
PHYSICAL REVIEW B 89, 035124 (2014)

Multiple Bragg diffraction in opal-based photonic crystals: Spectral and spatial dispersion
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We present an experimental and theoretical study of multiple Bragg diffraction from synthetic opals. An
original setup permits us to overcome the problem of the total internal light reflection in an opal film and to
investigate the diffraction from both the (111) and (1̄11) systems of planes responsible for the effect. As a result,
angle- and frequency-resolved diffraction and transmission measurements create a picture of multiple Bragg
diffraction that includes general agreement between dips in the transmission spectra and diffraction peaks for
each incident white light angle and a twin-peak structure at frequencies of the photonic stop band edges. Two
opposite cases of the interference are discussed: an interference of two narrow Bragg bands that leads to multiple
Bragg diffraction with anticrossing regime for dispersion photonic branches and an interference of a narrow
Bragg band and broad disorder-induced Mie background that results in a Fano resonance. A good quantitative
agreement between the experimental data and calculated photonic band structure has been obtained.
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I. INTRODUCTION

The Bragg diffraction of waves gives rise to the appearance
of band gaps in the energy spectra of various periodic struc-
tures. Representatives of these are photonic crystals (PhCs)
[1–3], which have their band gaps in the electromagnetic
spectrum, with the gap energy position governed by the period
of the spatial modulation of the dielectric constant.

In 1995, a research team from Ioffe Physical-Technical
Institute published a paper [4] that demonstrated that synthetic
opals are in fact three-dimensional PhCs. This work has formed
a basis for a series of technological, structural, and optical
studies made in recent years [5–27].

Opals possess band gaps in the visible range due to the
typical size of the constitutive a-SiO2 particles of some
hundreds of nanometers. This provides a unique chance to
study photonic properties not only by traditional methods like
registering transmission or reflection with a spectrometer, but
also by directly observing diffraction patterns on a screen
disposed behind or around the sample.

In the Bragg diffraction of light, the processes associated
with the surface of the Brillouin zone (BZ) where the photonic
stop bands open up are essential. The Bragg diffraction occurs
when the Laue conditions are satisfied: ks = ki + ghkl , where
ki and ks are the wave vectors of the incident and scattered
light waves, respectively, and ghkl is the reciprocal lattice
vector determined by a system of scattering planes with Miller
indices (hkl) (in the notation of the fcc lattice of opal).
Earlier, the Bragg diffraction was studied both experimentally
and theoretically in bulk samples of synthetic opals [4,10–
13,17,18,20,23,25,26], thin opal films [5,8,14,15,19,21,24],
and in colloidal opal-based PhCs [28,29]. These works
were devoted to the study of specular reflection spectra and
diffraction patterns [13,15,28,30–32], which were observed on
screens, photographed, and processed using various programs.

If the Laue condition holds simultaneously for two systems
of planes with different Miller indices (h1k1l1) and (h2k2l2), the
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optical spectra exhibit special effects caused by multiple Bragg
diffraction (MBD) of light. The MBD was first revealed in x-
ray scattering spectra of germanium crystals [33]. In PhCs, this
phenomenon was first observed in optical studies of the high-
contrast TiO2 opal-based inverted structure [34]. A doublet
structure was observed in specular reflection spectra, which
was explained as a result of the simultaneous Bragg diffraction
from the (111) and (200) planes in the region of the U point
of the BZ of the fcc lattice. Here, the vector of the incident
wave vector ki scans the cross section �LgUgX of the fcc BZ.
Near the Ug point, the measured (111) and (200) dispersion
curves deviate from the curves calculated using the Bragg
equation and resemble the well-known effect of anticrossing
of eigenstates of two interacting modes.

