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Using a canonical transformation, it is possible to faithfully represent the Kondo lattice model in terms of
Majorana fermions. Studying this representation, we discovered an exact mapping between the Kondo lattice
Hamiltonian and a Hamiltonian describing three spinless fermions interacting on a lattice. This alternative form of
the Hamiltonian is suitable for an immediate identification of the competing effects that operate in the Kondo lattice
model. In particular, a term describing the double-exchange mechanism appears explicitly in the Hamiltonian. We
investigate the effectiveness of this three-fermion representation by performing a zero-temperature mean-field
study of the phase diagram at different couplings and fillings for the one-dimensional case, focusing on the
appearance of ferromagnetism. The solutions show interesting features that agree in many respects with the
known numerical and analytical results. In particular, in the ferromagnetic region connected to the solution
at zero electron density, we have a quantitative agreement on the value of the “commensurability parameter”
discovered in recent density matrix renormalization group (in one dimension) and dynamical mean-field theory (in
infinite dimensions) simulations; furthermore, we provide a theoretical justification for it, identifying a symmetry
of the Hamiltonian. This ferromagnetic phase is stabilized by the emergence of a spin-selective Kondo insulator,
which is described quite conveniently by the three spinless fermions. We discover, however, that such a phase
cannot be the correct description for all the ferromagnetic phases of the one-dimensional Kondo lattice model.
We found in fact a different ferromagnetic phase at high filling and low couplings. This phase resembles the
Ruderman-Kittel-Kasuya-Yosida (RKKY) ferromagnetic phase existing at vanishing filling, but it incorporates
much more of the Kondo effect, making it energetically more favorable than the typical spiral (spin ordered)
mean-field ground states. We believe that this second phase represents a prototype for the strange ferromagnetic
tongue identified by numerical simulations inside the paramagnetic dome. At the end of the work, we also provide
a discussion of possible orders different from the ferromagnetic one. In particular, at half-filling, where we obtain
as ground state at high coupling the correct Kondo insulating state.
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I. INTRODUCTION

The Kondo lattice is one of the most studied models
in condensed matter physics [1–4]. The features of this
model are approximately explained by the competition be-
tween three main phenomena: the coherent formation of
Kondo singlets [5–7], the Ruderman-Kittel-Kasuya-Yosida
(RKKY) spin-spin effective interaction [8–10], and the double-
exchange mechanism [11–13]. The balance between these
effects gives rise to highly nontrivial physics that is not easily
described keeping the impurity spin and conduction electron
degrees of freedom strictly separated. As a consequence, the
phase diagram of the Kondo lattice model (KLM) is quite
fascinating: by changing only two parameters (the Kondo
coupling and the density of the conduction electrons), many
different classes of ground states can be explored [1–4]. The
KLM can therefore be used as the model Hamiltonian for
many interesting systems, such as heavy-fermion compounds
[14–16] and Kondo insulators [1,17–21]. It is also believed that
many of the currently most studied systems (both by numerical
and experimental means), for example, actinide compounds
and perovskities [1–4], can be effectively described by
the KLM. The existence in the KLM of superconductivity
generated by spin fluctuations has also been a source of
debate and has recently been addressed by new numerical
studies [22,23] that suggested the presence of this mechanism
in the Kondo-Heisenberg model.

Unfortunately, few exact solutions of this model are
available, and typically only limited regions of the phase

diagram can be successfully described by analytical tools.
The problems are of course created by the interaction between
the conduction electrons and the impurity spins that causes the
entanglement [24] of these two quantum degrees of freedom.
This poses formal problems and raises profound questions: the
former are due to the different operator algebras describing
the conduction electrons and the impurity spins that cannot be
treated on the same footing; the latter are related to the role of
the impurity spins and their debated contribution to the Fermi
volume [25].

