in some detail by various
authors [6,7,17,18,28,29]. This principle is easily adapted to
indefinite permeability media, and we summarize the basic
principles here. We consider refraction from vacuum to such
a medium (in this case to be a uniaxial antiferromagnet) in the
geometry shown in Fig. 1. The principal axes of the crystal
lie along the Cartesian axes x, y, and z. xz is the plane of
incidence and z is normal to the slab surface. In particular, we
consider the incident radiation to be s-polarized (H field in the
plane of incidence xz). The figure includes an external field
B0 applied along y. Initially we take this field to be zero. In
this case the permeability tensor is diagonal:

μ =

⎛
⎜⎝

μxx 0 0

0 μyy 0

0 0 μzz

⎞
⎟⎠ . (1)

If the angle of incidence is represented as θ1, the in-plane
wave-vector component kx is given by

kx = k0 sin θ1, (2)

where k0 = ω/c. The z component of the incident wave vector
is given by

k2
1z = k2

0 − k2
x (3)

and the refracted wave vector by

k2
2z = εμxxk

2
0 − μxx

μzz

k2
x, (4)

where ε represent the dielectric constant (assumed isotropic)
of the antiferromagnet. The correct sign of k2z is determined
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FIG. 1. (Color online) Refraction at the interface between vac-
uum and an antiferromagnet.

by the condition that power flow must be away from the
interface [6].

We consider the angle of refraction θ2 in terms of the direc-
tion of the Poynting vector S2 within the antiferromagnet.1 In
s-polarization, the E field is confined along y, so the Poynting
vector is most easily represented in terms of the Ey field,
making use of the conversion k × E = ωμ0μH. The resulting
time-averaged Poynting vector 〈S2〉 = 1/2 Re(E × H∗) has
components

〈S2x〉 = |Ey |2
2ωμ0

Re

(
kx

μzz

)
, (5a)

〈S2y〉 = 0, (5b)

〈S2z〉 = |Ey |2
2ωμ0

Re

(
k2z

μxx

)
. (5c)

Thus the angle of refraction θ2 is given by

tan θ2 = 〈S2x〉
〈S2z〉 = Re(kx/μzz)

Re(k2z/μxx)
. (6)

In order to illustrate the general principle, we initially
consider the case when μxx and μzz are both wholly real,
corresponding to zero absorption. Thus k2z will be either
wholly real or wholly imaginary. Of particular interest is the
case when μxx > 0, μzz < 0, which results in a real k2z [see
Eq. (4)]. Since 〈S2z〉 must be positive to ensure power flow into
the antiferromagnet, Eq. (5c) shows that k2z is also positive. A
simple comparison of Eqs. (2) and (6) thus shows that θ1 and
θ2 have opposing signs, leading to negative refraction.

III. ALL-ANGLE NEGATIVE REFRACTION IN THE
UNIAXIAL ANTIFERROMAGNET MnF2

In the present paper, we consider the indefinite permeability
medium to be a uniaxial antiferromagnet. For such a material,

1An alternative approach is to consider the direction normal to the
equifrequency surface obtained from Eq. (4). The result is essentially
the same.

the condition μxx > 0, μzz < 0 may be obtained around the
magnon frequencies (typically in the terahertz range) if the
antiferromagnet’s easy axis lies along x. This is the situation
shown in Fig. 1. In this case the permeability tensor has
components [30,31]

μxx = 1, (7a)

μyy = μzz = 1 + 2μ0γ
2BAMS

ω2
r − (ω + i�)2

, (7b)

where BA is the anisotropy field, MS the sublattice magneti-
zation, γ the gyromagnetic ratio, and � a phenomenological
damping parameter. The resonance frequency ωr is given by

ωr = γ
(
2BABE + B2

A

)1/2
(8)

where BE is the exchange field.
In the undamped limit � = 0, the condition μxx > 0, μzz <

0 will be satisfied in the frequency interval ωr < ω < (ω2
r +

2μ0γ
2BAMS)1/2. In the more realistic case where � �= 0, μzz

becomes complex, and we can in practice replace the nega-
tive refraction condition μxx > 0, μzz < 0 by Re(μxx) > 0,
Re(μzz) < 0, which occurs over approximately the same
frequency interval.

In Fig. 2(a) we show both the real and imaginary parts of
μzz, close to the magnon resonance frequency ωr , for MnF2

at 4.2 K. We show the frequency scale in terms of wave
numbers ω/2πc, as is common for spectroscopic studies.
For this material, the relevant parameters are [32] MS =
6.0 × 105 A/m, BA = 0.787 T, BE = 53.0 T, and γ /2πc =
0.975 cm−1/T, corresponding to ωr/2πc = 8.94 cm−1. The
damping parameter is �/2πc = 0.0007 cm−1 and the dielec-
tric constant is ε = 5.5. Re(μzz) is seen to be negative in the
shaded region. Since μxx = 1, negative refraction is expected
in this frequency range. Figure 2(b) shows the angle of
refraction, calculated using Eq. (6), and confirms that this
result for various angles of incidence from vacuum.