Subsequently, the MBD in different opal-based PhC was
studied in a number of works. In Ref. [9], the unpolarized re-
flection spectra of films formed from polymethylmethacrylate
spheres are presented. In these spectra, the authors observed a
doublet structure, which, as in Ref. [34], was assigned to the
MBD in the region of the U point of the BZ. The experimental
data were compared with the results of calculations of photonic
dispersion curves along the directions L → U and X → U . In
the region of the MBD, a doublet structure of the unpolarized
reflection spectra was also observed in the study of films
prepared from polystyrene spheres [35]. The MBD involving
the (111) and (1̄11) photonic stop bands was observed in the
region of the K point of the BZ in studies of the polarized
transmission spectra of synthetic opals a-SiO2 [36]. The
MBD was investigated in the polarized transmission and
reflection spectra of a-SiO2 films [37]; however, calculations
of the band structure of opals, as in Ref. [36], were not
performed. The MBD and the relation between the shape
of reflection spectra and the character of deformation of
quasispherical particles forming opal-based structures have
been analyzed theoretically and the reflection spectra of these
structures, including the region of the MBD, have been studied
experimentally [38–42].

Note that to our best knowledge; there are no published
experimental papers totally covering the MBD phenomenon
in opal-based PhCs. The complete set of the experimental
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data should include two reflection spectra from (h1k1l1) and
(h2k2l2) planes together with transmission spectra. However,
in the previous works, the authors were limiting themselves
only to the study of the reflection spot from a single set of
planes, generally (111) plane. The data on reflection from the
{1̄11} and {200} planes have not been published. The problem
is that the total internal reflection on the opal-air interface
limits the range of angles accessible to the measurement. The
light rays within the opal sample that strike the interface with
the air (or any lower-index medium) at too large angle are
totally reflected, and remain confined to the sample.

Here, our aim was to study the MBD from opal films using
original experimental setup with a holder formed from two
quartz semispheres. As a result, we overcome the problem of
the total internal reflection in an opal film or in a substrate; so
that the angle-resolved and frequency-resolved diffraction pat-
terns demonstrating two reflection spots have been successfully
investigated in various scattering geometries. The transmission
spectra and diffraction patterns obtained did show pronounced
effects causing by the MBD.

II. SAMPLE CHARACTERIZATION
AND EXPERIMENTAL METHODS

Our experimental study dealt with opal films that were
made up of spherical a-SiO2 particles. The a-SiO2 particles
were produced by slow base hydrolysis of tetraethoxysilane in
a water-alcohol medium [43]. A series of ordered films were
grown by vertical deposition on a fused quartz substrate. Most
of the experimental data presented below were obtained from
an opal film, in which two sides of about 15 × 20 mm2 formed
a plane coinciding with the (111) crystallographic plane and
the film has 24 layers of a-SiO2 particles in thickness.

The goal of the present work was to investigate the MBD
that takes place at the certain regions of the incident wave
vector ki and wave length λ. These regions can be defined
from a photonic band structure. In this section, by photonic
band structure we mean a set of (hkl) photonic dispersion
curves calculated for special cross sections of the BZ and
expressed in the “energy versus wave vector k” coordinates
or, what is equivalent, in the “Bragg wavelength λhkl versus
propagation angle θ” coordinates (see Fig. 1). The calculations
were performed using the following formula [3,17,18,23]:

λhkl = 2d111nopal

(
3

h2 + k2 + l2

)1/2

| cos(θhkl)|, (1)

where d111 is the distance between the adjacent planes (111),
d111 = √

2/3D = 296 nm (D = 350 nm is the diameter of the
a-SiO2 spheres), nopal = 1.32 is the average dielectric constant
of the opal-filler fcc structure with air as a filler, and θhkl is
the angle between the incidence wave vector ki and reciprocal
lattice vector ghkl . The calculations were performed for the
high symmetry cross-section of the fcc BZ �XLgL and the
results are presented in Fig. 1. For this scanning, the direction
of the wave vector ki is specified by the angle θopal = θ111.
We will denote the [111] direction as � → Lg , in contrast to
the three other equivalent directions � → L in an fcc lattice.
Besides, the high-symmetry points on the BZ surface that
belong to the same hexagonal plane as the Lg point will also
be marked with the subscript g.
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FIG. 1. (Color online) Low-energy photonic band structure of
opal-based PhCs. The dependencies λhkl

(
θ opal

)
are calculated from

Eq. (1). The symmetry points of the surface of the first BZ are shown
in the lower abscissa. The corresponding angles of light incidence θ

from the quartz hemisphere onto an opal film calculated from Snell’s
law are shown in the upper abscissa. The points of the MBD are
marked by cycles. (Insert) Cross-section of the BZ of the fcc lattice
made by the scanning plane �XLgL.

