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Superconductivity in the two-dimensional t-t ′-Hubbard model
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Using a recently developed renormalization group method for fermionic superfluids, we determine conditions
for d-wave superconductivity in the ground state of the two-dimensional Hubbard model at moderate interaction
strength, and we compute the pairing gap in the superconducting regime. A pairing instability signaled by a
divergent flow in the Cooper channel leads to a superconducting state in all studied cases. The next-to-nearest-
neighbor hopping t ′ plays a crucial role in the competition between antiferromagnetism and superconductivity.
A sizable t ′ is necessary to obtain a sizable pairing gap.
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I. INTRODUCTION

Shortly after the discovery of high-temperature supercon-
ductivity in layered cuprate compounds, Anderson1 suggested
that the two-dimensional Hubbard model contains the essence
of the electron dynamics in the copper-oxygen planes. While
it may not describe all relevant aspects of the system,
the Hubbard model definitely captures its most prominent
property, that is, d-wave superconductivity in the vicinity of
antiferromagnetic order.2 Convincing evidence for supercon-
ductivity in the Hubbard model at weak and moderate coupling
strengths has been established by self-consistent or renormal-
ized perturbation expansions3–6 and from functional renormal-
ization group flows.7–9 At stronger coupling, embedded cluster
methods10 yield superconducting states in a large density
range, if magnetic order is excluded,11–13 and otherwise sur-
prisingly extended regions of superconductivity with a sizable
pairing gap coexisting with antiferromagnetism.14–16 Varia-
tional Monte Carlo calculations with superconducting trial
wave functions revealed a substantial energy gain from d-wave
pairing in a wide density range in the strong coupling regime.17

On the other hand, unbiased quantum Monte Carlo (QMC)
simulations frequently detected enhanced superconducting
fluctuations but only rarely evidence for long-range order.18

At weak and moderate coupling the functional renormal-
ization group (fRG) is probably the most powerful method
for studying the interplay of magnetism and superconductivity
in two-dimensional lattice electron models.19 In this method,
approximations are derived by truncating an exact flow
equation for the effective action, where the flow parameter � is
usually an energy scale controlling the successive integration
of fluctuations.20 The fRG treats all fluctuation contributions to
the effective two-particle interaction and self-energy on equal
footing and in the thermodynamic limit. The d-wave pairing
instability generated by magnetic fluctuations in the two-
dimensional Hubbard model emerges already within the lowest
order (one-loop) truncation.7–9 The instability is signaled by
a divergence of the effective two-particle interaction in the
Cooper channel at a critical cutoff scale �c.

Antiferromagnetic fluctuations are the main mechanism
for d-wave pairing interactions, at least for a moderate
Hubbard interaction, but magnetism also competes with
superconductivity, since magnetic order (static or fluctuating)
leads to gaps in the electronic spectrum. From the early
fRG flows7–9 the competition between antiferromagnetism

and superconductivity could not be decided unambiguously
in a sizable density range where both channels develop large
effective interactions, since the flow had to be stopped at the
scale at which the effective interaction diverges and it was not
clear whether the leading divergence is a reliable indicator for
the prevailing type of order.

To continue the flow beyond the critical scale one has to
allow for spontaneous symmetry breaking. One possibility is
to introduce a bosonic order parameter field by a Hubbard-
Stratonovich decoupling of the interaction. This approach
to symmetry breaking in the fRG has already been applied
to antiferromagnetic21 and superconducting22,23 states in the
Hubbard model. The choice of a specific decoupling procedure
of the Hubbard interaction introduces a certain bias, which
leads to ambiguities in cases with competing instabilities. Al-
ternatively, one may work with a purely fermionic flow, which
is the route we take here. In the fermionic fRG, a relatively
simple one-loop truncation with self-energy feedback24 solves
mean-field models of symmetry breaking such as the reduced
BCS model exactly, although the effective interaction diverges
at �c.25 For the attractive Hubbard model, this truncation
yields results for the pairing gap in good agreement with
earlier estimates at weak and moderate coupling strengths.26