We can model refraction of an Gaussian beam obliquely
incident on an antiferromagnet using a plane-wave spectrum
approach. The incident beam is then represented as a Fourier
sum of plane waves:

Ey =
∫ ∞

−∞
ψ(kx)ei(kxx+k1zz)dkx. (9)

For a Gaussian beam, ψ(kx) can be written [33]

ψ(kx) = − g

2 cos θ1
√

π
exp

[
−g2(kx − k0 sin θ1)2

4 cos2 θ1

]
, (10)

where 2g represents the beam width at its waist and θ1 is now
an effective incident angle for the overall beam. In practice,
we restrict the integral in Eq. (9) to the range −k0 � kx � k0

so that evanescent components, which would be unphysical
for the propagating incident beam, are not included [34].
Their contribution to the beam waist would be negligible, so
their inclusion would have no practical effect on the refracted
or reflected beams, but there would appear large nonzero
evanescent fields in the incident beam for z � 0.

The transmission and reflection of each plane wave
component are analyzed separately, and the resulting fields
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FIG. 2. (Color online) (a) Real and imaginary parts of μzz for
MnF2 as a function of frequency (expressed as wave number ω/2πc)
around the magnon resonance frequency. (b) Angle of refraction θ2

for various angles of incidence from vacuum. (c) Figure of merit for
the same angles of incidence. In all figures the yellow shaded region
represents the frequency range for which Re(μzz) < 0.

summed appropriately to obtain the overall fields, and hence
the intensities, at all points in the xz plane [35]. Figure 3
shows the resulting intensities for a Gaussian beam obliquely
incident on an MnF2 crystal in the configuration shown in
Fig. 1, at the frequencies marked as A, B, C, and D on
Fig. 2(b). At frequency A, corresponding to the magnon
resonance frequency ωr , propagation into the antiferromagnet
is essentially normal to the surface, as expected from Fig. 2(b).
Frequency B is in the negatively refracting frequency range,
and Fig. 3(b) confirms this. At frequency C, close to the
zero in Re(μzz), the power flow should be nearly parallel
to the surface, but, in practice, it is seen that there is very
high absorption so there is no effective propagation. Positive
refraction is observed at frequency D.

All the plots in Fig. 3, except that corresponding to fre-
quency C, show propagation into the antiferromagnet with low
absorption. The degree of absorption in indefinite (hyperbolic)
media is most often represented by a figure of merit (FOM)
defined as [8,11,22,23] FOM = |Re(k2z)|/Im(k2z). Note that,
according to this definition, the FOM is dependent on incident
angle. It is plotted in Fig. 2(c) as a function of frequency for the

FIG. 3. (Color online) Contour graphs showing intensities (in
terms of the magnitude of the time-averaged Poynting vector) for
a beam of width g = 0.2 cm obliquely incident from vacuum, at
an angle of incidence of 40◦, on an MnF2 crystal at 4.2 K, in the
geometry shown in Fig. 1. The antiferromagnet surface is at z = 0.
(a) Frequency A (8.94 cm−1), (b) frequency B (8.98 cm−1), (c)
frequency C (9.00 cm−1), (d) frequency D (9.02 cm−1). The vertical
dotted lines represent the surface normal.

three incident angles considered in Fig. 2(b). The minimum in
the FOM is slightly above frequency C, in a narrow frequency
region which, in the absence of damping, would correspond to
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0 < μzz < (1/ε) sin2 θ , with k2z imaginary and no propagation
into the antiferromagnet. In the absence of damping, therefore,
the FOM would be zero within this narrow frequency range,
and infinite outside it (i.e., in the propagating regions). In the
propagating regions, a finite FOM implies absorption. In the
case of MnF2, the FOM is large at all frequencies except those
close to frequency C, in line with the results of Fig. 3. Of
particular interest is that, in the negatively refracting region,
it several orders of magnitude higher than typically reported
for metamaterial structures, so propagating efficiency is
high.

IV. EFFECT OF AN EXTERNAL MAGNETIC FIELD ON
REFRACTION WITHIN THE ANTIFERROMAGNET

The above account describes negative refraction in anti-
ferromagnets in the absence of any external field. We now
consider the effect of applying a static nonzero magnetic field
B0 is applied along y, perpendicular to the uniaxis (see Fig. 1),
noting that, in this geometry, any effects involving mixing
between s- and p-polarizations are avoided.