In some particular limits, the one-dimensional Hamiltonian
can be studied analytically. For example, some exact results
exist at half [1,17–21] and infinitesimal [26] filling for every
value of the Kondo coupling, or at infinite [27] and high [28]
Kondo coupling for every value of the filling. Moreover, the
low-energy properties of the system can be solved exactly
for weak Kondo couplings, making use of bosonization
techniques [17,29–31]. However, to explore larger regions of
the phase diagram, only numerical methods [1,32–35] can be
applied. A standard approach, common to many numerical and
analytical studies, is to start from the analysis of the Anderson
lattice model and strongly enforce unit occupancy of the f -
impurity states. This generates a constraint on the local number
of the f electrons that if fulfilled exactly, implies the freezing
of their charge degree of freedom, transforming effectively the
f electrons into impurity spins [7,15]. Such an approach to
the problem relies on the fact that the Kondo lattice model
can be seen as the effective low-energy description of the
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symmetric Anderson lattice model [36–38], if the hybridiza-
tion and the confinement potential are appropriately sent to
infinity, as prescribed by the Schrieffer-Wolff transforma-
tion [39]. The positive aspect of this approach is that all
the excitations of the system are fermionic; the constraint is,
however, difficult to implement, so generally it can be fulfilled
only on the average. Although this inexact realization of the
constraint can be meaningful in the study of the properties of
real materials, it can also encode some unwanted features. For
example, if the subject of the study is spin mediated supercon-
ductivity, it is not clear whether the analysis will be spoiled by
the valence fluctuations of the f -impurity electrons or not.
Moreover, as the Kondo lattice is an effective description
of the Anderson lattice, it would be reasonable to be able
to solve it without any reference to the high-energy physics
that is integrated out by the Schrieffer-Wolff procedure. Only
in this way can one expect to learn something about the
low-energy physics of the system and the driving mechanisms
and interactions that are relevant at this low-energy scale.

From this point of view, we believe that it could be fruitful to
represent the Kondo lattice Hamiltonian in terms of properly
defined fermionic degrees of freedom: a formulation of the
problem that requires no implementation of the constraint,
but is given anyway in terms of fermions only. In this paper,
we elaborate and discuss such a representation, identifying
the map between the old degrees of freedom (impurity spins
and conduction electrons) to the new ones (three spinless
fermions c, g, and f ). For sake of clarity, we will refer to this
transformation as the cgf map in the rest of this manuscript.
It is important to remark on the fact that our approach holds
only for the KLM with spin-1/2 impurities.

The mapping could simply be defined and proved by
brute force calculation, but we will also show the path that
we followed to discover it, believing that a more pedagog-
ical approach will make our method more interesting. The
derivation goes through the representation of the electron
and spin operators in terms of their basic Majorana fermion
constituents. Writing the Kondo lattice Hamiltonian in terms of
Majorana fermions [40], we treat the electrons and the spins
on equal footing, avoiding the most problematic feature of
the Hamiltonian. Our cgf map is a practical example of the
usefulness of this Majorana fermion based approach.

Although the map holds for any number of dimensions and
any lattice structure, we will study only the one-dimensional
case at zero temperature, in order to have a comparison with
the existing literature. We will perform a mean-field, zero-
temperature analysis of the KLM, represented on the set of the
three spinless fermions. It will become clear how our treatment
is able to naturally include, already at the mean-field level,
all the three main mechanisms of RKKY interaction, local
Kondo-singlet formation and double exchange. In particular,
our approach very conveniently describes the latter two effects,
permitting a mean-field analysis of the ferromagnetic regions
of the phase diagram, on which we focus our attention.

Considering the length of this manuscript and the large
amount of physics that we are going to discuss, we introduce
here briefly the results of the mean-field analysis that we hope
will convince the reader of the relevance of our work.

Our mean-field results are in good agreement with the
picture recently provided by density matrix renormalization

group (DMRG) [41] and dynamical mean-field theory
(DMFT) [42] studies of the ferromagnetic metallic phase for
low to intermediate values of the Kondo coupling. In fact,
we identify a phase (FM-I) where we obtain a quantitative
agreement on the values of the average on-site total mag-
netization and of the “commensurability parameter.” For the
latter, we provide also a theoretical justification, identifying
the symmetry operation that enforces it. In the same phase,
we recognize the fundamental role of the double-exchange
mechanism, which allows for the generation of the “spin-
selective Kondo insulator” (SSKI) and the separation of the
electrons in majority and minority electrons. While the ma-
jority electrons behave as normal noninteracting electrons, the
minority electrons appear only as constituents of delocalized
Kondo singlets, as made explicit by the disappearance of
their Fermi surface. The generation of the SSKI stabilizes
the FM-I phase, but this does not mean that ferromagnetic
order needs the realization of the SSKI. In fact, for low
couplings, we discovered that the ferromagnetic phase can
extend up to half-filling, but for a coupling-dependent critical
density nF

crit, the mechanism stabilizing the ferromagnetic
order of the impurity spins changes completely, marking the
emergence of a new phase FM-II. The transition from the FM-I
and FM-II phases happens approximately at the known [35]
phase-separation line that divides the ferromagnetic metallic
and the paramagnetic phases. We believe that the FM-II phase
is an improvement with respect to the RKKY-ferromagnetic
state, able to incorporate the Kondo effect in a more efficient
way. This property permits the FM-II phase to survive up
to half-filling, if the coupling is not too strong. This phase
is energetically competitive, if compared to the usual spiral
ordered mean-field trial [37,38] ground states. In the light
of these features, the FM-II state is a natural candidate for the
description of the ferromagnetic “tongue” phase identified [35]
inside the paramagnetic dome by DMRG simulations.