Recently, an improved parametrization of the interaction
vertex in a fermionic superfluid, which fully exploits spin
rotation invariance and parametrizes singularities by a single
momentum and frequency variable, was derived.27,28 It is
based on an extension of a decomposition of the normal-state
vertex in charge, magnetic, and pairing channels29,30 to the
superfluid state. This new parametrization was also applied
to the attractive Hubbard model, and a comprehensive under-
standing of the behavior of the flowing effective interaction
was obtained.28

In the present work, we use the fermionic fRG to detect
and analyze superconductivity in the ground state of the
two-dimensional repulsive Hubbard model. We find that
a diverging d-wave pairing interaction always leads to a
superconducting state, and we compute the d-wave gap as a
function of doping for various choices of the next-to-nearest-
neighbor hopping t ′. The results reveal the crucial role of t ′ in
the competition between magnetism and superconductivity.

The paper is structured as follows. In Sec. II we describe
the fRG equations for an unbiased detection and analysis
of d-wave superconducting states in the two-dimensional
Hubbard model. In Sec. III we present results for effective
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interactions, critical scales, and the ground-state pairing gap.
A short summary and final remarks in Sec. IV close the
presentation.

II. MODEL AND METHOD

In standard second-quantization notation the Hubbard
model31 is described by the Hamiltonian

H =
∑
j,j′,σ

tjj′c
†
jσ cj′σ + U

∑
j

nj↑nj↓, (1)

where j,j′ label lattice sites and σ is the spin orientation.
For nearest and next-to-nearest-neighbor hopping on a square
lattice with amplitudes −t and −t ′, respectively, the Fourier
transform of the hopping matrix yields a dispersion εk =
−2t(cos kx + cos ky) − 4t ′ cos kx cos ky . We set t = 1, which
defines our unit of energy.

The partition function and generating functionals for
correlation functions can be written as functional integrals over
anticommuting fields ψkσ and ψ̄kσ , where k = (k0,k) com-
prises Matsubara frequencies and momenta. The generating
functional � for one-particle irreducible vertex functions, also
known as effective action, is given by the Legendre transform
of the generating functional for connected Green functions.32

Adding a suitable regulator term to the quadratic part of the
bare action, one can define a scale-dependent effective action
�� that interpolates smoothly between the bare action S at the
highest scale �0 and the final effective action � for � → 0.
The flow of �� obeys an exact functional flow equation,33

from which one can derive a hierarchy of flow equations for
the vertex functions.

To describe a superfluid state, it is convenient to use a
representation in terms of Nambu fields φks , φ̄ks defined as
φk+ = ψk↑, φ̄k+ = ψ̄k↑, φk− = ψ̄−k↓, φ̄k− = ψ−k↓. To quartic
order in the fields, the scale-dependent effective action for a
spin-singlet superfluid has the general form34

��[φ,φ̄] = �(0)� −
∑

k

∑
s1,s2

�(2)�
s1s2

(k) φ̄ks1φks2

+ 1

4

∑
k1,...,k4

∑
s1,...,s4

�(4)�
s1s2s3s4

(k1,k2,k3,k4)

× φ̄k1s1 φ̄k2s2φk3s3φk4s4 . (2)

For systems with (unbroken) spin-rotation invariance, only
terms with an equal number of φ and φ̄ fields contribute. The
Nambu vertex �(4)�

s1s2s3s4
(k1,k2,k3,k4) is nonzero only for k1 +

k2 = k3 + k4. The Nambu components of the 2-point function
�(2)�

s1s2
(k) form a 2 × 2 matrix �(2)�(k). Its matrix inverse is the

Nambu propagator

G�(k) =
(

G�(k) F�(k)

F ∗�(k) −G�(−k)

)
, (3)

where G�(k) = −〈ψkσ ψ̄kσ 〉 and F�(k) = −〈ψk↑ψ−k↓〉. The
Dyson equation (G�)−1 = (G�

0 )−1 − �� relates the full prop-
agator G� to the self-energy �� and the bare regularized

propagator G�
0 given by

[
G�

0 (k)
]−1 =

(
ik0 − ξk + R�(k0) 	0(k)

	∗
0(k) ik0 + ξk + R�(k0)