In the presence of such a field, the spins will become canted
by an angle α given by

sin α = B0

BA + 2BE

. (11)

The main effect of this canting is to raise the resonance
frequency ωr that appears in μzz to a higher value ω⊥ given
by [31,36]

ω⊥ = (
ω2

r cos2 α + 2γ 2B0 sin α
)1/2

. (12)

μzz is then given by

μzz = 1 + 2μ0γ
2MS(B0 sin α + BA cos 2α)

ω2
⊥ − (ω + i�)2

. (13)

The resulting Re(μzz) values for MnF2 are shown in Fig. 4 for
various values of applied field B0.

Although the main effect of the external field is simply
to shift the features in μzz to higher frequency, the other
components of the permeability tensor are also slightly
affected, and the off-diagonal components μxz and μzx become

FIG. 4. (Color online) Re(μzz) plots for MnF2 for various values
of applied field B0.

FIG. 5. (Color online) (a) Re(μzz), (b) Re(μxx), and (c) Im(μxz)
for B0 = 0 and B0 = 1 T.

nonzero [36]. The components other than μzz that contribute
in s-polarization are [31,36]

μxx = 1 + 2μ0γ
2B0MS sin α

ω2
⊥ − (ω + i�)2

, (14a)

μxz = −μzx = −i
2μ0γMS(ω + i�) sin α

ω2
⊥ − (ω + i�)2

. (14b)

The values of Re(μxx) and Im(μxz) are compared with
Re(μzz) in Fig. 5, on an expanded scale, with and without
an applied field (in order to simplify the figure, only one
nonzero value of the applied field, corresponding to B0 = 1 T,
is shown). Note that we show Im(μxz) rather than Re(μxz)
because it is the imaginary component that shows up the
characteristic resonant structure in the case of μxz (the real
part consists of a weak peak at ω⊥). For B0 �= 0, all plots
show resonances at ω⊥, but the resonances in μxx and
μxz are much weaker than that in μzz since the canting
angle is small (B0 = 1 T corresponds to a canting angle of
α = 0.54◦).

In order to study refraction we once again look at the
Poynting vector. Explicit s-polarization calculation of the
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FIG. 6. (Color online) (a) Angle of refraction θ2 in MnF2 for
various values of applied field B0, for an incident angle of θ1 = 40◦.
(b) Figure of merit for the same angle of incidence and applied fields.
In part (a) the solid lines represent positive fields and the dashed lines
represent negative fields.

Poynting vector components in the configuration of Fig. 1
gives

〈S2x〉 = |Ey |2
2ωμ0

Re

(
kxμxx + k2zμxz

μxxμzz + μ2
xz

)
, (15a)

〈S2y〉 = 0, (15b)

〈S2z〉 = |Ey |2
2ωμ0

Re

(
k2zμzz − kxμxz

μxxμzz + μ2
xz

)
, (15c)

where the wave-vector component k2z is now obtained from

k2
2z = εk2

0

(
μxxμzz + μ2

xz

) − μxxk
2
x

μzz

. (16)

The angle of refraction may once more be calculated
using tan θ2 = 〈S2x〉/〈S2z〉. The resulting values, assuming
an incident angle of θ1 = 40◦, are shown in Fig. 6(a) for a
series of both positive and negative applied fields (positive
fields being directed along +y and negative fields along −y).
The corresponding FOMs are shown in Fig. 6(b). Both sets
of curves are effectively shifted to higher frequency by the
application of an external field, but are otherwise unchanged
to any significant degree, despite the increased complexity that
might be expected from the new features that appear in μxx

and μxz. Thus the refracting behavior is very similar to that
discussed in the previous section (i.e., for B0 = 0), and, in
addition, the application of an applied field does not adversely
affect the FOM to any noticeable extent.

In analyzing the effect of reversing the direction of B0 [in
effect, changing the sign of μxz, and hence μzx ; see Eq. (14b)],

FIG. 7. (Color online) Angle of refraction θ2 in MnF2 as a
function of applied field B0 at frequency X (8.98 cm−1).

we note that, in the limit of zero damping (i.e., zero absorption),
μxx and μzz would both be real and μxz would be imaginary.
As in the zero field case, k2z would be either wholly real
or wholly imaginary, being real if there were propagation
within the antiferromagnet and imaginary where there is not
(corresponding to a narrow frequency region just above the
zero in μzz). In the former case, which is that of interest
when considering refraction, it is straightforward to see from
Eqs. (15) that none of the Poynting vector components would
depend on the sign of μxz. The angle of refraction θ2 would
therefore be independent of the sign of B0, and we would say
that it is reciprocal with respect to field reversal. In practice,
therefore, any nonreciprocal effects in the power flow direction
are associated with the imaginary part of k2z. At frequencies
at which propagation is expected, the imaginary part is due to
absorption.