For intermediate couplings, an instability appears and the
ferromagnetism of FM-II ceases to exist. In these situations,
another coupling-dependent critical density n

pol
crit appears for

the FM-I phase. Above this density, we found no translational
invariant mean-field solutions, except the half-filled one. In
proximity of n

pol
crit, we note that the compressibility of the

FM-I phase tends to infinity, so we interpret this feature as
an indication of the fact that the two components forming
the FM-I state (the majority electrons and Kondo-singlets
liquids) start to separate. This process creates in the phase
diagram a region of phase coexistence between the FM-I and
the half-filled Kondo Insulating (KI) phase, where the latter
is characterized by the absence of free electron modes. The
location in the phase diagram and the physical picture of
this region, in correspondence of the disappearance of the
FM-II phase, are in good agreement with the description of the
polaronic liquid provided by bosonization [2,3,29]. In terms
of the qualitative two-liquid picture mentioned previously, the
polarons can be identified as the “islands” of ferromagnetic
FM-I phase immersed in the liquid of Kondo singlets of the
half-filled KI phase.

Increasing even more the coupling the solutions become
less and less meaningful. We believe that this is a symptom
of the fact that the assumptions behind our mean-field
approximation are not justified anymore.
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Unfortunately, our mean-field decomposition scheme is not
very convenient for the study of different kinds of magnetic
orders, because the form of the Kondo Hamiltonian in terms
of fermions c, g, and f is naturally suited for solutions
that are translationally invariant. Consequently, we decided
to not perform an analysis of the RKKY-liquid phase [1,35],
believing that a different kind of approach would be more
convenient [43]. Instead, we briefly discuss the half-filled
case, though we refer to the literature for a more appropriate
approach [40,43], still based on the Majorana representation
of the Kondo lattice Hamiltonian. At half-filling, we found a
translational invariant KI solution, composed by a coherent
superposition of local Kondo singlets; this solution becomes
an energetically favorable ground state, at high couplings, if
compared with the usual Neél ordered one. These features are
consistent with the known results [1,17–20]. This KI ground
state tends for J → +∞ to the correct ground state, where on
each site a Kondo singlet is formed; moreover, it disappears if
a J -dependent critical chemical potential μ

pol
crit(J ) is reached.

This chemical potential is the energy necessary to remove
an electron from the system, therefore it must correspond to
the quasiparticle gap [1,32]. The evolution of μ

pol
crit(J ) with

the coupling agrees very well with the results obtained via
perturbative approaches [1], at high coupling, but does not
share the same behavior away from this limit.

Showing the wide range of physics that can be described
by following our approach to the problem, made possible by
the representation of the Hamiltonian in terms of Majoranas,
we hope to convince the reader that it could be interesting and
profitable to tackle some of the open problems in condensed
matter physics using the same line of thought. Moreover, we
hope to provide the community with a new convenient starting
point for the study of the KLM and, in particular, the study of
its ferromagnetic properties in one and many dimensions.

The paper is organized as follows. In Sec. II, we represent
faithfully the Kondo lattice Hamiltonian in terms of Majorana
fermions [40] and review the known [44,45] typical properties
common to these kind of mappings. Starting from this different
formulation of the Hamiltonian we build the set of three
spinless fermions in Sec. III. After a discussion of the
properties and the meaning of the different spinless fermions,
we will proceed in Sec. IV to the mean-field analysis of the
phase diagram, focusing on the one-dimensional case at zero
temperature. At the end, we provide also a final outlook.

II. MAJORANA MAP

In a recent work [40], it has been proved how the Kondo
lattice Hamiltonian

HK = −t
∑

σ

∑
〈i,j〉

c†c,σ (ri)cc,σ (rj ) + H.c.