)
,

(4)
where ξk = εk − μ, and 	0(k) is a small initial gap added
to the bare action to trigger the symmetry breaking. It can
be chosen small enough to avoid a discernible effect on the
gap at the end of the flow. The regulator function R�(k0) =
i sgn(k0)

√
k2

0 + �2 − ik0 replaces frequencies k0 with |k0| 

� by sgn(k0)� and thus confines the bare propagator to a size
of order �−1. The self-energy matrix has the form

��(k) =
(


�(k) 	0(k) − 	�(k)

	∗
0(k) − 	�∗(k) −
�(−k)

)
, (5)

where 	�(k) is the flowing gap function.
The Nambu self-energy obeys the exact flow equation

d

d�

�

s1s2
(k) =

∑
k′

∑
s ′

1,s
′
2

S�
s ′

2s
′
1
(k′)�(4)�

s1s
′
1s

′
2s2

(k,k′,k′,k), (6)

where S�(k) = d
d�

G�(k)|�� fixed. The flow of the Nambu
vertex �(4)� is approximated by a one-loop truncation with
self-energy feedback24 where contributions from three-particle
interactions leading to two- and higher-loop terms are ne-
glected. This approximation is exact for mean-field models
such as the reduced BCS model.25 The flow equation for
�(4)� is then given by a sum of three one-loop diagrams
corresponding to the particle-particle and direct and crossed
particle-hole channels, respectively.27,28

The parametrization of the Nambu vertex is based on
an extension of the channel decomposition devised initially
for the normal state29,30 to a spin-singlet superfluid. The
fluctuation contributions to the normal effective interaction
are decomposed in a charge, a magnetic, and a pairing con-
tribution, where possible singular momentum and frequency
dependences of the corresponding coupling functions C�

kk′(q),
M�

kk′(q), and P �
kk′(q) are isolated in the variable q, which is

either a momentum transfer or a conserved total momentum (or
frequency). In a superfluid state also anomalous interactions
appear. A coupling function W�

kk′(q) describes the destruction
or creation of four electrons, while another function X�

kk′(q)
captures anomalous processes with three ingoing electrons and
one outgoing electron, or vice versa.27,28

We adopt a static approximation for the vertex, that is, we
discard the frequency dependences of the coupling functions.
The q0-frequency dependence of the coupling functions is
crucial for capturing the dynamics of infrared singularities
associated with the Goldstone boson,28 but this has little impact
on the gap function. By fixing the phase of the gap at zero, the
gap function and all (static) coupling functions are real. In the
normal and anomalous pairing channels it is convenient to use
amplitude and phase coupling functions defined as A�

kk′(q) =
P �

kk′(q) + W�
kk′(q) and ��

kk′(q) = P �
kk′(q) − W�

kk′(q), respec-
tively. The dependence of the coupling functions on the
fermionic momenta k and k′ is parametrized by an expansion
in the simplest s-wave and d-wave form factors, sk = 1 and
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dk = cos kx − cos ky , respectively:

C�
kk′(q) = C�

s (q) + C�
d (q)dkdk′ ,

M�
kk′(q) = M�

s (q) + M�
d (q)dkdk′ ,

A�
kk′(q) = A�

s (q) + A�
d (q)dkdk′ , (7)

��
kk′(q) = ��

s (q) + ��
d (q)dkdk′ ,

X�
kk′(q) = X�

sd (q)dk′ + X�
ds(q)dk.

For the first four coupling functions, mixed s-d terms are
very small and can be neglected.35 On the other hand, the
last one is dominated by mixed terms, while diagonal s-s and
d-d terms are negligible here. The neglected terms are fully
absent in a mean-field model with reduced s- and d-wave
interactions in the forward scattering and pairing channels.36

The q-dependences of the coupling functions cannot be
parametrized accurately by simple functions and are therefore
discretized on a two-dimensional grid.

Inserted into the flow equation (6), a static real vertex entails
a frequency-independent real self-energy. The momentum
dependence of its normal component is weak and has no
important effects.37 We therefore approximate 
� by a
constant. For the momentum dependence of the gap function
we use the simplest d-wave ansatz 	�(k) = 	�dk, and
correspondingly 	0(k) = 	0 dk.

