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We use scaling and renormalization-group techniques to analyze the leading nonanalyticities in a Fermi liquid.
We show that a physically motivated scaling hypothesis reproduces the results known from perturbation theory
for the density of states, the density-of-states fluctuations, the specific heat, the spin susceptibility, and the
nematic magnetic susceptibility. We also discuss the absence of nonanalytic terms in the density susceptibility.
We then use a recent effective field theory for clean electron systems to derive the scaling hypothesis by
means of renormalization-group techniques. This shows that the exponents (although not the prefactors) of the
nonanalyticities that were previously derived by means of perturbative techniques are indeed exact, and can be
understood as the leading corrections to scaling at the stable Fermi-liquid fixed point.
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I. INTRODUCTION AND RESULTS

A. Introduction

In any system with soft or massless excitations, the
observable behavior at long wavelengths and low frequencies
is dominated by these soft modes, to the extent that the observ-
ables couple to them. In the quantum regime, the soft modes
in addition govern the low-temperature behavior. In some
systems, soft modes exist only at special points in the phase
diagram, for instance, at the critical point of a second-order
phase transition. An example are Ising magnets. In others, soft
modes exist in entire phases, either because a spontaneously
broken continuous symmetry leads to Goldstone modes or
because of conservation laws. We will refer to such soft modes
as “generic.” Examples are the ferromagnons in the ordered
phase of a Heisenberg ferromagnet. Technically, scaling ideas
and the renormalization group (RG) are well suited to deal
with soft modes and their consequences. In condensed matter
physics, RG techniques are best known for the theory of
singularities at critical points [1]. However, it arguably is even
more interesting and important to understand singularities that
appear in entire phases. The fact that the RG is equally useful
for this purpose is less well known. In the RG framework,
critical singularities are described in terms of critical fixed
points of the RG transformations, whereas entire phases are
described in terms of stable fixed points [2,3]. At the former,
the control parameter (in the case of a thermal phase transition,
the temperature deviation from the critical temperature) is
the only relevant operator; at the latter, there are no relevant
operators (ignoring external fields in both cases).

There are many examples of long-wavelength and/or low-
frequency singularities that exist in entire phases due to the
coupling of observables to generic soft modes [4], and we
list only a few for illustration purposes: (1) The longitudinal
magnetic susceptibility χL in the ordered phase of an isotropic
Heisenberg ferromagnet in d < 4 dimensions diverges as
χL(h → 0) ∝ h−(4−d)/2 as a result of the longitudinal mag-
netization coupling to the magnons [5]. (2) The tunneling
density of states (DOS) N in a disordered electron system

as a function of the energy distance (or bias voltage) ω from
the Fermi energy εF shows a cusp singularity N (εF + ω) ∝
const + |ω|(d−2)/2 as a result of a coupling to the diffusive
modes known as “diffusons”[6,7]. At the Fermi energy (zero
bias), the tunneling DOS shows the same behavior as a function
of the temperature T , with |ω| replaced by T [8]. In d � 2 the
singularity is so strong that the disordered Fermi liquid is
destroyed. (3) The kinematic viscosity ν in a classical fluid
is a nonanalytic function of the frequency ω: ν(ω → 0) ∝
const + ω(d−2)/2. This “long-time tail” (the corresponding
time correlation function decays as 1/td/2 for long times t ,
rather than exponentially) [9–12] is a consequence of the
coupling to various soft modes in fluids that exist as a result
of conservation laws. Again, in d � 2 the strong singularity
leads to a breakdown of local hydrodynamics. These are just
three examples each of three rather large classes of phenomena
in classical magnets, disordered electrons, and classical fluids,
respectively, all of which can be studied by RG techniques (see
Appendices A, B, and C).

These analogies between classical and quantum systems
notwithstanding, there also are important qualitative differ-
ences between them. In classical systems, the statics and
the dynamics are decoupled in equilibrium, meaning that
equilibrium static correlation functions can be long ranged
only due Goldstone modes. Only in a nonequilibrium situation
do the statics and dynamics couple, and long-range static
correlations can result from conservation laws as well [13]. In
quantum systems, on the other hand, the statics and dynamics
are intrinsically coupled even in equilibrium, and long-range
static correlations can result from either Goldstone modes or
conservation laws.

In this paper, we use RG and scaling techniques to
discuss the interesting singularities that occur in a clean
Fermi liquid in dimensions d > 1. It is well known that the
leading behavior of interacting electrons at low temperature,
frequency, and wave number is described by Landau’s Fermi-
liquid theory [14], which corresponds to a stable fixed point
in a RG framework [15]. One major point of this paper is
to show that various nonanalytic corrections to Fermi-liquid
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theory that have been previously derived using perturbation
theory can be understood as the leading corrections to scaling
at this stable fixed point. As we will see, there are strong
technical and physical analogies between these singularities
and the ones in disordered Fermi liquids, and to a lesser extent
in classical magnets and classical fluids, mentioned above.
Another important point is that RG techniques will allow us to
show that the perturbative results are actually exact as far as
the exponents that characterize the singularities are concerned.
In d = 1 the singularities we will discuss are so strong that
they contribute to an instability of the Fermi liquid in favor of
a Luttinger-liquid state [16]. In strongly correlated systems,
they may lead to a quantum phase transition from a Fermi
liquid to a non-Fermi-liquid state even in d > 1 [17].

The RG methods we employ are the “traditional” ones
as described in Refs. [1,2]. We specify the order parameter,
identify all of the soft modes that couple to it, and then
focus on a description of these modes and the order-parameter
fluctuations. This is in contrast to the functional RG methods
that in recent years have been applied to fermion systems (see
Ref. [18] and references therein). The latter approach uses
an unbiased RG method that does not a priori single out a
particular order parameter and does not focus on soft modes.
It also does not involve a rescaling procedure, or introduce the
notion of relevant versus irrelevant variables. Rather, it starts
from a microscopic Hamiltonian or action and examines the
scale dependencies of all quantities, universal or nonuniversal,
using a variety of truncation schemes. It is well suited to
study situations where various instabilities compete with one
another. In contrast, the RG approach used in this paper is much
more restrictive, but also much easier to use, as it focuses
on the universal long-wavelength properties of the system.
Specifically, we explicitly identify the Goldstone modes that
characterize the Fermi-liquid phase, and we show that these
modes are the physical origin of the leading corrections to
scaling at the stable Fermi-liquid fixed point. The stability
of these modes, and some properties of a quantum phase
transition from a Fermi liquid to a non-Fermi-liquid phase,
have been considered elsewhere [17].

This paper is organized as follows. In Sec. II we formulate
a scaling hypothesis for the free energy. From this we derive
homogeneity laws for the observables of interest, which all can
be expressed as derivatives of the free energy. The resulting
leading nonanalytic corrections to Fermi-liquid theory are
all consistent with previous results from explicit perturbative
calculations. In Sec. III we recall the schematic form of
a recent effective field theory for clean fermions [19]. We
identify the fixed-point action that describes the Fermi liquid,
and identify the leading irrelevant operators with respect to
this fixed point. This allows for a derivation of the scaling
hypothesis, and hence shows that the exponents derived from
the scaling considerations are exact. In Sec. IV we discuss
various aspects of our approach, and our results. Analogies
with classical magnets, disordered electron systems, and
classical fluids, respectively, that are of physical or pedagogical
interest are the subject of Appendices A, B, and C. Appendix D
contains technical details regarding the density of states and
its susceptibility in the presence of a long-range Coulomb
interaction, and Appendix E explains a structural feature of
the density-of-states susceptibility.

II. PHENOMENOLOGICAL SCALING CONSIDERATIONS
FOR THE FREE ENERGY AND ITS DERIVATIVES

Before we go into the technical details of applying RG
ideas to analyze a microscopic theory, let us employ simple
phenomenological scaling arguments [20] to find out what
one should expect for the behavior of various thermodynamic
observables, as well as the density of states and its fluctuations,
in a clean Fermi liquid. Let us assign a scale dimension
[L] = −1 to lengths, or [k] = 1 to wave numbers, and a scale
dimension [E] = [ω] = z to energy and frequency; that is, the
frequency scales with the wave number as ω ∼ kz [21]. [L] is
thus fixed by a convention, whereas the value of z depends on
the nature of the soft modes in the system, and in general there
may be more than one scale dimension z (see following). Now
consider an observable A that depends on the wave number k,
the frequency ω, the temperature T , and the magnetic field H ,
whose scale dimension [H ] depends on the physical situation.
In general, A will consist of a regular or nonscaling part, and
a scaling part δA with a scale dimension [A] that is given
by the naive or engineering dimension of A [22]. The scaling
hypothesis states that δA obeys a homogeneity law

δA(k,ω,T ,H ) = b−[A] δA(kb,ωbz,T bz,Hb[H ]), (2.1)

where b > 0 is the (arbitrary) length rescaling factor. The
nonscaling part does not satisfy such a homogeneity law.

If there is more than one class of soft modes in a system,
then there will be more than one dynamical exponent z. This
is more common at critical fixed points than at stable ones,
and for much of our discussion there will be only one z.
However, for electrons interacting via a long-ranged Coulomb
interaction, the plasmon is soft for all dimensions d < 3, and
it scales differently than the other soft modes, so there are two
separate dynamical exponents. As long as the scaling functions
in question are regular functions of their arguments in the
limit of small arguments, the largest of these various z will
determine the leading nonanalytic behavior of the observable.
However, there are important exceptions to this rule if the
scaling function is not a regular function of all of its arguments.
The DOS in the presence of plasmons represents an example,
as we will see below.

We finally note that the choice of variables one assigns
a nonzero scale dimension to is physically motivated, and
depends on the fixed point under consideration. Generally,
variables that take the system away from the fixed point under
consideration, or take it from one fixed point to another one
with a different symmetry, carry a positive scale dimension.
An example is the magnetic field. By contrast, a change of
the chemical potential μ takes the system from a Fermi-liquid
fixed point to an equivalent Fermi-liquid fixed point with the
same symmetry. The chemical potential is therefore assigned a
scale dimension of zero, [μ] = 0, although its naive dimension
is that of an energy. This is a simple, but important point: The
scaling hypothesis involves much more than just dimensional
analysis.

A. Soft modes and universality classes

We are interested in universal behavior at low temperature
in the limit of small wave numbers and small frequencies that
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is caused by the presence of soft modes. The first question
therefore needs to be about the nature of the soft modes in a
Fermi liquid.

There are two types of modes that are soft at T = 0. The
first class are single-particle excitations represented by the
Green function 〈ψ̄1 ψ2〉, where ψ̄1 and ψ2 are fermionic fields
with labels 1 ≡ (x1,τ1,σ1), 2 ≡ (x2,τ2,σ2), etc., that comprise
position x, imaginary time τ , and spin projection σ . These
excitations are soft at T = 0 because of the existence of a Fermi
surface. They have a linear frequency-momentum relation
(with the momentum measured from the Fermi wave number),
and are effectively one dimensional since only excitations
perpendicular to the (d − 1) dimensional Fermi surface are
relevant. We will refer to them as the fermionic excitations.
They determine the leading scaling behavior in a Fermi liquid,
and they play a central role in Shankar’s RG derivation of
Landau Fermi-liquid theory [15].