−μ∗ ∑
i

nc(ri) + J
∑

i

Sc(ri) Sf (ri) (1)

can be rewritten in terms of six Majorana fermion degrees
of freedom (Majoranas). In the previous equation, J is the
Kondo coupling, Sc and Sf are, respectively, the electron- and
impurity-spin operators, nc is the conduction electron operator,
μ∗ is the Lagrange multiplier of the density constraint (i.e.,

the chemical potential), and 〈i,j 〉 indicates the usual sum over
nearest neighbors.

To understand the Majorana formulation, it is enlightening
to start from the symmetric one-site (local) Anderson impurity
model and analyze its Fock space. The Hamiltonian is
given by

H1A = −V
∑

σ=↑,↓
(c†c,σ cf,σ + c

†
f,σ cc,σ ) + U (nf − 1)2, (2)

where the subscripts c,f denote two different fermion species
(two different orbital indices) and U,V are real parameters.
It is well known [7,15,36,39] that in the limit U,V → +∞,
with J = 4V 2/U , the Hamiltonian (2) generates exactly the
spin-spin interaction term in (1); hence the total Hilbert space
of the local (one-site) Kondo lattice model can be interpreted as
the low-energy eight-dimensional subspace of the original 16-
dimensional local Anderson Fock space. The energy separation
of the two subspaces is due to the interaction term U (nf − 1)2

that brings no corrections to the energy for nf = 1, while it
gives a contribution proportional to U in case nf = 0 or 2. For
U → +∞, the states with nf = 0,2 become inaccessible, so
the states that span the low-energy Hilbert space are those with
one f electron per site. This also means that the f -electron
charge oscillations in the system are infinitely suppressed. As a
consequence, the Kondo lattice model can be thought of as an
Anderson impurity lattice model where the f electron density
obeys the exact local constraint nf = 1.

The Majorana fermion description of the Kondo lattice
model [40] stems from these considerations, but implements
them in a completely different way. Starting from the one-site
Anderson Hamiltonian, it is possible to set up a nonlinear
canonical transformation [46] that separates the local Hilbert
space in two sectors of low and high energy. The connection
between the two spaces is given by a fermion operator c

†
4,

whose density is the only operator proportional to U in the
Hamiltonian. The local Kondo Hilbert space is then given by
the states that contain no c4 fermion. It is thus possible to
show [40] that the Hamiltonian (1) can be rewritten using
Majorana fermion degrees of freedom (Majoranas). We define
the Majoranas [47–49] in terms of our original operators in (1)
via

c
†
c,↑(ri) = γ1(ri) + iγ2(ri)√

2
, (3)

c
†
c,↓(ri) = −γ3(ri) + iγ4(ri)√

2
, (4)

Sx
f (ri) = −iμ2(ri)μ3(ri), S

y

f (ri) = −iμ3(ri)μ1(ri),
(5)

Sz
f (ri) = −iμ1(ri)μ2(ri),

with the convention for the Clifford algebra of the Majorana
operators: {αi,βj } = δi,j δα,β , that means α2

i = 1/2, where
i,j = 1,2,3 and α, β can be both γ and μ.

The faithful representation of the Kondo lattice Hamil-
tonian is obtained replacing the Majorana γ4(ri) with the
γ -independent Majorana γ0(ri) = 2iμ1(ri)μ2(ri)μ3(ri), so
that

c
†
c,↓(ri) = {−γ3(ri) + i [2iμ1(ri)μ2(ri)μ3(ri)]} /

√
2.

035121-3



MATTEO BAZZANELLA AND JOHAN NILSSON PHYSICAL REVIEW B 89, 035121 (2014)

In these terms, the Kondo Hamiltonian (1) is rewritten as

HM = −it
∑
n,δ

[γ2(rn)γ1(rn + δ) − γ1(rn)γ2(rn + δ) + γ3(rn)γ0(rn + δ) − γ0(rn)γ3(rn + δ)]

+ J

4

∑
n

{iγ1(rn)μ1(rn) + iγ2(rn)μ2(rn) + iγ3(rn)μ3(rn) + 2[γ2(rn)μ2(rn)γ3(rn)μ3(rn)

+ γ1(rn)μ1(rn)γ3(rn)μ3(rn) + γ1(rn)μ1(rn)γ2(rn)μ2(rn)]} − μ∗ ∑
n

[−iγ1(rn)γ2(rn) − iγ0(rn)γ3(rn) + 1], (6)

where rn is summed over every lattice site and δ are the Bravais
lattice vectors; so, for example, in the one-dimensional case,∑

n,δ γ2(rn)γ1(rn + δ) = ∑
n γ2(rn)γ1(rn+1).