The MBD occurs on the surface of the first BZ at the points
of the intersection of the dispersion curves, which are marked
by circles in Fig. 1. The MBD takes place at the Kg point,
owing to the intersection of the (111) and (1̄11) dispersion
curves, while at the Ug point, owing to the intersection of the
(111) and (200) dispersion curves. Note that the intensity of
the (200) band in the optical spectra of opal samples with air
as a filler is small (see Appendix). Therefore, in this paper,
the MBD was investigated for the case of the intersection of
the (111) and (1̄11) dispersion curves, which is observed at
θopal = 35◦ (see Fig. 1).

We should emphasize the key feature of our experimental
studies, namely, a technique of recording the diffraction
patterns and transmission spectra. To overcome the restrictions
caused by total internal reflection in a sample or in a substrate,
thin opal film was placed at the center of a quartz holder
consisting from two quartz hemispheres as shown in Fig. 2.
The quartz refractive index nquartz = 1.45 is relatively close to
the refractive index of opal with air as a filler nopal-air = 1.32
(e.g., Ref. [23]). As a result, most of the effects caused by
the confinement of the diffracted light to the opal film or
to the quartz film substrate were eliminated, which allowed
making quantitative measurements of the spectral and angular
dependencies of the diffracted light intensities. The diffraction
spectra were measured in the regions of the specular reflection
from the (111) and (1̄11) sets of planes that hereafter referred
to as (111) and (1̄11) scattering geometries (see Fig. 2). The
directions of the diffraction spots are defined by the kinematic
relation ks = ki + ghkl with |ks | = |ki |. The correspondence
between in-holder angles θ and in-film angles θopal at the
quartz-opal interface are defined by Snell’s law.
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FIG. 2. (Color online) (a) The sample holder consisting from two
quartz hemispheres with thin opal film in between. (b) The scheme
shows the relation between ki (the incident wave vector) and kT ,
ks

111, and ks
1̄11 (the wave vectors of transmitted and diffracted light)

and correspondent transmission T and diffraction D111, D1̄11 spectra.
The normal vectors n111, n1̄11 to the (111), (1̄11) sets of planes denote
the [111] and [1̄11] directions.

We investigated the behavior of the reflection spots and
transmission spectra at varying the wave vector ki orientation
relative to the fcc opal lattice. The angular accuracy of the
sample orientation was about 0.5◦. An HL-2000 (Ocean
Optics) halogen lamp was used as a white light source.
The transmission spectra and reflection spots registered in
the large solid angle were finally recorded by an Acton
SP2500 spectrometer (Princeton Instruments) with a PIXIS-
256 camera.

III. EXPERIMENTAL RESULTS: DIFFRACTION
FROM THE (1̄11) PLANES

In order to investigate the MBD in opal films, we performed
a thorough investigation of the diffraction patters and transmis-
sion spectra. As we previously mentioned, the (111) diffraction
reflex D111 was investigated in a number of experimental works
[13,15,28,30–32,39]. Therefore our major task in making the
experiments was to find and investigate the (1̄11) diffraction
reflex D1̄11. In this section, we will concentrate on its spectral
and spatial properties.