Much more important for our purposes is a second class
of soft modes. These are two-particle excitations of the type
〈ψ̄1 ψ̄2 ψ3 ψ4〉. Since bilinear products of fermionic fields ψ

and their adjoints ψ̄ commute with each other as well as with
fermion fields, these are effectively bosonic excitations, and
we will refer to them as such. They in turn fall into two
distinct classes. The first one are the familiar particle-hole-
continuum excitations [23] and the corresponding excitations
in the particle-particle or Cooper channel. They all have a
linear frequency-momentum relation, and they appear in all
angular momentum channels; in the s wave or 
 = 0 channel
suitable linear combinations of them constitute the number
density, spin density, and particle-particle density fluctuations.
They are responsible, inter alia, for the familiar structure of
the Lindhard function with its linear frequency-momentum
scaling [23]. The second class comprises collective excitations.
In the particle-hole spin-singlet channel, these include the
excitations known as zero-sound modes in a neutral system,
and the plasmons in a charged system. In the particle-hole
spin-triplet channel, they are the paramagnon excitations. Both
the zero-sound modes and the paramagnons also have a linear
frequency-momentum relation, but their origin and physical
nature is very different from the first class. They are the
result of conservation laws (particle number and spin con-
servation, respectively) that guarantee their masslessness. The
particle-hole continuum excitations, on the other hand, can be
understood as the Goldstone modes of a spontaneously broken
continuous symmetry that can be represented as a rotational
symmetry between retarded and advanced degrees of freedom
(see Ref. [19] and Sec. III A). Their softness is therefore
not accidental either; it is controlled by a Ward identity and
protected by Goldstone’s theorem. As we will see, they provide
the leading corrections to scaling in a Fermi liquid, and the
effective field theory of Ref. [19] is formulated in terms of
them. It is important to note that, due to the intrinsic coupling
between the dynamics and the statics in a quantum system,
these bosonic excitations lead, via mode-mode coupling
effects, to long-ranged static correlations even in equilibrium
systems. The same is not true for the fermionic excitations.
These long-ranged correlations in turn fundamentally modify
the nature of various quantum phase transitions [4,24,25].

The fact that all of the soft modes mentioned above
have linear frequency-momentum relations is accidental. In

systems with a long-ranged Coulomb interaction there is the
plasmon excitation, whose frequency scales as the square
root of the wave number in two-dimensional systems, and
as a constant in three-dimensional ones. Another example of
bosonic excitations whose frequency-momentum relation is
different from that of the fermionic ones are the diffusive
modes in a disordered electron system [7]. A technical
consequence in all of these cases is the existence of more
than one dynamical scale dimension z.

The Goldstone modes in the particle-hole spin-triplet
channel and in the particle-particle channel are sensitive to
an external magnetic field. The orbital effects of the field give
a mass to the particle-particle channel, whereas the Zeeman
effect gives a mass to two out of three modes in the particle-
hole spin-triplet channel. We therefore have to distinguish
between two universality classes: (1) A generic class with no
symmetry-breaking fields, where all channels are soft, and (2)
a magnetic-field universality class, where the Cooper channel
is missing from the soft-mode spectrum, and only one mode in
the particle-hole spin-triplet channel (the longitudinal one) is
soft [26]. For the DOS and its susceptibility we further have to
distinguish between the cases of a short-ranged interaction and
a long-ranged Coulomb interaction, as we will see in Sec. II E.

B. Scaling of the free energy

Let us now consider the free energy density, from which all
thermodynamic quantities can be derived (see below for the
relation between the density of states and the free energy). In
principle, theories formulated in terms of fermionic degrees
of freedom only, such as Ref. [15], and theories formulated
in terms of bosonic variables, such as Ref. [19], both contain
the effects of both types of soft modes. However, in practice
it is very difficult to extract the effects of one class of soft
modes from a theory that has been formulated in terms of the
other, and the effects of the soft modes in the limit of long
wavelengths and low frequencies are additive. It therefore
is natural to postulate the existence of two additive scaling
contributions to the free energy density f , which we denote
by f (f ) and f (b), respectively, with the superscripts referring
to the fermionic and bosonic soft modes, respectively [27].
Both depend on the temperature T and the magnetic field
H . In addition, they depend on a source field h that is
conjugate to the density of states. h is a generalized, frequency-
dependent (for simplicity we do not show the frequency
dependence explicitly) chemical potential, and the DOS can
be interpreted as the order parameter of the broken symmetry
(see Refs. [17,19] and Sec. III A). For the scaling part of the
free energy density we thus write

f (T ,H,h) = f (f )(T ,H,h) + f (b)(T ,H,h), (2.2)

and we postulate that f (f ) and f (b) obey separate homogeneity
laws.

We now need to determine the scale dimensions of f (f )

and f (b), and their arguments. To this end we observe that,
dimensionally, f (f ) and f (b) are both an energy divided by
a volume. However, for the fermionic excitations only the
direction perpendicular to the Fermi surface is relevant [15],
and the scale dimension of the fermionic part should therefore
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be

[f (f )] = 1 + z. (2.3a)

For the bosonic part, we expect

[f (b)] = d + z, (2.3b)

with d the spatial dimensionality of the system. The tempera-
ture has a scale dimension [T ] = z (see above). For both the
fermionic and bosonic modes the frequency scales as the wave
number, and we therefore put

[T ] = z = 1. (2.3c)

We note, however, that in the case of a Coulomb interaction
there is a second time scale set by the plasmon excitation,
and hence a second dynamical exponent z [see the remarks in
Sec. II A and after Eq. (2.1)]. We will explicitly deal with this
in the context of Eqs. (2.11) and (2.19). We will not consider
orbital effects of the magnetic field, i.e., we consider H only
as it enters a Zeeman term, and hence

[H ] = 1. (2.3d)

Finally, h is a generalized chemical potential and therefore
dimensionally an energy, so we also have

[h] = 1. (2.3e)

However, the physical chemical potential carries a scale
dimension of zero, see the remark at the end of the introduction
to the current section,

[μ] = 0. (2.3f)

With these definitions, the DOS is given by N = (∂f/∂h)/T ,
which correctly makes N an inverse energy times an inverse
volume. Combining all of these considerations, we now have

f (f )(T ,H,h,μ) = b−(1+1) f (f )(T b,Hb,hb,μ), (2.4a)

f (b)(T ,H,h,μ) = b−(d+1) f (b)(T b,Hb,hb,μ). (2.4b)

We note that there is an important physical difference
between the physical fields H and T , and the derivatives of f

with respect to them (i.e., thermodynamic quantities) on one
hand, and the field h, which just serves as a source term that
can not by physically realized (see Sec. III A) on the other.
A related point is that the derivatives of f with respect to h,
viz., the DOS and its susceptibility, are not gauge invariant
quantities and hence show scaling behavior that is sensitive
to a long-ranged Coulomb interaction, whereas the thermody-
namic quantities show the same behavior for both short-ranged
and Coulomb interactions. See Sec. IV B for a discussion of
this point.

Before we analyze these homogeneity laws, let us illustrate
an alternative way to determine the effective scale dimension
of f (f ). Suppose we do not use the above argument about
effectively 1-d fermionic excitations, and assume instead that
f (f ) scales as an energy divided by a volume. However, we do
acknowledge that the free energy depends on the microscopic
wave number kF and the microscopic energy εF, and use as

input that f (f ) is proportional to kd
F/εF [28]. We thus write

f (f )(T ,h,H,μ) = kd
F

εF
F(T ,h,H,μ). (2.5a)

Then F is dimensionally an energy squared, and the scaling
hypothesis is

F(T ,H,h,μ) = b−2 F(T b,Hb,hb,μ), (2.5b)

which is equivalent to Eq. (2.4a). Knowledge about the
dependence of f (f ) on the microscopic parameters is thus
equivalent to knowledge about the effective one dimensionality
of the fermionic excitations. In Sec. IV A we will revisit
these arguments and show how one can write a single free
energy contribution that yields both the fermion and boson
contributions by using the dependence of f on irrelevant
operators.

C. Observables as derivatives of the free energy

The observables considered in this paper can be expressed
in terms of derivatives of the free energy as follows. The DOS
is given by the first derivative of f with respect to h,

N = 1

T

(
∂f

∂h

)
h=0

, (2.6a)

and the density-of-states susceptibility by the second one,

χN = 1

T

(
∂2f

∂h2

)
h=0

. (2.6b)

The entropy density s is the first derivative of f with respect
to T ,

s = ∂f/∂T , (2.7a)

and the specific-heat coefficient γV = CV /T is the second one,

γV = ∂2f/∂T 2. (2.7b)

The magnetization m, defined as the magnetic moment per
unit volume, is the first derivative of f with respect to H ,

m = ∂f/∂H, (2.8a)

and the spin susceptibility is the second one,

χs = ∂2f/∂H 2. (2.8b)

Note that differentiating with respect to H yields the spin
susceptibility, rather than the full magnetic susceptibility, since
we have restricted the H dependence of the Hamiltonian to
a Zeeman term. Also of interest is the (p-wave) nematic spin
susceptibility that is given as the second derivative with respect
to a field H that couples to the spin current rather than to the
spin density,

χs,p-wave = ∂2f/∂H2. (2.8c)

Finally, to make a point about naive dimensions and scaling
functions, we also consider the density susceptibility,

χn = ∂n/∂μ = ∂2f/∂μ2, (2.9)
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with n the particle number density. For reasons discussed
below, χn scales differently than the other susceptibilities.

All of the above quantities have a naive dimension of inverse
volume times inverse energy, except for χN, which is an inverse
volume times an inverse energy squared. We will eventually
conclude that in the case of short-ranged electron interaction,
where there is only one dynamical exponent z, all of them
except for χn have scaling properties that are simply given by
their naive dimension. χn, however, does not scale according
to its naive dimension. The physical reason is that changing
the chemical potential does not change the symmetry of the
system, nor does it move the system away from the stable,
zero-temperature Fermi-liquid fixed point. That is, μ is not
a RG-relevant operator with respect to the Fermi-liquid fixed
point. This conclusion is confirmed by explicit perturbative
calculations [29] .

D. Leading Fermi-liquid behavior

The formulation of Fermi-liquid theory in terms of a stable
RG fixed point has been studied in great detail [15,30–33].
Here we give some simple arguments to show that our
treatment is consistent with the existence of a stable Fermi-
liquid fixed point, but we will not deal with the full complexity
of the Fermi-liquid state. Our main objective will be the
study of the leading corrections to scaling at this fixed point,
which result from the bosonic soft modes. In this context,
the Fermi-liquid results appear as a regular background for
the nonanalyticities due to the bosonic soft modes and the
resulting long-range correlations.

Let us consider the contributions of the fermionic excita-
tions to the various observables. From Eqs. (2.6a) and (2.4a)
or, alternatively, (2.5), we see that the DOS scales as a
constant N ∼ const. Putting b = 1/T in Eq. (2.4a) we see
that the entropy density scales as s ∼ T , and the specific-
heat coefficient scales as γV ∼ const. For the magnetization,
putting b = 1/H in Eq. (2.4a) yields m ∼ H , and hence the
spin susceptibility also scales as a constant χs ∼ const. The
same is true for the nematic susceptibility χs,p−wave (and all
higher nematic susceptibilities as well).