This reformulation of the Kondo lattice Hamiltonian,
although derived from the Anderson picture (2), has the major
advantage of being constraint free and of treating the degrees
of freedom of both the electron and the localized spin on equal
footing. To the best of our knowledge, there exists no other
formulation of the Kondo lattice model that realizes these two
features simultaneously.

The reader should keep in mind that the Majorana γ0

is composed by the three Majoranas μ1,μ2,μ3. In a recent
work [43], we analyzed this dual nature of the Majorana γ0,
suggesting that this Majorana fermion should be the correct
degree of freedom to describe the system for small values of the
coupling J . However, in the present work, we take a different
approach, and we will instead consider γ0 as a short-hand
notation to indicate the three-body object 2iμ1μ2μ3.

The proof of Eq. (6) has been already outlined [40], but
thanks to the identification of the cgf map we will be able
to provide a more straightforward derivation of it in this
manuscript.

The cgf map generates a new representation of the degrees
of freedom of the system, in terms of fermions only. This is
formally made possible by a nonlinear transformation of the
original spin and fermionic operators, which is easily set up
working in terms of Majorana fermions, rather than the original
operators. The use of these kind of nonlinear transformations
is not new to the literature; for example, it has been used in the
study of the Hubbard model [44,45]. In that context, it has been
shown how the fermionic operators representing the degrees of
freedom of the conduction electrons can be expressed in terms
of a fermionic operator (describing the holon) and three spin
operators (describing the spinon). In order to fully understand
this approach, it is appropriate to review and discuss some
known properties of the fermionic operators and their repre-
sentation in terms of Majoranas. This is done in Appendix A.
We invite the reader who is not familiar with these topics and in
particular with the holon-spinon representation to examine the
appendix, in order to get more insight on the transformation
realized by the cgf map that we are going to introduce in the
next section.

III. THE CANONICAL CGF-MAP

In light of the previous paragraphs and the information
contained in Appendix A, it becomes possible to give a better
interpretation of the Majorana map that generates Eq. (6).

The only Majoranas that appear in HM are the three coming
from the original conduction c electron γ1,γ2,γ3 and the
three coming from the frozen f electron μ1,μ2,μ3 (to avoid
cluttering of the notation, we suppress the local index rn and
we refer always to the local Hilbert space if not specified
otherwise). The creation of the spinful c electron is given by
the spinor operator

c†c =
(

c
†
c,↑

c
†
c,↓

)
=

(
γ1+iγ2√

2
−γ3+i(2iμ1μ2μ3)√

2

)
. (7)

Therefore it is immediate to identify (up to a −π/2 irrelevant
phase factor) the second component of the spinor opera-
tor (7) as the creation operator of the holon associated to a
(hyper-)spinful particle described by the operator s†:

s† =
(

μ1+iμ2√
2

−μ3+iγ3√
2

)
. (8)

It is then clear that it becomes possible to associate to each local
quantum state of the Kondo lattice model the quantum numbers
of a single fermionic particle characterized by a generalized
spin, generated by an intrinsic symmetry group different from
SU(2). From this point of view the involved structure given
by (7) and (8) can be easily understood, characterized and
generalized. Such classification is irrelevant for the present
work, so we will leave this for future discussion [50].

Instead, we will take a much easier and straightforward
direction in the following, considering the components of this
higher-dimensional spinor as independent spinless particles,
in the same fashion as the usual separation of the spinor (7)
in components c

†
c,↑ and c

†
c,↓. In practice, we consider three

spinless fermions: one for each independent component of the
previous spinor, i.e., one for the first (up) component of (7)
and two for (8).

We name these three spinless fermions after the definition
of their creation/annihilation operators:

c† = γ1 + iγ2√
2

, g† = γ3 + iμ3√
2

, f † = μ1 + iμ2√
2

. (9)

For future convenience, with respect to (8), we have added an
extra −π/2 phase factor in the definition of g†.

Having defined these operators, we need only to prove that
the local Fock space on which they act is (isomorphic to) the
local Hilbert space of the Kondo lattice model. This will also
help us to understand the physical properties and meanings
of these three particles. The creation operators (9) acting
on their vacuum state |0cgf 〉 generate an eight-dimensional
Fock space (note that the anticommutative relations between
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TABLE I. States of the local Kondo Hilbert space expressed
in terms of the original electron-spin quantum numbers (left) and
the corresponding state in the cgf representation (right). The phase
factors could be easily canceled, reabsorbing them into the definitions
of the different operators, but these definitions are kept for future
convenience and to maintain continuity in the notation of Appendix A
and with the literature.