In the diffraction experiments, the incident beam of white
light scans the (011̄) plane of the fcc opal lattice that is
perpendicular to both (111) and (1̄11) planes (the wave vector
ki scans the �LgKgL cross-section of the BZ). In such
scattering geometry the beam reflected from (111) and (1̄11)
planes should also lie and be detectable in the (011̄) plane.
The D1̄11 spectra were measured in the region of the specular
reflection from the (1̄11) set of planes (see Fig. 3), that is, in
the (1̄11) scattering geometry (see Fig. 2). The D1̄11 reflex was
observed as a broad iridescent strip and its spectral structure
was analyzed in detail as a function of the registration angle θs .
Figure 4 illustrates the method we used for the acquisition of
the (1̄11) reflexes. For each incident angle θ , the angle-resolved
reflectivity spectra D(1̄11) were measured at various registration
angles θs with a 2◦ step. Thereafter, the spectra were added
up to obtain a final integral spectrum D1̄11. Figure 3 shows
the angle- and frequency-resolved diffraction data taken in the
(1̄11) scattering geometry. We will present detailed discussion
of these spectra together with transmission data in the next
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FIG. 3. (Color online) The integral spectra D(1̄11) of the white
light diffracted from the (1̄11) planes of an opal film as a function of
the incident angle θopal. The spectra obtained in the �LgKgL scan of
the fcc BZ. The thickness of the film is 24 layers of a-SiO2 particles
with the diameter D = 350 nm. The opal filler is air. The curves are
shifted vertically by the constant value of 0.3. The cursors show “twin
peaks”, i.e., the traces of the (111) diffraction band. The insert (×6)
shows the twin peaks in the enlarged scale.

section. Here, we point out several important characteristic
features of the obtained spectra.

First, the comparison of the data given in Fig. 3 and the
dispersion dependencies calculated from Eq. (1) (see Fig. 1)
enable one to attribute unambiguously the D1̄11 reflex to the
(1̄11) photonic stop band. The experimental dependencies of
the (1̄11) band positions obtained from the spectra will be
presented below in Sec. IV. Note that in all previous papers,
the (1̄11) reflex was observed only in the (111) scattering
geometry in the region of the MBD when it crosses the (111)
reflex.

Another interesting feature we found here is the trace of the
(111) diffraction band in the D(1̄11) spectra (see Fig. 3). For the
24-layer-thick film, the (111) band manifests itself as two small
peaks (“twin peaks”) and a dint of the stop band in between. To
explain these features, we refer to dependencies of the group
index ng obtained for opal-based PhC [3,44]. Near the edges of
the stop band, photonic dispersion curves deviate from linear
behavior and become flat. Thus the group velocity exhibits
pronounced slowing down at the band edge (spectral regions
of slow light) and superluminal behavior (i.e., vg > c) within
the photonic stop band. The group index is the inverse group
velocity normalized to the speed of light in vacuum ng = c/vg .
According to the experimental and theoretical dependences, as
the thickness of an opal film increases from ten layers, twin
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FIG. 4. (Color online) Diffraction spectra D1̄11 of an opal film
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for white light incident angle θ i,opal = 34◦ (thin black curves). The
thick blue curve represents the normalized integral spectra. The film
has 24 layers of a-SiO2 particles with the diameter D = 350 nm and
the filler is air.

peaks of ng develop at frequencies close to the stop band edges,
and a region of low ng appears in between [44]. This is exactly
the behavior we can see in Fig. 3.

Another reason for the appearance of the twin peaks
near the band edges is the disorder of real opal samples
[25,26,45,46]. The microstructure of the a-SiO2 particles
leads to inhomogeneity of dielectric permittivity of a single
particle and to dissimilarities in size and permittivity of a-SiO2

particles in ensemble forming an opal sample [3,23,25]. In
a pioneering work on light scattering in disordered PhC, S.
John predicted that localization of light may occur in the
vicinity of stop band edges [47]. Such interplay between Bragg
diffraction and disorder-induced scattering was considered as
a way to localize light and as a mechanism capable to suppress
transmittance and increase back-scattering.

Therefore we would expect that the twin peaks structure
in the D1̄11 spectra is a result of the increasing of the back-
scattering due to microstructure of the a-SiO2 particles or/and
due to the bending of the dispersion curves at the stop band
edges.