Using Eq. (2.9) and either Eq. (2.4a) or (2.5b), we see that
χn ∼ const as well. The scaling assumption thus reproduces
the well-known properties of a Fermi liquid: The DOS and the
susceptibilities γV , χs, and χn all are proportional to the bare
DOS at the Fermi surface NF. Notice, however, that the origin
of χn scaling as a constant is very different from the analogous
statements for the other susceptibilities, as it is a consequence
of [μ] = 0. The fact that all of these susceptibilities are trivially
proportional to NF by dimensional analysis thus masks an
important difference. We will come back to this point below.
The fields H and h do not couple to the fermionic excitations
in any interesting way, and the latter therefore do not produce
any nonanalytic corrections to the leading behavior.

Finally, for the DOS susceptibility χN, Eqs. (2.4a)
and (2.6b) suggest χN ∼ 1/T . This is misleading, however.
Repeated differentiations with respect to the conjugate field h

at the same frequency do not lead to any frequency mixing,
and as a consequence the Fermi-liquid result for χN is not as
singular as naive scaling suggests; the second differentiation
with respect to h in Eq. (2.6b) just produces a factor of 1/εF.

In fact, the wave number (k) and frequency (ω) dependent
generalization of χN at T = 0 for free electrons is χ

(0)
N ∝

NF/εF. Fermi-liquid corrections do not change the scaling of
this result, and therefore we have χN ∼ const. As we will see in
the next subsection, for this quantity the leading contribution
from the bosonic fluctuations in d � 2 is actually stronger than
the Fermi-liquid contribution.

E. Leading corrections to Fermi-liquid scaling

Now consider the contributions of the bosonic excitations
to the scaling part of the free energy, which yield the
leading nonanalytic dependence of variables observables on
the frequency, temperature, etc., and are not included in
Landau Fermi-liquid theory. We will discuss the DOS, its
susceptibility, the specific-heat coefficient, and the magnetic
susceptibility, and distinguish between the cases of a short-
range interaction and a long-range Coulomb interaction as
appropriate. We note that the leading corrections to scaling can
be large effects that are very important for an understanding
of strongly correlated metals, and even have the potential for
destroying the underlying Fermi-liquid state [17].

1. Density of states

The leading correction to the constant Fermi-liquid DOS is
given by δN = (∂f (b)/∂h)/T |T =h=0. Let us first consider the
case of a short-ranged interaction, in which the complications
due to the presence of multiple time scales mentioned above
are not relevant.

Short-ranged case. From Eq. (2.4b) we have

δN (ω,T ) = b1−d δN (ωb,T b). (2.10a)

This implies [34]

δN(ω,T = 0) ∝ |ω|d−1 (2.10b)

and

δN(ω = 0,T ) ∝ T d−1, (2.10c)

and more generally

δN (ω,T ) = |ω|d−1 FN (T/|ω|), (2.10d)

where FN (x) = δN(1,x) is a scaling function. That is, the
DOS at T = 0 is a nonanalytic function of the energy distance
ω from the Fermi surface, and the DOS at the Fermi surface
is a nonanalytic function of the temperature. For 1 < d < 3
the leading nonanalyticity is stronger than the leading analytic
correction, which is ω2 or T 2, respectively. Note that scaling by
itself does not guarantee that the prefactor of the nonanalyticity
is nonzero in any given system in any given dimension. Also,
the presence of dangerous irrelevant variables may invalidate
the simple scaling assumption represented by Eq. (2.10a) [2].
However, barring such exceptional circumstances, the ex-
ponent in Eq. (2.10b) is expected to be exact. This is in
sharp contrast to perturbative considerations, which can never
guarantee that a stronger nonanalyticity will not appear at
some higher order of perturbation theory. The remaining
question is the validity of the scaling assumption. Establishing
this will be the purpose of Sec. III, where we will derive
the scaling behavior from renormalization-group arguments.
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This will establish that the exponent in Eq. (2.10b) is indeed
exact. The determination of the prefactor requires an explicit
calculation. In Ref. [35] we will present a one-loop calculation
that is not perturbative in the interaction strength and shows
that the prefactor is generically nonzero. However, the case
d = 2 is an exception; to one-loop order the prefactor of the
|ω| vanishes, in agreement with previous results from many-
body perturbation theory [36,37]. The leading nonanalytic
contribution at one-loop order for d = 2 is an |ω|/ ln3 |ω| that
originates from the particle-particle channel [38]. The explicit
loop expansion also shows that in special dimensions there
are logarithmic corrections to power-law scaling, which the
scaling theory is not sensitive to. For instance, in d = 3 we
find δN ∝ ω2 ln |ω|.

Long-range case.. As we will see in Secs. III and IV, the
simple scaling arguments given above do indeed yield the
correct results in the case of a short-ranged interaction between
the electrons. However, in the case of a long-ranged Coulomb
interaction in d � 2 the leading singularity of the DOS is even
stronger. The reason is the presence of the plasmon time scale,
whose frequency scales as ω ∼ k(3−d)/2. In addition to the
frequency scale with z = 1, which reflects the particle-hole
excitations, we thus have a second frequency scale with z =
zp = (3 − d)/2. As a result, Eq. (2.10a) gets generalized to

δN (ω) = b1−d δN(ωb,ωb(3−d)/2)

= |ω|d−1 fN (ω(d−1)/2), (2.11)

where fN (x) = δN (1,x) is a scaling function and we have
dropped the temperature dependence for simplicity. Naively,
one would expect fN (x → 0) = const, which would lead to
Eq. (2.10b). However, it turns out that the subleading frequency
scale characterized by zp is a dangerous irrelevant variable
for the DOS if d < 2, namely, fN (x → 0) ∝ x−2(2−d)/(3−d) +
O(1). As a result,

δN (ω) ∝
{|ω|(d−1)/(3−d) for 1 < d < 2,

|ω|d−1 for 2 � d < 3.
(2.12)

Note that the existence of a dangerous irrelevant variable can
not be deduced from scaling arguments alone; establishing the
behavior described above requires an explicit calculation (see
Refs. [36,37] and Appendix D). In d = 3 the leading behavior
is again ω2 ln |ω|, as in the short-range case.

2. Density-of-states susceptibility

We next recall what scaling arguments predict for the
temperature and frequency dependence of the density-of-states
fluctuations [39]. Again, we first consider the short-range case.

Short-range case. Let us generalize Eq. (2.10a) by keeping
the auxiliary source field h conjugate to the DOS. We then
obtain

δN (ω,T ,h) = b(1−d) δN(ωb,T b,hb). (2.13)

Differentiating again with respect to h, and setting h = 0, we
obtain a homogeneity law for the DOS susceptibility

χN(k,ω,T ) = b2−d χN(kb,ωb,T b), (2.14)

where we have added a dependence on the wave number k.
Alternatively, we can consider the homogeneous susceptibility
in a system with a finite linear dimension L. All homogeneity

laws then remain valid with k replaced by 1/L. Since frequency
and temperature scale the same way, we set ω = 0 for
simplicity. For the static susceptibility as a function of k and
T Eq. (2.14) implies

χN(k,T ) = kd−2 fχ (T/vFk), (2.15)

with fχ a scaling function and vF the Fermi velocity. At
this point we need to acknowledge that χN, because of the
frequency structure of the underlying four-fermion correlation
function, has two intrinsically different parts, one of which is
constant as T → 0, whereas the other vanishes linearly with
T . This is explained in Appendix E, and it is consistent with
general statistical arguments (see Ref. [39] and Sec. IV E). fχ ,
and hence χN, therefore come with two scaling parts, viz.,

χ
(0)
N (k,T ) = 1

k2−d
f (0)

χ (T/vFk), (2.16a)

χ
(1)
N (k,T ) = T

k3−d
f (1)

χ (T/vFk), (2.16b)

with f (0)
χ (x → 0) = const and f (1)

χ (x → 0) = const. In the

limit T � vFk, χ
(1)
N is thus small compared to χ

(0)
N by a factor

of T/vFk. In the opposite limit vFk � T , both parts yield

χN(k = 0,T ) ∝ 1/T 2−d . (2.17)

Of particular interest are the physical dimensions d = 2 and
d = 3, where the zero exponents in Eqs. (2.16) and (2.17)
signify logarithms. An explicit calculation [39] yields for the
leading behavior in d = 2

χN(k,T ) ∝
{

ln(1/k) for T � vFk,

ln(1/T ) for vFk � T
(2.18a)

from χ
(0)
N , and in d = 3,

χN(k,T ) ∝
{

k [1 + (T/vFk) ln(1/k)] for T � vFk,

T ln(1/T ) for vFk � T

(2.18b)

with the logarithms coming from χ
(1)
N .

This highly nonanalytic behavior of the DOS susceptibility
reflects the same correlations that lead to the nonanalyticity in
the DOS itself [Eq. (2.10b)]. Again, the exponents are expected
to be exact.

Long-range case. Similar to the case of the DOS, the
DOS susceptibility gets modified by a Coulomb interaction,
but for this observable the plasmon frequency scale is a
dangerous irrelevant variable even for d > 2. Equation (2.15)
gets generalized to

χN(k,ω = 0,T ) = kd−2fχ

(
T

vFk
,

T

vFκ (d−1)/2 k(3−d)/2

)

= kd−2gχ [T/k,(k/κ)(d−1)/2], (2.19)

where κ is the screening wave number and gχ is another scaling
function. gχ (x,y) again has two separate scaling parts, for
the reasons explained above. In the long-range case, the one
proportional to T always gives the leading contribution, which
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generalizes Eq. (2.16b):

χN(k,T ) = T

k3−d
g(1)

χ [T/k,(k/κ)(d−1)/2]. (2.20)

If g(1)
χ (x,y) were a regular function of its second argument

for y → 0, then the leading behavior of χN would again be
given by Eq. (2.16b) since the plasmon frequency scale is
subleading compared to the ballistic scale, and thus irrelevant
in the renormalization-group sense. However, this subleading
scale is again dangerously irrelevant. In order to see this one
needs to perform an explicit calculation (see Ref. [39] and
Appendix D); here we just list the results. The dimensionality
dependence is complicated, and we focus on the physical
dimensions d = 2,3. In d = 2 one finds

χN(k,T )

∝ κ2T ×
⎧⎨
⎩

(1/T 3) ln
(
T 2/v2

Fκk
)

for vFk � T 2/vFκ,

1/(vFκ)3/2T 3/2 for T 2/vFκ � vFk � T ,

1/(vFκ)3/2(vFk)3/2 for T � vFk.

(2.21)

In d = 3 the result is

χN(k,T ) ∝ κ3T/(vFκ)2vFk (2.22)

for all values of T and k. Note that χN diverges for k → 0 at
fixed T in both d = 2 and 3. We will discuss the significance
of this result in Sec. IV.

3. Specific-heat coefficient

We next consider the specific-heat coefficient. The ho-
mogeneity law for the leading correction to the constant
Fermi-liquid contribution δγV = ∂2f (b)/∂T 2 is

δγV (T ,H ) = b−(d−1) δγ (T b,Hb). (2.23)

In a zero field, this results in

δγV (T ) ∝ T d−1. (2.24a)

In a nonzero magnetic field, this gets generalized to

δγV = T d−1 gγ (H/T ), (2.24b)

with gγ a scaling function. These results are all consistent with
perturbation theory [37,40].