−|⇓〉 ←→ g†|0cgf 〉
−i|⇑〉 ←→ f †|0cgf 〉
|↓⇓〉 ←→ |0cgf 〉

−|↑⇓〉 ←→ c†g†|0cgf 〉
i|↓⇑〉 ←→ g†f †|0cgf 〉

−i|↑⇑〉 ←→ c†f †|0cgf 〉
|↑↓⇓〉 ←→ c†|0cgf 〉

i|↑↓⇑〉 ←→ c†g†f †|0cgf 〉

the operators is assured by the Clifford algebra structure of
the Majorana operators), which has the same dimension as the
local Hilbert space of the Kondo lattice model. As the three
creation (annihilation) operators are expressible in terms of the
original electron and impurity-spin operators, it is clear that if
|0cgf 〉 belongs to the Kondo local Hilbert space, then the other
states will also belong to it. A simple calculation shows that

c† = c
†
c,↑, (10)

g† = − 1
2

[
c
†
c,↓ + cc,↓ + (c†c,↓ − cc,↓)2Sz

f

]
, (11)

f † = −i(cc,↓ − c
†
c,↓)S+

f . (12)

We remind the reader that in our model S2
f = 3/4.

Looking in the local Kondo Hilbert space for the state |0cgf 〉,
such that c|0cgf 〉 = g|0cgf 〉 = f |0cgf 〉 = 0, it is easy to show
that

|0cgf 〉 = (c†c,↓|0〉c) ⊗ |⇓〉f = |↓⇓〉, (13)

where |0〉c is the vacuum of the original conduction electrons
cc,↓|0〉c = cc,↑|0〉c = 0, and |⇓〉f is the spin-down state of the
original impurity spin S−

f |⇓〉f = 0. The relations between the
other states follow naturally. We report the complete structure
of the map in Table I, that together with the formulas (10)–(12)
represents the core of our work, the cgf map.

Clearly, in principle, it is not necessary to take the
Majorana approach to generate the cgf map. However, it
seems improbable that a different path for the derivation
could be followed, considering the complicated structure of
the fermionic operators generated. The power of the analysis
in terms of Majoranas stems from the relative easiness of the
generation of involved transformations that mix both fermion
and spin operators.

Now that the spinless fermions c, g, and f have been
introduced, it is possible to represent the Hamiltonian (1)
making use of the cgf map. A direct calculation, that is, very
much simplified, starting from (6), leads to

Hcgf = Hc + Hde + HJ + Hchem. (14)

In which

Hc = −t
∑
n,δ

(c†c̃ + c̃†c), (15)

Hde = +t
∑
n,δ

(
1

2
− f †f

)
(g† − g)(g̃† + g̃)

−
(

1

2
− f̃ †f̃

)
(g† + g)(g̃† − g̃), (16)

HJ = J

4

∑
n

(1 − c†c − f †f − g†g + 2c†cf †f )

+ J

4

∑
n

2g†g[i(c†f − f †c)]. (17)

The last term Hchem is given by the chemical potential term:

Hchem = −μ∗ ∑
n

(c†c − f †f − g†g + 2f †fg†g + 1).

In all the previous equations, we have used the same con-
ventions of (6) with the prescription that a generic operator
α without the tilde stands for α(rn), while α̃ represents
α(rn + δ). The term Hde, which is the most unusual one in
the Hamiltonian (14), describes a density-correlated hopping
for the g fermions and is responsible for the description
of the double-exchange mechanism. It is the appearance
of this term that makes this three-fermion representation
of the Kondo lattice very successful in the description of
ferromagnetism, as will be made clear by the mean-field
analysis in the next section. We stress that these kinds of
nontrivial hopping structures are a typical consequence of the
nonlinear transformations of the type (7). Similar situations are
encountered, for example, in both the context of the one-band
Hubbard model [44,45] and the t-J model [51].

It is evident that Hamiltonian (14), the mapping of Table I
and the equations (10)–(12), can be demonstrated by direct
inspection, without passing through the procedure that pro-
duces HM . In fact, one can simply consider Hamiltonian (14),
i.e., the cgf form of (6), as an ansatz, and then using
formulas (10)–(12) the usual Hamiltonian (1) of the KLM
is recovered. Hence, using the very general definitions of (9),
the cgf map generates a different, indirect and alternative
demonstration of the faithful Majorana representation of the
Kondo lattice model given by (6) and (7).