To investigate the spectral and spatial dispersion of the (1̄11)
spot at the MBD condition, we carried out experiments on
diffraction of white light with incidence angle θopal = 34◦. The
structure of the (1̄11) reflex was analyzed in detail as a function
of the registration angle θs (Fig. 4). The measurements were
made with a 2◦ step in the region of the (1̄11) reflected
beam. As a result, strong spectral and spatial variation of
the diffracted white light has been revealed. The iridescent
(1̄11) spot is characterized by inhomogeneous broadening, the
spectral line width of the integral band is about 120 nm and the
angular width is about 20◦. For each given registration angle
−31◦ < θs < −5◦, the width of more homogeneous line is
much smaller (about 20 to 30 nm).

Note that the integral spectral width of both (111) and (1̄11)
spots out of the MBD region is about 50 nm. This value is

equal to the spectral width that was obtained for (111) spot in
diffraction experiments on bulk opal samples [13,30]. It means
that the opal film under study has rather perfect structure with
highly ordered nongrowth (1̄11) layers.

IV. COMPARISION OF DIFFRACTION AND
TRANSMISSION EXPERIMENTAL DATA

In this section, we present a unique collection of the
spatial—and frequency—resolved optical responses of an opal
film to the white light excitation. Figure 5 shows the data of the
diffraction (D111 and D1̄11) and transmission (T ) experiments
obtained on the 24 layer thick opal film in the �LgKgL scan of
the fcc BZ as a function of the incidence angle θopal. To discuss
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FIG. 5. (Color online) The angle-resolved optical spectra of the
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D = 350 nm). The spectra obtained in the �LgKgL scan of the fcc
BZ as a function of the angle θopal in the region of the MBD. The
black solid curves show transmission (T) spectra; the red dashed
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the MBD effects, we will compare the transmission and reflec-
tion spectra to each other. The measurements were made with
a 2◦ step that allows us to analyze the dependences with partic-
ular thoroughness. Figure 5 demonstrates general agreement
between two dips in the transmission spectrum and the two
diffraction peaks (111) and (1̄11) for each incident angle θopal.

The D111 diffraction spectra were collected in the (111)
scattering geometry (see Fig. 2). For incident angles θopal

far from the MBD region, the D111 diffraction spectra
contain single strong reflection from (111) band. Fabry-Pérot
oscillations originating from the finite thickness of the opal
film are superimposed over the background (see Fig. 5). As
we already mentioned, the diffraction spectrum D1̄11 contains a
pronounced background superimposed by three bands: strong
(1̄11) diffraction band and twin peaks.

As to the transmission spectrum, far from the MBD region,
it consists from two strong (111) and (1̄11) bands. Note that
the dissimilarity in permittivity of a-SiO2 particles caused
the background that can be described as Mie scattering with
more intense forward lobe [3]. The interference between Bragg
diffraction and disorder-induced Mie scattering leads to a Fano
resonance [25,26,48] and a transmission spectrum exhibiting
a Bragg dip with an asymmetric profile. In opals, the Fano
asymmetry parameter q is linked with the dielectric contrast
between the permittivity of the filler (εfiller = 1 in our case)
and the specific value determined by the opal matrix (ε0

f =
1.82)[25]. According to the experimental results [25,26] for
(εfiller − ε0

f ) < 0, the long-wavelength wing of the (111) stop
band is relatively flat in contrast to a steep short-wavelength
wing. This is the asymmetric profile that we can observe in
Fig. 5. Note that in the reflectance we can not observe any
asymmetry of the (111) peak due to absence of the strong
background that is necessary for the Fano interference.

Let us compare the experimental transmission and diffrac-
tion spectra for selected incidence angles θopal that demonstrate
the most specific features of the MBD at the Kg point of the BZ
due to intersection of the (111) and (1̄11) dispersion curves (see

Fig. 1). The experimental dependencies of the band positions
obtained from the spectral treatment are presented in Fig. 6.
Outside the MBD region, the dispersion of the (111) and (1̄11)
photonic bands is well described by Eq. (1), i.e., it corresponds
to the Bragg condition. In the MBD region (the Kg point of the
BZ), the anticrossing effect is observed both in transmission
and in reflection: the (111) and (1̄11) bands do not intersect
and the spectra have a doublet structure (see Fig. 6). When the
(111) and (1̄11) bands are separated by the closest distance
(θopal = 32◦ to 33◦, Fig. 5), one can see a doublet structure
with a weak dip and a total line full width at half maximum
(FWHM) �λ ≈ 70 nm, which is nearly two times larger than
FWHM of one (111) or (1̄11) band (�λ ≈ 40 nm) outside the
MBD region.