The flow of the coupling functions, self-energy and gap, is
obtained by projecting the right-hand sides of the flow equa-
tions on the ansatz via Fermi surface averages.28 Deviations
from the Ward identity relating gap and vertex are eliminated
during the flow by another projection.28,36

III. RESULTS

We now present results based on a numerical solution of the
flow equations. In Fig. 1 we show the flow of various coupling
functions at fixed momenta for a moderate interaction strength
U = 3, a next-to-nearest-neighbor hopping t ′ = −0.25, and
density n = 0.9. For these parameters the ground state is
a d-wave superconductor with a gap amplitude 	(0,π ) =
2	�=0 = 0.047. The pairing instability at �c = 0.040 is
generated mostly by antiferromagnetic fluctuations. The latter
grow gradually already at scales well above �c, as can be seen
from the flow of M�

s (q) at q = (π,π ). The d-wave pairing
amplitude coupling A�

d (0) exhibits a pronounced peak at the
critical scale �c. The presence of a small external pairing
gap (	0 = 1.6 × 10−4) prevents a divergence of the peak. The
phase coupling ��

d (0) increases rapidly at �c and saturates at
a large final value proportional to 	−1

0 .
Other coupling functions remain relatively small. Some

examples are shown in the lower panel of Fig. 1. In particular,
the d-wave charge coupling function C�

d (q) is only weakly
attractive for all wave vectors q. A large negative C�

d (0) would
indicate an incipient d-wave Pomeranchuk instability8,38

toward nematic order.39 A strongly attractive C�
d (q) at q �= 0

would signal a modulated nematic instability,40 which can
also be viewed as a d-wave bond order. Such an instability was
shown to accompany d-wave pairing near an antiferromagnetic
quantum critical point.41 However, a recent fRG study of the
Hubbard model above the critical scale �c did not reveal any
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FIG. 1. (Color online) Flows of coupling functions for U = 3,
t ′ = −0.25, and density n = 0.9. Top: Dominant magnetic and
d-wave pairing coupling functions at q = Q = (π,π ) and q = 0,
respectively. Bottom: Charge coupling functions at q = 0 and q =
(π,π ), and magnetic coupling functions at q = 0. Note the distinct
scales on the vertical axes of the top and bottom panels.

proximity to d-wave charge order,42 in agreement with our
results.

The leading instabilities are generically either antiferro-
magnetism or d-wave pairing. In the upper panel of Fig. 2
we show the critical scale �c as a function of “doping”
x = 1 − n at a fixed interaction strength U = 3 for various
choices of t ′. The doping range covers a broad regime from
moderate electron doping to fairly large hole doping. Distinct
symbols for d-wave superconductivity and commensurate and
incommensurate antiferromagnetism indicate which coupling
function diverges at �c. Incommensurate antiferromagnetism
is signaled by a divergence of Ms(q) at wave vectors of the form
(π ± δ,π ) and (π,π ± δ). Note that �c is maximal above Van
Hove filling for all t ′ < 0. This is due to a mutual reinforcement
of different channels in the presence of antiferromagnetic hot
spots.43

Whenever pairing is the leading instability, we continue the
flow to � = 0 and compute the d-wave pairing gap. In the
lower panel of Fig. 2 the resulting gap amplitudes 	(0,π ) =
2	�=0 are plotted as a function of doping. One can see that
	(0,π ) is comparable to �c.44 Fluctuations below �c have
little influence on the size of the gap. An important observation
is that in all cases of a pairing instability at �c, the flow
could be continued to a superconducting state at � = 0. Hence,
a divergence of the vertex in the pairing channel at �c is
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FIG. 2. (Color) Critical scales for the leading instability (top) and
d-wave gap amplitude (bottom) as a function of doping for U = 3 and
various choices of t ′. The leading instability is specified by different
symbols for �c, and gaps are shown only in the superconducting
regime where the flow could be continued to � = 0. The dotted gray
vertical lines indicate Van Hove filling for different values of t ′.

a reliable indicator for a superconducting state. Previously,
the leading instability was often determined at a scale �∗ >

�c at which the vertex exceeds a certain large finite value.19

This was partially motivated by concerns about the validity
of the one-loop truncation in the regime of large effective
interactions. However, such a supposedly cautious procedure
can lead to incorrect conclusions, since a divergence in the
pairing channel is often preceded by a regime of dominant
magnetic interactions at scales � > �c. On the other hand, we
cannot exclude the possibility that the superconducting state
obtained from the fRG flow is only metastable. In particular,
at and near half-filling there might be an antiferromagnetic
ground state that is not signaled by a divergent interaction in
the flow, analogously to a first-order phase transition which is
not signaled by a divergent susceptibility.