4. Spin susceptibility

Now we consider the leading correction to the spin
susceptibility δχs = ∂2f (b)/∂H 2. This is due to soft modes
in the spin-triplet channel, and thus is the same for the
short- and long-range cases. From Eq. (2.4b), and including a
wave-number dependence of χs, we find

δχs(k,T ,H ) = b−(d−1) δχs(kb,T b,Hb). (2.25)

For the wave-number-dependent spin susceptibility at T = 0
and H = 0 this yields

δχs ∝ kd−1. (2.26)

This is consistent with perturbative results [29,41,42], but the
scaling arguments are not sensitive to a logarithmic term in
d = 3, where the behavior is k2 ln k [29]. The nonanalytic T

and H dependencies of the homogeneous spin susceptibility
are

δχs ∝ T d−1 (2.27a)

and

δχs ∝ Hd−1, (2.27b)

respectively. These scaling results are also consistent with
perturbation theory [29,40,43].

The scaling behavior of χs,p−waveis the same as that of
χs, except that H gets replaced by H. This is important in the
context of the quantum phase transition from a paramagnet to a
spin-nematic phase, and renders the transition generically first
order [24]. We also note that χs,p−wave is a nonanalytic function
of H, but not of H , since H does not couple to the spin density.
Analogous statements hold for other susceptibilities and fields:
Scaling arguments give only the functional dependence of
observables on fields; a nonzero prefactor requires, among
other things, a nonvanishing coupling.

F. Signs of the leading corrections

The scaling arguments presented in this section give
information about the various power laws that characterize
the leading nonanalyticities, but make no statement about the
prefactors. However, with some additional physical reasoning
one can give strong arguments at least for what the signs of
the various effects should be, which then can be confirmed by
explicit calculations.

Let us start with the spin susceptibility. Its nonanalyticity
is a result of fluctuations about Stoner theory that weaken the
tendency towards ferromagnetism. As a result, χs(k = 0,T =
0) will decrease. A nonzero k or T in turn weakens the soft-
mode effect, therefore the sign of the leading nonanalyticity in
Eqs. (2.26) and (2.27a) will be positive. This is indeed the result
first obtained in perturbation theory in Ref. [29], which has
profound consequences for the ferromagnetic quantum phase
transition [4,25,44]. We note that in disordered systems the
signs of the corresponding nonanalyticities are opposite [45].
The reason is that disorder slows down the electrons (diffusive
rather than ballistic motion), which effectively enhances the
interaction and hence the tendency towards magnetism. This
effect in turn is weakened by a nonzero k or T . The prefactor
in Eq. (2.27b) is also positive since a magnetic field enhances
the tendency toward magnetism. This is also in agreement with
prior perturbative results [40].

The signs of the corrections to the DOS and the specific-heat
coefficient can be understood as follows. The correlations in-
duced by the Goldstone modes lead to long-range correlations
that tend to order the system. The entropy is thus expected to
decrease as a result of them, and so will the specific heat. We
thus expect the prefactor in Eqs. (2.24) to be negative, which
is indeed borne out by explicit calculations [37,40]. This is
consistent with the sign of the DOS correction (2.10b), which
is also known to be negative [36,46].

III. RG-BASED DERIVATION OF SCALING

In this section we show how the above results can be derived
without invoking a scaling assumption, by performing a RG
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analysis of the effective field theory of Ref. [19]. We stress
again that even though the Fermi-liquid fixed point is not a
critical fixed point, it nevertheless displays scale invariance due
to the existence of Goldstone modes. Therefore, useful results
for the entire Fermi-liquid phase can be obtained from very
simple RG arguments. Furthermore, in a properly formulated
theory of a stable phase, non-Gaussian terms are RG irrelevant
and, as a consequence of this, exact scaling exponents can be
simply obtained [47]. This is in contrast to the situation at a
critical fixed point, where the explicit calculation of exponents
usually involves an expansion in an artificial small parameter,
such as the deviation from a critical dimension [1].

For the convenience of the reader, we first summarize the
key arguments from Ref. [19] that lead to the identification
of the soft modes (Sec. III A), and the structure of the field
theory that separates the soft modes from the massive ones
(Sec. III B). For details we refer the reader to that reference.
In the remainder of this section we perform a RG analysis of
the resulting effective field theory.

A. Broken symmetry and Goldstone modes in a Fermi liquid

The theory of Ref. [19] is formulated in terms of bosonic
matrix fields Qnm(x, y) that are isomorphic to bilinear products
of fermion fields according to

Qnm(x, y) ∼= i

2

⎛
⎜⎝

−ψn↑(x)ψ̄m↑( y) −ψn↑(x)ψ̄m↓( y) −ψn↑(x)ψm↓( y) ψn↑(x)ψm↑( y)
−ψn↓(x)ψ̄m↑( y) −ψn↓(x)ψ̄m↓( y) −ψn↓(x)ψm↓( y) ψn↓(x)ψm↑( y)
ψ̄n↓(x)ψ̄m↑( y) ψ̄n↓(x)ψ̄m↓( y) ψ̄n↓(x)ψm↓( y) −ψ̄n↓(x)ψm↑( y)

−ψ̄n↑(x)ψ̄m↑( y) −ψ̄n↑(x)ψ̄m↓( y) −ψ̄n↑(x)ψm↓( y) ψ̄n↑(x)ψm↑( y)

⎞
⎟⎠ . (3.1)

Here ψnσ (x) and ψ̄nσ (x) are fermionic fields that depend on
a real-space position x, a frequency index n that represents
a fermionic Matsubara frequency ωn = 2πT (n + 1/2), and a
spin projection σ = ↑,↓. The Green function Gnσ (x − y) =
〈ψnσ (x) ψ̄nσ ( y)〉 can obviously be constructed from the matrix
elements of the expectation value 〈Qnm(x, y)〉. In particular,
the density of states N (ω) is given as the spectrum of a causal
function Q(iωn),

N (ω) = 1

π
Re 〈tr Qnn(x,x)〉|iωn→ω+i0, (3.2)

where tr traces over the 4 × 4 matrix in Eq. (3.1). Any
fermionic action can be rewritten in terms of the Q by
implementing the isomorphism [Eq. (3.1)] by means of a
Lagrange multiplier field, expressing all four-fermion terms
in terms of the Q, and integrating out the fermions.

However, the resulting action in terms of the Q is not more
useful than the original fermionic action unless one has a way
of separating soft and massive modes. To this end we consider
a continuous transformation in frequency space that takes the
form, for a fixed pair of frequencies n1,n2,

Qn1n2 (x, y) → Qn1n2 (x, y) + δQn1n2 (x, y), (3.3a)

where

δQn1n2 (x, y)

=
∫

d z [ϕ(x,z) Qn2n2 (z, y) − Qn1n1 (x,z) ϕ(z, y)]. (3.3b)

For a pair of the underlying fermionic fields with frequen-
cies n1 and n2, respectively, this amounts to a transformation
into linear combinations of the same pair, with a nonlocal mix-
ing angle ϕ(x, y). By considering how the action transforms
under this transformation, one can use standard techniques [48]
to derive a Ward identity that relates expectation values of Q,
or two-fermion correlations, to higher correlation functions.
For free fermions, only four-fermion correlations appear and

the Ward identity takes the form〈
tr Qn1n2

( p; k) tr Qn3n4
( p′; q)

〉
= i

2
δ p, p′ δn1n3 δn2n4

×
〈
tr Qn1n1

( p − k/2)
〉 − 〈

tr Qn2n2
( p + k/2)

〉
i�n1−n2 + p · k/me

. (3.4)

Here Qnm( p; k) = Qnm( p + k/2, p − k/2) is a spatial Fourier
transform of Qnm(x, y), me is the electron mass, and �n−m =
2πT (n − m) is a bosonic Matsubara frequency. For vanishing
wave vector q and frequency �n1−n2 , the four-fermion corre-
lation function represented by the left-hand side of Eq. (3.4)
diverges, provided the difference of Green functions in the
numerator on the right-hand side is nonzero in this limit. This
is the case in the energy or frequency region that represents the
support of the spectrum of the Green function, which coincides
with the region where the density of states is nonzero, provided
the two fermionic frequencies ωn1 and ωn2 have opposite signs.
The degrees of freedom represented by Qn1n2 with ωn1ωn2 < 0
thus are soft modes. Physically, they are the Goldstone modes
due to a spontaneous breaking of the continuous symmetry
represented by Eqs. (3.3), i.e., a rotation in frequency spaces
that mixes retarded and advanced degrees of freedom. The
corresponding order parameter is the spectrum of the Green
function, which is related to the DOS via Eq. (3.2).

An important concept in this context is the field conjugate
to the order parameter. The correlation function in Eq. (3.2)
can be generated by adding to the action a source term∑

n

hn

∫
dx Qnn(x,x), (3.5)

with hn a frequency-dependent source field that relates to the
order parameter of the Fermi liquid the same way an external
magnetic field relates to the magnetization in a ferromagnet.
It is the field we have denoted by h in Sec. II, dropping
the frequency index. From Eqs. (3.5) and (3.1) we see that
physically hn is a generalized, frequency-dependent chemical
potential. A frequency independent hn would represent just
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a shift of the chemical potential. The frequency dependence
is crucial, however, as is obvious from the above discussion,
since the zero-frequency limit depends on whether the real
axis is approached from above or below.

The remaining question is how the electron-electron in-
teraction affects these conclusions. An analysis of the Ward
identity shows that additional terms appear in the numerator
of the right-hand side of Eq. (3.4). Since these have a
different dependence on the electron-electron interaction than
the two-fermion terms in Eq. (3.4), they can not cancel, and
the conclusion regarding the soft modes remains unchanged.
This of course reflects one of the main tenets of Fermi-liquid
theory, namely, that interactions do not qualitatively change
the basic features of the noninteracting system.

To summarize, the fluctuations of the bilinear fermion field
Qnm shown in Eq. (3.1) are soft if ωnωm < 0, and massive
otherwise. These soft and massive modes were denoted by
qnm and Pnm, respectively, in Ref. [19], where it was also
shown that a nonzero temperature gives the qnm a mass.

B. Structure of the field theory

The theory of Ref. [19] is formulated in terms of the
soft matrix field qnm(k) ≡ ∑

p qnm( p; k) and the massive one
Pnm(k) ≡ ∑

p Pnm( p; k) [49] that were identified in Sec. III A
and encode the soft and massive components of bilinear
fermion fields ψ̄nψm. The softness of the q is guaranteed
by a Ward identity, Eq. (3.4). The order-parameter field
Qnn consists of a saddle-point contribution that contains the
free-electron contribution and Fermi-liquid corrections to it,
and a contribution that represents the bosonic fluctuations and
is given by Pnn. The scaling part of the DOS that was denoted
by δN in Sec. II E 1 then takes the form

δN (ω) = Re Q(iωn → ω + i0) (3.6a)

with

Q(iωn) = 1

π

1

V

∑
p

〈tr Pnn( p)〉. (3.6b)

The Goldstone modes affect δN since the massive modes
P couple to the soft modes q (see below).

The effective action A takes the form of an expansion in
powers of q and P [see Eqs. (4.45)–(4.47) in Ref. [19]] [50]. In
a symbolic notation that shows only quantities that carry a scale
dimension, viz., the fields qnm(k) ≡ q and Pnm(k) ≡ P , and
factors of volume V , wave number k, and frequency ω (which
we do not need to distinguish from factors of temperature for
our purposes), the Gaussian action takes the form [see Eq.
(4.45) in Ref. [19]]

A(2) = 1

V

∑
k,ω

[k + ω + γ ω] q2 + 1

V

∑
k,ω

[1 + γω] P 2. (3.7)

Here and in what follows the sums are over the appropriate
sets of wave vectors and frequencies, and the powers of k and
ω in each term follow from the properties of the convolutions
of Green’s functions that make up the vertices of the theory
in the limit of long wavelengths and small frequencies (see
Ref. [19]). As mentioned above, ω can stand for either
frequency or temperature. The factors k and ω in the vertices

should be understood as being multiplied by functions of k/ω,
which are of O(1) for scaling purposes and are not shown
for simplicity. γ represents the interaction amplitude. Notice
that the interacting and noninteracting parts of the Gaussian
q vertex both are linear in k or ω, whereas the interacting
part of the P vertex carries a factor of ω compared to the
noninteracting one.