Note that in addition to the previous results on the MBD
in opal-like PhC [9,34,35,37,38,40–42], here we present the
(1̄11) dispersion dependence extracted from the diffraction
data and the twin peak structure that has direct relationship
with the (111) band (see Fig. 6). It was possible to find the
twin peak structure owing to the pronounced background in the
(1̄11) scattering geometry. Such structure was never observed
before because the background intensity in the well-studied
(111) scattering geometry is very weak (see Fig. 5).

V. CONCLUSIONS

In this work, the MBD in synthetic opals has been
investigated using a complex approach that combines an
experimental study of transmission and diffraction spectra
with theoretical calculations of the photonic band structure.
Due to the experimental setup, we registered with a high
angular resolution the intensity of light scattered into the
large solid angle of the back hemisphere, which allowed to
make quantitative measurements of the spectral and spatial
dependencies of the (111) and (1̄11) diffraction reflexes.
The setup allowed us (i) to distinguish the (1̄11) diffraction
patterns and (ii) to find twin-peak structure in the (1̄11)
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spectrum originating from the (111) diffraction band. The
(1̄11) diffraction reflex we succeed to observe through all
investigated angular region.

An essential spectral feature of opal-based PhCs is a
constructive or destructive interference of different diffracted
waves. We have observed and discussed two opposite cases
of such interference. The first one is the MBD caused by the
interference of two spectrally narrow Bragg bands (111) and
(1̄11). When the incident wave vector ki scans the cross section
�LgKgL of the fcc BZ and approaches the Kg point, the
(111) and (1̄11) dispersion curves should intersect. In reality,
due to interference of waves, a doublet structure is observed
through all investigated angular region, the dispersion curves
deviate from those calculated using the Bragg equation and
demonstrate the anticrossing regime characteristic for two
interacting modes. The second case is the interference of the
(111) Bragg band and disorder-induced broad Mie scattering.
The interference of a narrow band with a broad background
gives rise to a Fano resonance that manifests itself in a
characteristically asymmetric line shape of the Bragg band
in transmission spectra.
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APPENDIX: PHOTONIC BAND STRUCTURE
CALCULATIONS

We consider the sample as a layer of width d cut from
infinite PhC. Let x and y axes define the orientation of the
layer boundaries and z axis to be normal to the layer surfaces.
An electromagnetic field inside the layer can be constructed
as a sum of solutions to the Maxwell’s equations of infinite
PhC. As is well known, the propagating modes in a periodic
system form a band structure [1] and the evanescent solutions
with imaginary wave vectors usually are not taken into
consideration because they demonstrate exponential growth
in a certain direction. However, in the case of a structure
with a boundary, we have to take into account evanescent
solutions as well as propagating modes because in this case
exponential growth is limited by the boundary. Our interest is
in the electromagnetic field excited by the incident wave, say it
is an s-polarized wave with kz > 0, ky = 0, and Ex = Ez = 0.

The boundary conditions require conservation of wave vector’s
x component. So we have two problems: (i) to calculate the
solutions to the Maxwell equations with fixed kx and (ii) to
find the amplitudes of these solutions and the amplitudes of
scattered waves that would satisfy the boundary conditions.

1. General approach

The standard approaches to the calculation of the band
structure, i.e., dispersion relations ω(k), are based on finding
the frequency ω for a given wave vector k [1,49–51]. However,
in our case, those approaches are not applicable. We consider
the inverse dispersion problem of finding solutions with a given

frequency and with fixed two components of the wave vector.
We start from the pair of Maxwell’s equations with curls for
the spatially dependent parts of the magnetic H and electric E
fields in a matrix form:

∇×

(
E
H

)
= −ω

(
0 −i

i 0

) (
ε0ε 0
0 μ0μ

) (
E
H

)
, (A1)

Here, ∇× is a curl operator, and it is assumed to give an
exp(−iωt) factor at all fields.