The above analysis is in agreement with the results in
Fig. 6(a). For most of the spectrum, reversing the sign of B0 has
negligible effect. However, near the relevant minimum in the
FOM (close to the zero in μzz), at which there is a significant
imaginary contribution to k2z, some nonreciprocity is seen.
Nevertheless, the behavior at such frequencies is similar to that
shown in Fig. 3(b), and it is not realistic to speak of refraction
in the normal sense. In the regions in which it makes sense
to discuss refraction, positive or negative, it is reasonable to
say that refraction is reciprocal. Any nonreciprocal behavior
present is simply due to absorption. This is similar to the type
of nonreciprocity observed in the intensity of the reflected
beam. Nonreciprocity in this intensity also only exists in the
presence of absorption [31,37–40].

We now look at how the angle of refraction can be tuned
by varying the applied magnetic field. Since the θ2 curves
in Fig. 6(a) depend on B0, at any given frequency the angle
of refraction will depend on the magnitude of the applied
field. We consider the frequency marked as X (8.98 cm−1) in
Fig. 6(a). As can be seen from the figure, at this frequency the
angle of refraction should vary from negative to positive as
the applied field is increased. We can see this in Fig. 7, which
shows this behavior for both positive and negative fields and
confirms the reciprocal nature of the angle of refraction.

We can verify the predicted behavior by studying that of a
Gaussian beam incident on the surface of the antiferromagnet
for various values of applied field, using the same type of
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FIG. 8. (Color online) Contour graphs showing intensities for a
beam of width g = 0.2 cm obliquely incident from vacuum, at an
angle of incidence of 40◦, on an MnF2 crystal at frequency X

(8.98 cm−1), in the presence of an external field B0. (a) B0 = 0,
(b) B0 = 0.5 T, (c) B0 = 1 T, (d) B0 = 1.5 T.

analysis used in obtaining Fig. 3. The results for various
positive values of B0 are shown in Fig. 8 (results for negative
B0 are essentially the same, as expected from Fig. 7). Figure 8
confirms that the angle of refraction can be tuned from negative
to positive using an applied external magnetic field, and that,

in the case of the chosen frequency X (for which the FOM is
high for all values of B0), propagation into the antiferromagnet
occurs without significant absorption.

V. DISCUSSION

The above analysis suggests that tunable negative refraction
based on antiferromagnets should be feasible. We have con-
sidered a geometry in which the applied field is perpendicular
to the antiferromagnet’s easy axis, which, in turn, lies in the
plane of incidence. The present result contrasts with that for a
previously studied geometry in which the easy axis lies parallel
to the applied field (i.e., along y) [41,42], In such a case, refrac-
tion of a strictly propagating beam is always positive, power
flow being parallel to the wave vector even in a nonzero field.

Propagating efficiency, as represented by the figure of
merit, is very high in this system. This is clear from the
results shown in Fig. 8, which shows no visible decay on
propagation through the antiferromagnet. Low temperature
is necessary to achieve such efficiency, however. We note
that high propagation efficiency has also been predicted
in certain natural indefinite permittivity materials at liquid-
helium temperatures. In particular, it has been pointed out that
the phonon response in triglycine sulfate (TGS) [17] and the
plasma response in bismuth [43] should both lead to indefinite
permittivity with low absorption.

The fact that the angle of refraction is reciprocal with
respect to field reversal is important in that it implies that
changing the sign of the angle of incidence simply changes the
sign of the angle of refraction [i.e., θ2(θ1) = −θ2(−θ1)]. Thus,
even in the presence of an external field in the configuration
of Fig. 1, a single antiferromagnet crystal with parallel sides
should act as a slab lens similar to that obtained from an
indefinite permittivity medium [7,15,17,22]. An object placed
on one side of such a lens will project an intermediate image
within the slab and a final image on the other side of it. In
general, these images will not be perfect, and the crystal will
not have the superlensing properties of double-negative slab
lenses discussed by Pendry [3]. Nevertheless, a slab lens of
tunable “focal length” (i.e., tunable object-image distance)
should in principle be possible.

An important property of hyperbolic media is that they can
convert evanescent waves in vacuum into propagating waves
within the medium. In terms of a slab lens, this is significant in
the case where the material parameters are such that both the
object and image can be very close to (i.e., within the near field
of) the crystal surfaces, since in this case subwavelength imag-
ing should be possible. We would expect this behavior close to
the resonance frequency ω⊥ [22], in which case propagation
across the crystal would be in the form of nearly collimated
beams [44]. Thus, both the more general possibility of a slab
lens with tunable “focal length” and that of obtaining sub-
wavelength imaging close to ω⊥ warrant further investigation.

VI. CONCLUSIONS

We have shown that a uniaxial antiferromagnet such as
MnF2 should act as a negatively refracting medium due to its
indefinite permeability. Furthermore, the refracting angle can
be tuned by the application of an external magnetic field. In
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the case of this particular material, losses are expected to be
very low, and the refracted beam should propagate with high
efficiency. This type of refraction has potential for use in slab
lenses with tunable properties.
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