To understand the meaning of the three fermions (9), it
is useful to express some physically interpretable operators in
terms of them. The easiest expressions are given for the spin-up
conduction electron density and the impurity ẑ-oriented spin
operator:

c
†
c,↑cc,↑ = c†c, Sz

f = f †f − 1
2 . (18)

Of much greater interest is the density operator of the spin-
down component of the conduction electron:

c
†
c,↓cc,↓ = 1 − f †f − g†g + 2f †fg†g. (19)

This operator, quadratic in the original representation, be-
comes partly quartic if represented on the cgf operators. This
is not surprising, considering that the map is built on the idea
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that the cc,↓ electron must be interpreted as the holon of (8).
Given that two particles contribute to the constitution of the cc,↓
fermion, it must happen that their densities sum up properly. In
a more concrete fashion, it is possible to think that the electric
charge density associated with the fermion degree of freedom
cc,↓ (i.e., the down component of the physical electron mode of
charge e = 1), decomposes into two channels given by the two
primitive particles of which it consists. The nonquadratic form
of the chemical potential term Hchem is a direct consequence
of (19). The coefficient μ∗ will determine not only the amount
of total electric charge density (as it does in the usual linear
case), but it will affect also how the density of cc,↓ electrons is
redistributed between the two channels g and f .

Although unconventional, this technique of fermion de-
composition is not a complete novelty in the literature. Similar
approaches have been followed, for example, in the study of
the t-J model [51] and in a quite general fashion we can
classify them into the framework of generalized Bogoliubov
transformations.

Substituting (18) into (19), we can rewrite

c
†
c,↓cc,↓ = 1

2 + (
g†g − 1

2

)
2Sz

f (20)

or

g†g = (
c
†
c,↓cc,↓ − 1

2

)
2Sz

f + 1
2 . (21)

The latter equation displays the nature of the g-fermion
density: it is generated by the original cc,↓ density and an
impurity-spin–dependent particle-hole transformation cc,↓ ↔
c
†
c,↓. Schematically, we have on each generic local state |α〉,

if Sz
f |α〉 = 1

2 |α〉, then c
†
c,↓cc,↓ = g†g, (22)

if Sz
f |α〉 = − 1

2 |α〉, then c
†
c,↓cc,↓ = 1 − g†g. (23)

This means that the density operator g†g counts the number of
down-spin conduction electrons (holes) on the sites where the
local impurity points up (down).

It is evident that the g and f fermions represent very
nontrivial spin-electron excitations, whose nature will be made
understandable by our mean-field analysis. However, in this
section, it is appropriate to point out an intriguing parallelism
between our f fermion and the composite fermion used in
the large-N approximation. In large-N studies of the Kondo
lattice, an auxiliary fermion operator is used to represent the
local spins [14,15]. Because of the Kondo interaction, this
auxiliary fermion develops dynamics and becomes the most
intriguing excitation of the system: the heavy fermion. This
heavy fermion is shown to have a composite nature: it is a
bound state of the local spin and the conduction electron.
In particular, it binds the creation of a conduction electron
to a spin-flip of the impurity-spin on the same site. It is
evident from (12) that our f fermion is very similar to
this large-N composite fermion. There are, of course, some
differences (in particular, the particle-hole linear combination
of the conduction electrons), but this parallelism of our
formalism with the more known and quite successful large-N
approximation is very interesting.

IV. MEAN-FIELD ANALYSIS

As a first approach to the Hamiltonian (14), we perform a
mean-field study to explore the possible ground states and
understand the nature of the degrees of freedom that we
are using to describe the system. To follow this path, the
symmetries of Hcgf must be identified. The analysis of the
symmetries can be easily done also if the Hamiltonian is
written down in the Majorana representation (6), looking for
the operators that commute with it. Among them we identify
the nontrivial operator

A3(n) = −iγ1(n)γ2(n) − iμ1(n)μ2(n)

= c†(n)c(n) + f †(n)f (n) − 1. (24)

It is straightforward to check that [52][
H,

∑
n

A3(n)

]
= 0. (25)

In the previous two equations we used the index n

instead of rn as site index. In our mean-field analysis, we
decided to enforce the symmetry (25), so we imposed the
commutation between the mean-field cgf -Hamiltonian H MF

cgf

and the operator
∑

n A3(n). The rationale behind this choice is
that the breaking of this symmetry is a necessary condition for
superconductivity that we do not wish to include in the study.
In fact, the consequences of our choice are

〈c†f †〉 = 〈g†c†〉 = 〈g†f †〉 = 0,

〈g†f 〉 = 〈g†c〉 = 0, (26)

〈f †g̃†〉 = 〈f †g̃〉 = 〈f̃ †g†〉 = 〈f̃ †g〉 = 0.