In the case of periodical structure, a field X can be written as
Bloch waves X = eikrx(r), where x(r) is a periodic function
that possesses translation symmetry of the lattice (X can be
either E or H). By substitution of the fields in a Bloch wave
form to Eq. (A1) and by separation of the tangential part of the
wave vector kτ and normal component kz, we get a generalized
eigenproblem for the unknown eigenvalue kz and fields (e,h)T :[

i (∇× + ikτ×) + ω

(
0 μ0μ

−ε0ε 0

)](
e
h

)
= kznz ×

(
e
h

)
.

(A2)

Here, cross-product acts on vectors e and h.
The cross-product nz× is related to the matrix of rank 2.

As a result, there are solutions with infinite kz, which are
prohibited by the pair of the Maxwell’s equations with
divergence. However, we can exclude these two solutions
by the straightforward procedure of ez and hz elimination.
After that, the generalized eigenproblem (A2) reduces to the
eigenproblem for kz and tangential components of fields e
and h.

2. Plane-wave expansion

The periodic functions e and h can be expanded in
the Fourier series

∑
g xg exp(igr). We consider only few

reciprocal lattice vectors, since the expansion coefficients xg
are negligible when the product kg is far from |g|/2, (i.e.,
not under the Bragg condition) [3]. If all of the reciprocal
lattice vectors have no y components, the eigenproblem can
be splitted for two polarizations. For s and p polarizations,
they read(

i ∂
∂z

−ωμ0

−ωε0ε + 1
ωμ0

κ̂2 i ∂
∂z

) (
ey

hx

)
= kz

(
ey

hx

)
(A3)

and (
i ∂

∂z
ωμ0 − κ̂ 1

ωε0ε
κ̂

ωε0ε i ∂
∂z

)(
ex

hy

)
= kz

(
ex

hy

)
, (A4)

respectively. Here, we introduced an operator κ̂ = (i ∂
∂x

− kx).
Next, we are focused on the case of s polarization. The

eigenvalue problem for fields in the plane-wave representation
is as follows:

[M̂0 − V̂ ]

(
eg

hg

)
= kz

(
eg

hg

)
, (A5)

where the unperturbed operator that is related to the so-called
empty lattice approximation is

M̂0 = −gz + (gx + kx)2

ωμ0

(
0 0
1 0

)
− ω

(
0 μ0

ε0ε̃0 0

)
(A6)
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FIG. 7. (Color online) Photonic band structure with account of three reciprocal lattice vectors 0, g111, and g1̄11. Thick lines represent
solutions with real wave vectors. Thin and dashed lines represent real and imaginary parts of kz for evanescent solutions. (a) Normal incident
kx = 0. (b) Multiple Bragg diffraction regime. Imaginary parts within photonic band gaps (shaded areas) are multiplied by ten. Dispersion
bands are assigned to (hkl) reciprocal lattice vectors: black curve for (000), red curve for (111), and blue curve for (1̄11). Curves for the real
and imaginary parts of wave vector are signed by Re and Im, respectively.

and operator that mixes different bands reads

V̂ = ω
∑
g′ �=g

(
0 0

ε0ε̃g−g′ 0

) (
eg′

hg′

)
. (A7)

Here,

ε̃g = 1

Vcell

∫∫∫
Vcell

ε(r) exp(−igr) dr. (A8)

In the case of the fcc structure consisting of close-packed
spherical scatterers, we have

ε̃0 = π

3
√

2
[εs − εb] + εb, (A9)

and for ghkl �= 0,

ε̃hkl = 2

π2(h2 + k2 + l2)3/2
(εs − εb) (sin x − x cos x) ,

(A10)

where εs and εb are the sphere and surrounding mate-
rial permittivities, x = (π/

√
2)