The non-Gaussian terms �A are given in terms of fields q/

and P/ that are closely related to q and P . Their operational
definition is that their propagators are the q and P propagators,
respectively, with the noninteracting parts subtracted [50].
From Eq. (3.7) we see that the q and q/ propagators scale
the same way, viz.,

〈q q〉 ∼ 〈q/ q/〉 ∼ V

k + ω
, (3.8a)

whereas the P and P/ propagators scale differently,

〈P P 〉 ∼ V × const, (3.8b)

〈P/ P/〉 ∼ V ω. (3.8c)

The mixed propagators 〈q q/〉 and 〈P P/〉 are equal to 〈q q〉
and 〈P P 〉, respectively. For scaling purposes we therefore
need to distinguish between P and P/, but not between q and
q/. With this in mind, �A takes the form [see Eqs. (4.47) and
(4.48) in Ref. [19]]

�A = �A(3) + �A(4) + . . . , (3.9)

where, in the same schematic notation as in Eq. (3.7),

�A(3) = c3,0

V 2

∑
{k,ω}

[γ ω + O(γ 3ω3)]q3

+ c2,1

V 2

∑
{k,ω}

[1 + O(γ 2ω2)]q2P/

+ c1,2

V 2

∑
{k,ω}

γ ω qP/ 2 + c0,3

V 2

∑
{k,ω}

P/ 3, (3.10a)

�A(4) = c4,0

V 3

∑
{k,ω}

[k + ω + γ 2ω2/k + O(γ 4ω4)]q4

+ c3,1

V 3

∑
{k,ω}

[γω/k + O(γ 3ω3)]q3P/

+ c2,2

V 3

∑
{k,ω}

[1/k + O(γ 2ω2)]q2P/ 2

+ c1,3

V 3

∑
{k,ω}

γω qP/ 3 + c0,4

V 3

∑
{k,ω}

P/ 4, (3.10b)

where the cn,m are coupling constants. Notice that various
vertices in �A, e.g., the leading term of O(q2P/ 2), are singular
functions of k (or ω) for small k. These singularities get
stronger with increasing order in the fields; for instance,
the leading term of O(q2P/ 2n) has a vertex that scales as
1/k2n−1. As we will show below, these singular vertices do
not pose a problem for our purposes. We stress again that this
form of the action is highly schematic and can be used for
power-counting purposes only; many features that are crucial
of explicit calculations have been suppressed for clarity. See

035130-9



D. BELITZ AND T. R. KIRKPATRICK PHYSICAL REVIEW B 89, 035130 (2014)

Ref. [19] for a complete expression. We also note that the
schematic notation ignores a structural difference between
the particle-hole and particle-particle channels that is only
logarithmic in nature and hence does not appear at the level of
power counting. However, it is of qualitative importance once
logarithmically small effects are taken into account (see the
next subsection).

C. Leading scaling behavior, and the fixed-point action

Equation (3.7) accurately represents the schematic form
of the Gaussian action in the particle-hole channel, which
was the only one considered in Ref. [19]. In particular, it
accurately represents the Gaussian propagator in the particle-
hole channel, which has the schematic structure

〈q q〉p-h = V

k + (1 + γ )ω
. (3.11)

We will proceed by first analyzing the action in the particle-
hole channel from a RG point of view, and then consider the
particle-particle or Cooper channel. We also recall that the
particle-particle channel is sensitive to a small magnetic field,
which gives its soft modes a mass, and therefore can always be
suppressed (see Sec. II A). This effect is qualitatively the same
as in disordered electron systems, where the orbital effects of
a small magnetic field suppress the diffusive modes known as
Cooperons [51].

We now look for a fixed point of the action [Eqs. (3.7) and
(3.10)] that describes a Fermi liquid. We use Ma’s method of
choosing scale dimensions for all relevant quantities and then
showing self-consistently that these choices lead to a stable
fixed point [2]. As in Sec. II we assign a scale dimension
[k] = 1 to wave numbers, and [ω] = 1 to frequencies (i.e., we
choose a dynamical exponent z = 1). The latter choice reflects
the linear dispersion relation of the soft modes [see the first
term in Eq. (3.7)], which in a Fermi liquid we do not expect to
be changed by renormalization. We further do not expect the
power of wave number (or frequency) in the Gaussian vertex
to be renormalized, and therefore assign a scale dimension
[q(k)] = −(d + 1)/2 and [q(x)] = (d − 1)/2 to the soft field
as a function of k and x, respectively (i.e., we choose the
exponent η to be zero). The P propagators, normalized by
the volume, are expected to scale as constants, as they do
at Gaussian order [see Eq. (3.8b)]. We hence assign a scale
dimension [P (k)] = −d/2. P/ scales differently [Eq. (3.8c)].
This behavior, which again is not expected to change under
renormalization, implies [P/(k)] = −(d − 1)/2. It is important
to stress that all of these expectations will be verified self-
consistently once the RG scheme is complete, and do not
constitute ad hoc assumptions.

With these choices, the q2 term in Eq. (3.7) is dimen-
sionless; in particular, [γ ] = 0. The constant contribution
to the P 2 term is also dimensionless, whereas the γω

contribution is irrelevant by one power of wave number or
frequency compared to the constant one. We now determine
the scale dimensions of the non-Gaussian terms. For the
coupling constants of the cubic terms we find [c3,0] = [c2,1] =
−(d − 1)/2, [c1,2] = [c0,3] = −(d + 3)/2, and for those of
the quartic ones [c4,0] = [c3,1] = [c2,2] = −(d − 1), [c1,3] =
[c0,4] = −(d + 2). All of the non-Gaussian terms thus have

negative scale dimensions for all d > 1. It is easy to verify
that this is also true for all terms of higher order in the fields,
despite the singular vertices in Aq−P mentioned above. For
instance, the q2P/4 term, whose vertex scales as 1/k3, has a
coupling constant with scale dimension [c2,4] = −2(d − 1). At
tree level, the fixed-point action is thus given by the Gaussian
terms alone, and all others are irrelevant with respect to the
Fermi-liquid fixed point in all dimensions d > 1. It follows by
standard arguments [1] that this remains true order by order
in a loop expansion. All coefficients will in general acquire
finite renormalizations, but the structure of the theory will not
change. An important ingredient in this chain of arguments is
the Ward identity proven in Ref. [19], which identifies q as
a soft mode. This assures that the q vertices will remain soft
under renormalization.

We now consider the particle-particle or Cooper channel.
The action is again schematically given by Eqs. (3.7), (3.9), and
(3.10), but with one crucial difference: The frequency structure
(which we have suppressed in our schematic notation) is
different and leads, upon inversion of the quadratic form, to
the characteristic Cooper-ladder structure of the Gaussian q

propagator. Schematically one obtains, instead of Eq. (3.11),

〈q q〉p-p = V

k + ω
+ V γc ω

(k + ω)2

1

1 + γc ln(1/ω)
, (3.12)

where γc is the interaction amplitude in the Cooper channel.
As before, we do not distinguish between factors of frequency
and factors of temperature. The structure of the interaction part
of Eq. (3.12) implies that the q fields in the noninteracting part
of the particle-particle sector of the action must be assigned
a different scale dimension than those in the interacting part,
and that the latter is logarithmically irrelevant compared to
the former. We thus conclude that the Fermi-liquid fixed-point
action is given by

AFP = 1

V

∑
k,ω

[k + ω + γ ω] q2 + 1

V

∑
k,ω

P 2, (3.13)

where all channels are included, but γ represents the interac-
tion amplitudes in the particle-hole channel only [52].

We thus have shown that there is a choice of scale dimen-
sions that makes the Gaussian part of the action [Eq. (3.7)] a
stable fixed-point action, i.e., all other parts of the action are
irrelevant with respect to the fixed point. Furthermore, the fixed
point describes a Fermi liquid. While the arguments leading to
this conclusion are deceptively simple, it is important to realize
that their validity relies on two crucial and nontrivial inputs:
First, the Ward identity that guarantees the softness of any q

vertices (Ref. [19] and Sec. III A), and second, the general
loop expansion scheme underlying the renormalization group
(Ref. [1]).

We finally mention that, strictly speaking, the Fermi liquid
is always unstable with respect to a superconducting state due
to the Kohn-Luttinger effect [53]. In the current context, this
can be understood as follows. The renormalization process
will generate all possible terms quadratic in q, whether or not
they are present in the bare action. Physically, these terms
are related to to all possible particle-hole and particle-particle
interactions in all angular momentum channels. If the net (bare
plus RG-generated) interaction in a specific particle-particle
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channel is attractive, then the general Gaussian theory yields a
superconducting instability at sufficiently low temperatures.
Kohn and Luttinger showed that this always happens for
sufficiently high angular momenta, and this has also been cast
in a RG language [15]. This effect is known to be important
only at unrealizably low temperatures, and we neglect it here.

D. Leading corrections to scaling

Now consider the least irrelevant operators in Eqs. (3.10).
These are c3,0 and c2,1 with scale dimensions −(d − 1)/2, and
c4,0, c3,1, and c2,2 with scale dimensions −(d − 1). All other
terms are more irrelevant by power counting. Furthermore,
c3,0 and c2,1, which multiply odd powers of the fields, enter
all observables quadratically, and therefore the generic least
irrelevant operator u with respect to the Fermi-liquid fixed
point has a scale dimension

[u] = −(d − 1), (3.14)

where u can stand for either of the least irrelevant cn,m or
their appropriate squares. We note that c2,2 is promoted to
the same status as c2

2,1, despite the additional P field, by the
singular 1/k vertex. This is an important difference between
clean and disordered electrons. In the latter case there are
no singular vertices, and as a result the term of O(q2P 2) is
more irrelevant than the one of O(q2P ) [54]. The same is true
of the γ 2ω2/k vertex in the q4 term, the analog of which is
more irrelevant in a disordered system. As a result, in explicit
calculations of leading corrections to Fermi-liquid behavior,
there are structurally distinct terms in the clean case that have
no analog in the disordered case. Examples will be given in
Ref. [35].

The operators collectively denoted by u all become
marginal in d = 1. This indicates the instability of the Fermi
liquid against the formation of a Luttinger-liquid state.

E. Derivation of scaling behavior

We now use the above conclusions to determine the scaling
behavior of the observables we are interested in. Let us first
consider the DOS. It is given as an expectation value of ψ̄nψn,
which is the massive mode Pnn introduced in Sec. III B [see
Eq. (3.6)]. This couples to the soft mode q via the terms in
Eqs. (3.10). Keeping in mind that the P propagator scales as a
constant, the DOS can, for scaling purposes, be be expressed
as a series of q-correlation functions [55]. Schematically,

N ∼ 1 + 1

V 2

∑
k,ω

〈q2〉 + 1

V 4

∑
{k,ω}

〈q4〉 + . . . . (3.15)

The RG arguments given above guarantee that the leading
contribution to the DOS correction is given by the term
quadratic in q. For the scale dimension of the leading scaling
part of δN this implies [δN] = 2[q(k)] + 2d = 2[q(x)] =
d − 1, which in turn implies Eqs. (2.10).