A divergence of the magnetic coupling function at a scale
� below the critical scale for pairing �c would indicate mag-
netic order coexisting with superconductivity (as the leading
instability). We have never encountered such a divergence, in
agreement with a previous study based on a combination of
fRG and mean-field theory, where cases of coexistence with a

dominance of pairing turned out to be extremely rare.45 Vice
versa, a dominant magnetic instability naturally allows for
pairing with a smaller energy scale, when the magnetic order
does not fully gap the Fermi surface.

A superconducting state at half-filling, as obtained
for t ′ = −0.2, is possible only for weak or moderate
interactions.13,46,47 At strong coupling, the half-filled system
is a Mott insulator and magnetic order is the only option for
symmetry breaking.

The maximal size of the pairing gap (at “optimal doping”)
depends strongly on t ′. For |t ′| � 0.15, the leading instability
near half-filling is always antiferromagnetic, and d-wave
pairing is leading only in a density range away from half-filling
where the critical scale and the pairing gaps are already quite
small. For t ′ = 0, there is pairing with a small but visible
gap around x = 0.15, and, due to the particle-hole symmetry
for t ′ = 0, also at x = −0.15 (not shown). For t ′ = −0.1
and −0.15, in the pairing regime at large hole doping, �c

and 	 are smaller than the resolution in Fig. 2, and are
therefore not plotted. The extended regime of incommensurate
antiferromagnetism on the hole doped side is due to Fermi
surface nesting. For |t ′| � 0.25, d-wave pairing is the only
instability for all densities in the plotted range. The antifer-
romagnetism found in the hole-doping range around x = 0.1
for t ′ = −0.2 is almost degenerate with superconductivity. In
this regime, we find commensurate antiferromagnetism due
to umklapp scattering between antiferromagnetic hot spots.
The largest pairing gap is obtained for t ′ = −0.2 near that
antiferromagnetic regime for moderate hole-doping above Van
Hove filling. Hence, a substantial but not too large negative
value of t ′ is optimal for obtaining superconductivity with
a large gap in the hole-doped system. In the weak and
moderate interaction regime, where the one-loop truncation
is a controlled approximation, the optimal size of |t ′| increases
monotonically with U . Hence, we expect an optimal value
t ′opt < −0.2 for interactions U > 3.

IV. CONCLUSION

We have used a fermionic fRG, with a channel decompo-
sition that treats charge, magnetic, and pairing interactions on
equal footing, to determine the energy scale and the nature
of the leading instabilities in the two-dimensional repulsive
Hubbard model at a moderate interaction strength. Depending
on the model parameters, one finds divergent interactions
indicating commensurate or incommensurate antiferromag-
netism, or d-wave superconductivity, as in previous fRG
studies.19 A recent extension of the fRG for superfluid states
allowed us to compute the pairing gap in the superconducting
regime. A pairing instability signaled by a divergence in
the Cooper channel leads to a superconducting state in all
studied cases. We have scanned a wide parameter range,
with densities ranging from moderate electron doping to large
hole doping, and several choices of a next-to-nearest-neighbor
hopping t ′.

The strong t ′ dependence resulting from our fRG study is
consistent with unbiased QMC simulations of the Hubbard
model, where pairing turned out to be too weak to be
detected at t ′ = 0,48 while evidence for superconductivity
was found at t ′ = −0.2.49 Band structure calculations by
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Pavarini et al.50 revealed long ago that a substantial hopping
amplitude beyond nearest neighbors is beneficial for high-
temperature superconductivity in cuprates. Comparing many
cuprate compounds, they found empirically that Tc at optimal
doping increases systematically with the hopping range.
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