√
h2 + k2 + l2. The numerical

values of the low indices ε̃hkl are the following: ε̃111 =
(εs − εb) 8.88 × 10−2, ε̃200 = (εs − εb) 5.55 × 10−3, ε̃220 =
− (εs − εb) 5.63 × 10−2, ε̃311 = − (εs − εb) 1.42 × 10−2, and
ε̃222 = − (εs − εb) 1.11 × 10−3. It is enough to take into

account the reciprocal lattice vectors 0, g111 = g(0,0,1),
and g1̄11 = (g/3)(

√
8,0,1), where g is the modulus of the

reciprocal lattice vector 111.
Calculated photonic band structures are demonstrated in

Fig. 7. The eigenvalues of the problem (A6), i.e., in the empty
lattice approximation, form hypercones with apices in the
reciprocal lattice sites. Therefore the photonic band structure
represents a cross-section of this cones by a plane defined by
kx (related to the incident angle). We have taken into account
three reciprocal lattice vectors and as a result in Fig. 7 there are
sections of the three hypercones assigned by hkl indices. We
consider three pairs of the eigenvalues, we got one pair for each
hypercone. The plane intersects two hypercones with apices at
the origin and at g111 for any frequencies and does not intersect
the one with the apex at g1̄11 at low frequencies. However, the
last hypercone can intersect the plane if we assume that kz

may have imaginary part (it increases with the decrease of
the frequency). Another opportunity for the imaginary part
to exist is hypercone intersections, which are defined by the
band mixing operator (A7). These intersections are exhibited
as band gaps that can be assigned to reciprocal lattice vector
ghkl = g − g′. The width of the (hkl) band gap is related to the
matrix element value ωε0ε̃hkl .

Now, let us consider the most interesting case of the inter-
sections of three hypercones [see Fig. 7(b)]. The interference
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of three bands results in the band with the real kz to exist
between two gaps for any angles of incidence. In this case,
we can not assign band gaps to specific (hkl) indices because
the band is formed by mixing of modes associated with the
hypercone at the origin and two other ones.

3. Transmission and reflection coefficients

Now we can find the transmission and reflection coef-
ficients. The field inside the layer may contain harmonics
kx as well as kx + gx for each reciprocal lattice vector. We
considered only three reciprocal vectors, 0, g111 = g(0,0,1),
and g1̄11 = (g/3)(

√
8,0,1), and have only two tangential

harmonics kx and kx + g
√

8/9. Hence boundary conditions
give eight equations (two harmonics at each boundary for
electric and magnetic fields). Also, there are eight un-
knowns: four scattering coefficients (the pair of harmonics
at each side) and four solutions to the Maxwell’s equa-
tions in the layer. Note that unique solutions are only the
ones within the range [α; α + g] for any α (for BZ α =
−g/2). In general, it is straightforward to show that if we
consider n harmonics, there are 2n unique solutions that
can be found.

For each harmonic q = kx + gx , the boundary condition
for tangential electric and magnetic fields reads

∑
i

{
bi

∑
gx=q

eg,i exp [i(kz + gz)zb]

}
− s±

q = 0, (A11)

∑
i

{
bi

∑
gx=q

hg,i exp [i(kz + gz)zb]

}
± s±

q

ωμ0
qz = 0. (A12)

Here, bi is the amplitude of the solution to the Maxwell’s
equation inside the layer, s±

q is the amplitude of the plane
wave scattered by the layer. The plus is related to the side
from the negative z direction and the minus is related to the
other side. The normal component of the wave vector of a
plane wave outside the layer is qz =

√
ω2

c2 εμ − (kx + gx)2.
Besides zero, the right-hand side for the two equations, for
q = kx , should be replaced by the amplitude of the incident
wave, i.e., unity for the electric field and qz/(ωμ0) for the
magnetic field with the appropriate sign. We should note that
if q + kz is big enough, total internal reflection may arise and
the corresponding coefficient should vanish. The calculated
spectra have been processed and the dips in the transmission
and the peaks in the other coefficients are in good agreement
with the experiment [see Fig. 6(a)].
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