Similarly, the static spin susceptibility is given as a 〈PP 〉
correlation function, and the leading correction to the Fermi-
liquid result is given by the terms with coupling constants
c2,1 and c2,2 in Eqs. (3.10). Power counting with the scale
dimensions assigned to the fields in Sec. III B shows that
its scale dimension is also equal to d − 1. Analogously, the

leading corrections to the specific-heat coefficient γV (which
can be expressed as an energy-energy correlation function),
and the nematic magnetic susceptibility χs,p−wave are deter-
mined by the same terms. We thus have [δχs] = [δχs,p−wave] =
[δγV ] = d − 1, which yields Eqs. (2.23) and (2.25). Finally,
by an analogous argument we find [χN] = d − 1 − z = d − 2,
which yields Eq. (2.14). We thus have derived scaling from the
field theory via a RG treatment.

IV. DISCUSSION AND CONCLUSION

We now discuss various aspects of our approach, and of our
results.

A. Alternative scaling analyses

1. Dependence of observables on the least irrelevant operator

In Sec. II we assigned a scale dimension to the leading
fluctuation corrections to various observables and used those
to derive their scaling behavior. Alternatively, one can consider
the observables themselves, and use the properties of the
Fermi-liquid fixed point, specifically, the scale dimension of
the least irrelevant operator with respect to it. This line of
reasoning has been used in the past for disordered electrons
(see Ref. [54] and Appendix B) and we include it here to show
that it is equivalent to the one given in Sec. II E. We illustrate
the argument by considering the DOS at zero temperature.

At the Fermi-liquid fixed point the DOS is finite, so
we assign it a scale dimension of zero and write, at zero
temperature,

N (ω,u) = N (ω b,u b−(d−1)). (4.1)

Here u is the least irrelevant operator in the action [see
Eq. (3.14) and the accompanying discussion]. We now chose
b = 1/ω and obtain

N (ω,u) = N (1,u ω(d−1)) (4.2)

Since N (1,y) is evaluated at finite frequency we can Taylor
expand in powers of y with impunity and obtain

N (ω → 0) ∝ const + |ω|(d−1) + . . . , (4.3)

which recovers the result from Sec. II E 1. This line of
reasoning is closely related to the one used near critical fixed
points to obtain corrections to scaling [1,3].

The same argument can obviously be applied to any other
observable. We note, however, that it hinges on the observable
under consideration coupling to one of the manifestations of
u. If the leading coupling of some quantity were to, say, the
coefficient c6,0 that is the coupling constant of the q6 term in
Eq. (3.10b), then the leading correction to that quantity would
scale as ω2(d−1), etc.

2. Corrections to scaling from the fermionic free energy

An argument related to the one presented in the preceding
subsection can be used to obtain all of our results in terms
of a single scaling function for the free energy, provided the
leading irrelevant variables are taken into account. Consider
Eq. (2.4a) again, but take into account the least irrelevant
variable u, which reflects bosonic fluctuations. Keeping only
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the dependencies on T and H , and in addition on u, we have

f (f )(T ,H,u) = b−2 f (f )(T b,Hb,ub−(d−1)). (4.4)

Now if we use the fact that f (f )(1,0,z) and f (f )(0,1,z) are
analytic functions of z then we obtain, for example,

γV (T → 0,H = 0) = const + cγ T (d−1) (4.5a)

and

χs(T = 0,H → 0) = const + cχs H (d−1). (4.5b)

Here the cγ and cχs are proportional to u and given in terms of
derivatives of the scaling function.

All other results from Sec. II can obviously be obtained
by an analogous reasoning. It should be mentioned, however,
that this works so easily only since the fermionic and bosonic
excitations have the same dynamical scale dimension z. If
this is not the case, for instance in the case of disordered
electrons, the concept still works but the argument becomes
more complicated.

B. Remarks concerning scaling theories

The main point of this paper has been to discuss scaling
behavior near the Fermi-liquid fixed point on various levels of
sophistication. We add several comments that complement the
remarks already made in Ref. [20].

First, scaling works whenever there are soft modes that
lead to scale invariance since processes at long wavelengths
and low frequencies dominate the relevant physics. Crucial
questions are the number and nature of the soft modes, and
the observables and external fields they couple to. The concept
of scale invariance is best known in the context of critical
phenomena, where the relevant soft modes are the critical
modes. However, “generic scale invariance,” which is caused
by soft modes that are due to either Goldstone’s theorem or
conservation laws, and which holds in entire phases, is at
least equally important (see Ref. [4]). The Fermi-liquid phase
provides a good example of generic scale invariance, with
the soft modes in question the particle-hole excitations, which
are Goldstone modes, and the zero-sound and paramagnon
collective modes, which are due to conservation laws.

Second, phenomenological scaling relies on input that
informs the scaling assumptions. This input may be taken
from experiment (as was the case in early studies of critical
phenomena), or from theory, which even if incomplete may
provide important clues with respect to the above crucial
questions, or from both. Even if a complete theory is available,
simple scaling is still very useful, as it provides a very
simple way to get quick qualitative answers, and to check
and elucidate the physics behind explicit calculations.

Third, in a renormalization-group context, scaling near
stable fixed points that describe entire phases is just as valid
and useful as near critical fixed points. The only difference is
the nature of the soft modes (if any; an example of an ordered
phase without soft modes is an Ising ferromagnet) that lead to
the scale invariance. Moreover, since stable fixed points tend to
be characterized by Gaussian fixed-point Hamiltonians, exact
results can be obtained for physical dimensions [47], which

is usually not possible for critical fixed points. Appendix A
provides a very simple pedagogical example.

Fourth, since all of the observables we have discussed
(except for χN) have the same naive dimension, they all
generically scale the same way. The only exception is the
case of a long-ranged Coulomb interaction, which leads
to a second time scale, the plasmon scale, that acts as a
dangerous irrelevant variable with respect to the DOS and its
susceptibility. This behavior is less generic than, for instance,
the case of critical behavior above an upper critical dimension,
where dangerous irrelevant variables affect all observables,
and naive scaling breaks down. See the next subsection for
a discussion of why the DOS is affected by a long-ranged
interaction, whereas other observables are not.

C. Gauge invariance and susceptibility of observables to
long-range interactions

As we have seen in Sec. II, the nonanalyticities of the DOS
and its susceptibility are sensitive to a long-range Coulomb
interaction, whereas those of the specific heat and the spin
susceptibility are not. This can be understood as follows. For
fermions interacting via a Coulomb interaction, the action is
invariant under U (1) local gauge transformations, and in par-
ticular under a pure imaginary-time transformation ψ(x,τ ) →
ψ(x,τ ) exp [i�(τ )], ψ̄(x,τ ) → ψ̄(x,τ ) exp [−i�(τ )] with
ψ(x,τ ) the fermionic field as a function of position x and
imaginary time τ , and ψ̄ the adjoint field. The scalar elec-
tromagnetic potential, which is massless and gives rise to the
long-range Coulomb interaction, serves as the gauge field. The
susceptibilities that determine the specific-heat coefficient and
the spin susceptibility are all Fourier transforms of expressions
that involve only bilinear products ψ̄(τ )ψ(τ ), and hence are
gauge invariant. This is not true, however, for the DOS. If
we Fourier transform from the imaginary-time variable τ to
a Matsubara frequency ωn = 2πT (n + 1/2) (n = 0,1,2, . . .),
and write ψn ≡ ψ(ωn), then the DOS is related to a product
Qnn = ψ̄nψn that is local in Matsubara frequency space rather
than in imaginary-time space [see Eqs. (3.2) and (3.6)]. For
instance, a linear gauge transformation �(τ ) = ατ results in a
frequency shift Qnn → Qn+α,n+α . Since the screening of the
Coulomb interaction, which results from integrating out the
gauge field, is frequency dependent, this makes it plausible
that the DOS can be sensitive to the difference between short-
and long-ranged interactions. This is also consistent with the
fact that the critical behavior at the metal-insulator transition in
disordered interaction fermion systems depends on the nature
of the interaction for the DOS, but not for gauge invariant
quantities [56,57].

D. The DOS anomaly and pseudogaps in two-dimensional
electron systems

The linear frequency or energy dependence of the DOS for
d = 2 [Eqs. (2.10b) and (2.12)] is of interest in the context
of the “pseudogap” feature of the DOS that is observed in
many strongly correlated 2 − d electron systems. This feature,
which was first discussed by Mott [58] in the context of generic
strongly correlated systems, later became strongly associated
with high-Tc superconductivity, and the superconducting gap
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in these materials is widely believed to develop out of the
pseudogap [59]. However, a recent experiment casts doubt on
this notion in at least some superconductors [60]. It is thus
possible that at least some of the observed pseudogaps reflect
a generic feature of a Fermi liquid, viz., the leading correction
to scaling for the DOS, rather than being a harbinger of
superconductivity. They still reflect a “strange-metal”-aspect
of strongly correlated electrons, however: Since the DOS is
the order parameter for the Fermi liquid, strong correlations
can induce a quantum phase transition to a non-Fermi-liquid
phase where the DOS at the Fermi surface vanishes [17], and
the DOS anomaly in the Fermi-liquid phase is a precursor of
this transition.

E. Density-of-states fluctuations

To illustrate how strong the effects of the Goldstone
modes are on the DOS susceptibility (Sec. II E 2), let us use
simple statistical arguments to determine the behavior of χOP

one would expect in the absence of anomalous fluctuations.
Consider ϕn(x) = ψn(x)/

√
T , and pn(x) = ϕ̄n(x) ϕn(x), and

define the “volume” VT ≡ 1/T in the imaginary-time direction
of the space-time of quantum statistical mechanics. Then
〈pn(x)〉 ∝ VT is a “time-extensive” quantity that is propor-
tional to VT ≡ 1/T . Now consider the fluctuation 〈(δpn(x))2〉,
the connected part of which is proportional to 1/T = VT

(see Appendix E). For the relative fluctuation this implies
〈(δpn(x))2〉/〈pn(x)〉2 ∝ VT /V 2

T = 1/VT = T . This just says
that the relative fluctuation is proportional to 1/VT , as
one would expect from ordinary statistics. This yields an
estimate for the fluctuations of ρ(x,iωn) = ψ̄n(x) ψn(x) which
determine χN [see Eq. (E1)]:

〈[δρ(x,iωn)]2〉 ∝ 〈(δpn)2〉
V 2

T

∝ 〈(δpn)2〉/V 2
T

(〈pn〉/VT )2
∝ 1/VT = T .

(4.6)

These arguments assume that there are no strong fluctuations
in the system that invalidate the simple statistics. For the
connected part of χN, which we denoted by χ

(1)
N in Sec. II, we

thus have

χ
(1)
N (k,iωn; T ) = T θ (k,iωn; T ). (4.7)

In the absence of anomalous fluctuations, θ will scale as
the zeroth power of the wave number, the frequency, or the
temperature; i.e., θ ∼ 1.

We conclude that if the DOS were normally distributed, we
would have χ

(1)
N = T × O(1). From Eq. (2.16b) we know that

this is not correct even in the case of a short-ranged interaction.
Instead, the quantity θ in Eq. (4.7) scales as θ ∼ 1/k ∼ 1/T

in d = 2, and χ
(1)
N ∼ 1. This divergence of the relative DOS

fluctuations reflects the strong fluctuations in the system that
are a consequence of the existence of the Goldstone modes. In
d = 3 the fluctuations are weaker, and the dependence of θ on
k or T is only logarithmic [see Eq. (2.18b)].

As we have seen in Sec. II, a long-ranged Coulomb
interaction further amplifies these effects. Equation (2.21)
shows that in d = 2, θ ∼ 1/k3/2. Even more remarkable is
the fact that in both d = 2 and d = 3, χN diverges in the
limit of a vanishing wave number k → 0 [see Eqs. (2.21)

and (2.22)]. Setting k = 0 and considering a finite system with
linear dimension L we have, at any nonzero temperature,

χN ∝
{

ln L for d = 2,

L for d = 3.
(4.8)

The reason for this unusual behavior is the breakdown of
screening of the Coulomb interaction at nonzero frequencies.
χN is susceptible to both the effects of the Goldstone modes
and the breakdown of screening. The effects of the former
are stronger in d = 2 than in d = 3, whereas for the latter
the opposite is true. This raises the following interesting
point. Consider the quantity pn(x) as defined above, which is
subject to thermal and quantum fluctuations that are described
by a probability density function P . The expected value
〈p〉 = ∫

D[p] p P [p] exists and determines the density of
states. However, the second moment, which determines χN,
does not exist in either d = 2 or d = 3, and it is easy to see
that none of the higher moments exist either. The density of
states therefore must have a broad distribution that can not
be represented by a Gaussian. This phenomenon requires a
separate investigation.

Comparing the results in Sec. II E 2 with the Fermi-liquid
result for χN we see that the bosonic contributions give the
leading behavior of χN in d � 2. This is in contrast to all other
quantities, where the latter give a correction to the Fermi-liquid
result for all d > 1. This is because χN, as the OP susceptibility,
couples particularly strongly to the Goldstone modes. This
is precisely analogous to the OP susceptibility in a classical
Heisenberg ferromagnet, whose leading behavior in d � 4 is
also determined by the coupling to the Goldstone modes (see
Appendix A).

We also add some comments about the experimental rele-
vance of the quantity χN. In any system a local measurement
of the DOS depends on the position and is referred to as the
local density of states (LDOS). The LDOS gives the dominant
contribution to the tunneling current in a scanning tunneling
microscope [61]. Its average is the DOS as calculated in
this paper and also measured in a tunnel junction. Our OP
susceptibility [Eq. (E1)] describes the averaged fluctuations of
the LDOS. A suitable two-tip tunneling experiment should be
able to give information about this quantity.

F. Conclusion and outlook

In summary, we have presented a scaling analysis of non-
analyticities in Fermi liquids. The most important conclusion
is that the exponents of various nonanalyticities that were first
derived in perturbation theory are exact. In addition, the scaling
theory allows for a unified treatment of clean and disordered
electronic systems, as well as various analogous phenomena in
classical many-body systems. This demonstrates the generality
of the method, which can also be applied to more exotic
conductors, such as Dirac and Weyl metals.
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APPENDIX A: A SIMPLE EXAMPLE: SCALING ANALYSIS
OF φ4 THEORY

It is illustrative to recall the scaling analysis for classical
ferromagnets that is analogous to our treatment of the clean
fermion action in Sec. III. Consider an O(2) φ4 theory with a
two-component field φ(x) = [φ1(x),φ2(x)] and an action

S =
∫

dx
[

r

2
φ2(x) + c

2
[∇φ(x)]2 + u

4
[φ2(x)]2

]
. (A1)

The properties of the ordered phase are usually described by
parametrizing φ(x) = ρ(x)φ̂(x), with φ̂ a unit vector [48].
Here we deliberately choose a different parametrization in
order to to illustrate our treatment of the fermion problem in
the context of a much simpler model.

A saddle-point solution corresponding to the ordered phase
is φsp(x) = (φ0,0) with φ0 = √−r/u. Now write φ1(x) =
φ0 [1 + p(x)] and φ2(x) = φ0π (x), and expand in the fluc-
tuations p and π . Then we obtain a Gaussian action

S(2) = 1

V

∑
k

k2 π2 + 1

V

∑
k

[1 + O(k2)] p2. (A2)

Here we have performed a Fourier transform from π (x) and
p(x) to π (k) ≡ π and p(k) ≡ p, we have rescaled the fields to
make the Gaussian coupling constant equal to unity, and we use
the same schematic notation as in Sec. III. The non-Gaussian
part of the action takes the form

�S = �S(3) + �S(4), (A3)

where

�S(3) = c2,1

V 2

∑
{k}

π2 p + c0,3

V 2

∑
{k}

p3, (A4a)

�S(4) = c4,0

V 3

∑
{k}

π4 + c2,2

V 3

∑
{k}

π2 p2 + c0,4

V 3

∑
{k}

p4.

(A4b)

The bare values of the coupling constants cn,m can be
expressed in terms of the coupling constants in the original
action (A1).

Under renormalization, terms of higher order in the fields
are generated, and the coupling constants acquire a wave-
number dependence. By symmetry the latter takes the form
of a dependence on k2. Furthermore, the O(2) symmetry of
the action leads to a Ward identity that guarantees that the
transverse fluctuation π is a soft mode [48]. This is correctly
reflected in the Gaussian action (A2). However, �S contains
terms where π appears without any gradients. The Ward
identity ensures that the zeroth-order contributions to these
terms in a gradient expansion cancel, and for power-counting
purposes c0,4, for instance, must be written as

c4,0 = c̃0,4k
2, (A5)

and analogously for c2,1 and c2,2. Indeed, explicitly integrating
out p shows that at tree level the term proportional to c2

2,1
cancels the term proportional to c4,0.

We now assign scale dimensions in an attempt to find
a stable fixed point that describes the ferromagnetic phase.
We know that π is soft, and that the Goldstone modes are
proportional to k2, which means the first term in Eq. (A2)
must be part of the fixed-point action. We also know that the
p correlations are short ranged, which implies that the second
term in Eq. (A2) is part of the fixed-point action as well.
With [k] = 1 the scale dimension of the wave number as in
Sec. III, this motivates [π ] = −(d + 2)/2 and [p] = −d/2.
Power counting then shows that all terms in Eqs. (A4) are
irrelevant. The fixed-point action is thus given by Eq. (A2),
and the least irrelevant operator is c̃4,0 with [c̃4,0] = −(d − 2).
This implies that d = 2 is a lower critical dimension for the
problem, consistent with the Mermin-Wagner theorem.

We next add an external magnetic field h in the φ1 direction
to the problem. By shifting p one sees that the leading
coupling of the field to the soft mode takes the form hπ2,
which gives h a scale dimension [h] = 2. Now consider
the normalized magnetization m = 〈

√
1 − π2(x)〉, which is

the order parameter of the system. The leading fluctuation
correction to m is thus given by the correlation function
δm = 〈π (x) π (x)〉, whose scale dimension is [δm] = d − 2.
The relevant homogeneity law is thus

δm(h) = b−(d−2)δm(hb2), (A6)

which yields

m ∝ const + h(d−2)/2. (A7)

This nonanalytic field dependence of the magnetization [2]
is a result of the Goldstone modes, i.e., the ferromagnons,
that are represented by the soft π fluctuations. An equivalent
manifestation of the Goldstone modes is the behavior of the
longitudinal susceptibility χL = ∂m/∂h, which diverges for
h → 0 for all d < 4 [5]:

χL(h) ∝ h−(4−d)/2. (A8a)

Alternatively, the zero-field inhomogeneous susceptibility
diverges for small wave numbers as

χL(k) ∝ k−(4−d). (A8b)

Note the close analogy between these results for the
magnetic order parameter and its susceptibility, and those for
the DOS, which is the order parameter for the Fermi-liquid
state, and its susceptibility in Sec. II E.

We finally mention that one can integrate out p in a saddle-
point approximation that keeps π fixed. For p as defined above
Eq. (A2) (before the scaling that normalized the coefficients
in the Gaussian action) this leads to

p(x) =
√

1 − π2(x) − 1

+ c/2uφ2
0

1 − π2(x)
∇2

√
1 − π2(x) + O(∇4). (A9)
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Substituting this solution of the saddle-point equation back
into the action leads to the familiar nonlinear sigma model

SNLσM = c

2
φ2

0

∫
dx[[∇π (x)]2 + (∇

√
1 − π2(x))2]

+O(∇4). (A10)

This derivation of the nonlinear sigma model, which provides
an alternative to the usual derivation based on rotational
symmetry [48], is the O(2) equivalent of the derivation of
an effective action for clean electrons entirely in terms of the
soft q field in Ref. [19]. In the electron case, however, the
result is not a sigma model, and it has not been formulated
in a closed form. This is partly due to the more complicated
structure of the vertices in the electronic model.

APPENDIX B: SOFT MODES, SCALING, AND
NONANALYTICITIES IN DISORDERED ELECTRON

SYSTEMS

In this appendix we recall some features of the disordered
electron problem, to the extent that they are helpful in
understanding the corresponding properties of clean systems
discussed in this paper.

The soft-mode effective theory for noninteracting disor-
dered electrons does take the form of a matrix nonlinear sigma
model [62] and its generalization to interacting systems adds
extra terms to the sigma model [63]. After the analog of
the massive field P in Sec. III has been integrated out, the
structure of the model is, in the same schematic notation as in
Sec. III [54],

ANLσM = 1

V

∑
k,ω

[k2/G + Hω + γω]q2 + O(k2 q4,ω q3).

(B1)

Here q represents the soft components of bilinear fermion
fields as in Sec. III, and the nonlinear-sigma-model part of
the theory has been expanded in powers of q, keeping only
the quadratic term. There are several important differences
between this model and the clean model of Ref. [19], despite
their apparent similarity. One is that in the disordered case,
various observables appear as coupling constants of the field
theory. G in Eq. (B1) is proportional to the electrical resistivity,
H is proportional to the specific-heat coefficient, and H

plus the spin-singlet and spin-triplet interaction constants
summarily denoted by γ in Eq. (B1) determine the density
and spin susceptibilities, respectively [57]. In contrast, the
corresponding observables in the clean case need to be calcu-
lated as correlation functions of the basic matrix field. Partly
as a result of that, the fixed point describing the disordered
Fermi liquid is easier to obtain than in the clean case. Let us
assign a scale dimension [q(k)] ≡ [q] = −(d + 2)/2 to the
matrix field, and a dynamical exponent [ω] = z = 2 to the
frequency. G, H , and γ are then all dimensionless, and the only
term shown explicitly in Eq. (B1) represents the fixed-point
action. It describes the diffusive modes in a fermion system
with quenched disorder. The least irrelevant operators with
respect to this fixed point, which we collectively denote by
u, all have scale dimensions [u] = −(d − 2). This suffices to
determine the leading scaling behavior of various observables.

For instance, the electrical conductivity σ and the specific-heat
coefficient γV are both dimensionless according to the above
arguments. σ thus obeys a homogeneity law

σ (ω,u) = σ (ωb2,ub−(d−2)) (B2a)

which results in a low-frequency nonanalyticity or long-time
tail

σ (ω → 0) ∝ const + ω(d−2)/2. (B2b)

Similarly, the specific-heat coefficient obeys

γV (T ,u) = γV (T b2,ub−(d−2)) (B3a)

which results in

γV (T → 0) ∝ const + T (d−2)/2. (B3b)

The scaling behavior of the DOS and the spin susceptibility
can be obtained by analogous arguments. All of these results,
which are analogous to the ones for clean systems derived in
Secs. III and IV A above, were first derived in perturbation
theory [7]. Arguments analogous to those put forward in
Sec. III B later showed that they represent the exact (as far
as the exponents are concerned) leading nonanalyticities [54].
Also note that these scaling arguments immediately show that
d = 2 is a lower critical dimensionality of the problem, as
the disordered Fermi-liquid fixed point becomes unstable for
d � 2.

APPENDIX C: LONG-TIME TAILS IN CLASSICAL FLUIDS

Here we sketch how long-time tails in classical fluids can
be considered as corrections to scaling at a Navier-Stokes
fixed point. Focusing on the viscosity, we first derive the
long-time tail as deriving from the dependence of the viscosity
on the least irrelevant operator, in analogy to the treatment of
clean electrons in Sec. IV A, and of disordered ones in the
previous appendix. We then show how, alternatively, it can be
understood as the leading scaling behavior of the fluctuation
correction to the viscosity, in analogy to the development in
Sec. II. Our goal is to demonstrate how universally useful
and applicable the notion of corrections to scaling near a
stable fixed point is, and that it applies to classical many-body
systems as well as to quantum ones.

1. Corrections to scaling at a Navier-Stokes fixed point

We focus on what arguably is the simplest example of a
classical long-time tail, viz., the one related to the kinematic
viscosity ν. For simplicity, we consider incompressible flow
(which in particular eliminates sound waves), and we neglect
the pressure-gradient term. The Langevin equation for the
transverse fluid velocity u then reads as [64]

∂t u + (u · ∇)u = ν0∇2u + F̃. (C1)

Here F̃ is a Gaussian distributed random force whose second
moment is fixed by the requirement that Eq. (C1) correctly
render the equilibrium velocity fluctuations:

〈F̃i(x,t) F̃j (x′,t ′)〉 ≡ Gij (x,t |x′,t ′)

= 2T ν0∂i∂j δ(x − x′) δ(t − t ′). (C2)
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ν0 is the bare kinematic viscosity, which gets renormalized to
the physical one ν by the nonlinear term in Eq. (C1). We now
show how to use renormalization-group and scaling arguments
to determine this renormalization. This can be done by using
a Martin-Siggia-Rose formalism [65–67] to cast the problem
in a field-theoretic language.

We start with the generating functional for all correlation
functions of the fluid velocity:

Z[F̃] =
∫

D[u] δ[∂t u + (u · ∇)u − ν0∇2u − F̃]

× e− 1
2

∫
dx dx′ dt dt ′F̃i (x,t) G−1

ij (x,t |x′,t ′) F̃j (x′,t ′). (C3)

Here D[u] is a functional integration measure. Enforcing the
functional delta constraint by means of an auxiliary field ū,
and integrating out the Langevin noise, we obtain

Z ≡
∫

D[F̃] Z[F̃] =
∫

D[u,ū] e−S[u,ū] (C4a)

with an action

S[u,ū] = i

∫
dx dt ū · [∂t u + c (u · ∇)u − ν0∇2u]

+ 1

2

∫
dx x′ dt dt ′ ūi(x,t) Gij (x,t |x′,t ′) ūj (x′,t ′).

(C4b)

Here we have introduced a nominal coupling constant c for
the nonlinear term, whose bare value is c0 = 1.

Now we assign scale dimensions [L] = −1 and [t] = −z

to length and time, respectively. Choosing

[u] = [ū] = d/2 (C5a)

and

z = 2 (C5b)

leads to a stable Navier-Stokes fixed point with respect to
which the nonlinear term is irrelevant. Indeed, the scale
dimension of the coupling constant c is negative for d > 2,

[c] = −(d − 2)/2, (C6)

while ν0 is dimensionless and the viscosity term is thus part of
the fixed-point action. Since the nonlinear term is cubic in the
fields, it always appears squared in explicit calculations. The
wave-number and frequency-dependent kinematic viscosity
thus obeys a homogeneity law

ν(k,ω) = fν(kb,ωb2,c2b−(d−2)) (C7)

with fν a scaling function. From Eq. (C7) we obtain, in
particular, by expanding in powers of the small third argument,

ν(k = 0,ω) ∝ 1 + const × ω(d−2)/2, (C8)

where the constant is proportional to c2. This is the well-
known classical long-time tail [12]. In d = 2, c becomes
marginal, which reflects the fact that the local description of
hydrodynamics breaks down in d � 2 [12,68].

2. Scaling of the fluctuation correction

To complete the analogy with our various discussions of
the quantum problem, we now consider the long-time tail of
the classical viscosity from an alternative point of view. The
kinematic viscosity ν is defined as the shear viscosity η divided
by the mass density ρ, ν = η/ρ, and thus has a naive dimension
of a length squared divided by a time. With the choice of scale
dimensions specified in Sec. C 1, this makes ν dimensionless,
consistent with the fixed-point action identified above. Now
consider the leading correction δν to the kinematic viscosity.
To determine the scale dimension of δν, we recall that the
viscosity physically results from a frictional force Ff . With
G a friction coefficient, we write

Ff = Gu. (C9)

Considering planar Couette flow within a hypercube of linear
dimension L we have, for the x component Ff of Ff , and
with an accuracy that suffices for dimensional arguments,

Ff = GL∂ux/∂y. (C10)

On the other hand, the x-y component of the stress tensor T is
given by

Txy = η∂ux/∂y. (C11)

To obtain the frictional force we need to multiply by the cross-
sectional area Ld−1. Equating the result with Eq. (C10) we
obtain

GL∂ux/∂y = Ld−1η ∂ux/∂y, (C12)

and finally

G = Ld−2η. (C13)

G/ρ thus scales as Ld−2 times a dimensionless quantity, which
yields [δν] = −(d − 2) for the scale dimension of δν. The
appropriate homogeneity law, according to Eq. (2.1), is thus

δν(k,ω) = b(d−2)δν(kb,ωb2). (C14)

Equation (C8) now follows as the leading scaling behavior
of δν.

The above arguments, which are physically equivalent to the
ones given in Appendix C 1, are analogous to the scaling theory
of electron localization by Abrahams et al. [69]. Building on
arguments by Thouless, these authors realized that the natural
scaling variable is the conductance G, which is related to
the conductivity σ by G = Ld−2σ . The relation between the
friction coefficient G and the viscosity η in Eq. (C13) is the
precise analog for the classic fluid case.

APPENDIX D: DENSITY OF STATES, AND ITS
SUSCEPTIBILITY, IN THE LONG-RANGE CASE

Here we explain the origin of the results in the long-range
case that were given in Sec. II E. For the case of a short-
range interaction, the expression for the DOS [Eqs. (3.6)] were
evaluated in Ref. [19] to one-loop order. For the causal function
Q(iωn) [Eq. (3.6b)], with ωn > 0 in d dimensions, it takes the

035130-16



NONANALYTICITIES IN A STRONGLY CORRELATED . . . PHYSICAL REVIEW B 89, 035130 (2014)

form [see Eq. (5.4) in that reference]

Q(iωn) = 2i
1

V

∑
k

1

v2
Fk

2
T

∑
m<0

ϕ′
d (i�n−m/vFk)

× 2NFγ

1 − 2NFγ ϕd (i�n−m/vFk)�n−m/vFk
. (D1a)

Here γ is the interaction amplitude, and

ϕd (z) = i

z
2F1(1,1/2,d/2; 1/z2) (D1b)

with 2F1 Gauss’s hypergeometric function, and ϕ′
d (z) =

dϕd (z)/dz. Evaluating this integral, and using Eq. (3.6a),
yields results that are consistent with Eqs. (2.10).

In the case of a long-ranged Coulomb interaction, the
amplitude γ gets replaced by a wave-number-dependent
function that has the form of a statically screened Coulomb
potential:

γ → γ (k) = 1

2NF

κd−1

kd−1 + κd−1
, (D2)

where κ is the screening wave number. At zero temperature,
the integral can be written as

Q(iω) = Q(i0) − Sd−1

π (2π )dvd
F

ωd−1
∫ vF�/ω

0
dy yd−2

×
∫ 1/y

0
dx

iϕ′
d (ix)

1 + (ω/vFκ)d−1yd−1 − xϕd (ix)
. (D3)

Asymptotic analysis reveals that the function of ω given by
the double integral on the right-hand side has, for ω → 0,
a constant contribution and a contribution proportional to
ω(d−2)/(d−3). For d < 2, the latter is dominant and leads to
Eq. (2.12).

An analogous, albeit more involved, calculation, the struc-
ture of which was given in Ref. [39], yields the behavior of the
DOS susceptibility given in Sec. II E 2.

APPENDIX E: STRUCTURE OF THE DENSITY-OF-STATES
SUSCEPTIBILITY

The density-of-states susceptibility χN is given as a four-
fermion correlation function [39]

χN(x − y; iωn,iωm) = 〈δρ(x,iωn) δρ( y,iωm)〉. (E1)

Here ρ(x,iωn) = ψ̄n(x) ψn(x) and δρ = ρ − 〈ρ〉. Defining
a Fourier transform from a Matsubara frequency ωn to an
imaginary time τ as in Ref. [39], this takes the form

χN(x − y; iωn,iωm)

= T 2
∫ 1/T

0
dτ1 dτ2 dτ3 dτ4 eiωn(τ1−τ2)+iωm(τ3−τ4)

×〈δ[ψ̄(x,τ1) ψ(x,τ2)] δ[ψ̄( y,τ3) ψ( y,τ4)]〉. (E2)

There are two distinct contributions to this correlation func-
tion: First, a disconnected one in which the four-fermion
correlation factorizes into a product of two two-fermion
correlations:

χdc
N (x − y; iωn,iωm)

= −T 2
∫ 1/T

0
dτ1 dτ2 dτ3 dτ4 eiωn(τ1−τ2)+iωm(τ3−τ4)

×〈ψ̄(x,τ1)ψ( y,τ4)〉〈ψ̄( y,τ3)ψ(x,τ2)〉, (E3a)

and second, a connected one that contains the contributions to
〈ψ̄ψψ̄ψ〉 that do not factorize:

χ c
N(x − y; iωn,iωm)

= T 2
∫ 1/T

0
dτ1 dτ2 dτ3 dτ4 eiωn(τ1−τ2)+iωm(τ3−τ4)

×〈ψ̄(x,τ1)ψ(x,τ2)ψ̄( y,τ3)ψ( y,τ4)〉c. (E3b)

Using time translational invariance, we finally obtain

χdc
N (x − y; iωn,iωm)

= −δnm

∫ 1/T

0
dτ dτ ′ G(x − y,τ )G( y − x,τ ′), (E4a)

where G(x,τ ) = 〈ψ̄(x,τ ) ψ(0,0)〉, and

χ c
N(x − y; iωn,iωm)

= T

∫ 1/T

0
dτ1 dτ2 dτ3 eiωn(τ1−τ2)+iωm(τ3)

×〈ψ̄(x,τ1)ψ(x,τ2)ψ̄( y,τ3)ψ( y,0)〉c. (E4b)

This shows that χdc
N approaches a constant as T → 0,

whereas χ c
N is proportional to T . These are the properties

we used in Sec. II, where we denoted χdc
N and χ c

N by χ
(0)
N and

χ
(1)
N , respectively.
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