This means that there exist no open channel for the hybridiza-
tion of the g fermions with c and f fermions, so the pairing
order parameter 〈cc,↑cc,↓〉 will always be zero, as can be
checked using the formula

cc,↓ = −g† − f †f (g − g†),

and making use of Wick’s theorem to decompose the higher-
order operators.

The enforcement of this symmetry hides some very subtle
and unexpected surprises. In fact, rewriting (24) in terms of
the usual impurity-spin and conduction-electron operators, we
obtain

A3 = 1
2

{
2Sz

f + (c†c,↑cc,↑ + c
†
c,↓cc,↓)

+ (c†c,↑cc,↑ − c
†
c,↓cc,↓) − 1

}
= 1

2

(
2Sz

f + nc + 2m − 1
)
, (27)

where the site index n has been suppressed to not clutter
the notation. This implies the existence of a very nontrivial
relation between the electron magnetization 〈m〉 = 〈c†c,↑cc,↑ −
c
†
c,↓cc,↓〉/2, the electron density 〈nc〉 = 〈c†c,↑cc,↑ + c

†
c,↓cc,↓〉,

and the spin polarization 〈Sz
f 〉. The existence of this nontrivial

relation has been recently discovered numerically making
use of DMFT + NRG methods [42] (NRG stands for
“numerical renormalization group”) in infinite dimensions and
DMRG [41] in the one-dimensional case. To be consistent with
the literature, we call the A3 operator the “commensurability
operator.” The sign differences between our definition of
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commensurability and the one that can be found in the
numerical studies [41,42] is due to an opposite convention
for the up direction of the spin polarization axis.

Therefore the first concrete result of our analysis is the
identification of this symmetry, which furnishes a theoretical
justification to the “commensurability” parameter. We want
to remark that we have not yet restricted our analysis to the
one-dimensional case, but we are still dealing with an arbitrary

number of dimensions, therefore these conclusions refer to
both the DMRG [41] and the DMFT + NRG results [42].

It is useful for the discussion to write down explicitly the
form of H MF

cgf obtained enforcing the symmetry (25):

H MF
cgf = H MF

cf + H MF
g + H MF

chem + H MF
shift, (28)

where

H MF
cf = −t

∑
n,δ

(c†c̃ + c̃†c) + t
∑
n,δ

(
1

2
− f †f

)
Sn −

(
1

2
− f̃ †f̃

)
Pn

+ J

4

∑
n

2 (Gn + In) [i(c†f − f †c)] − 2Rn(c†f + f †c) +
∑

n

(2Cn − 1)f †f + (2Fn − 1)c†c, (29)

H MF
g = t

∑
n,δ

(
1

2
− Fn

)
(g† − g)(g̃† + g̃) −

(
1

2
− Fn+1

)
(g† + g)(g̃† − g̃) + J

4

∑
n

(−1 − 4In)g†g, (30)

H MF
chem = −μ∗ ∑

n

(c†c − f †f + 2Gnf
†f + 2Fng

†g + 1), (31)

and H MF
shift represents the total, mean-field dependent shift of

the energy. The definitions for the various mean-fields are

Sn = 〈(g† − g)(g̃† + g̃)〉, Pn = 〈(g† + g)(g̃† − g̃)〉,
In = − i

2
(〈c†f 〉 − 〈f †c〉), Rn = 1

2
(〈c†f 〉 + 〈f †c〉), (32)

Fn = 〈f †f 〉, Cn = 〈c†c〉, Gn = 〈g†g〉.
With the subscript n we want to remark the fact that
modulation of the mean-fields are allowed in general. Of
course, modulations with wave vectors different from K = 0
imply the study of larger unit cells.

The H MF
cf describes a delocalized spinless fermion (elec-

tron) that hybridizes with a lattice of f impurities; while
the H MF

g is the fermionic representation of the generalized
transverse field Ising model [53,54]. The exact dynamics of
the two subsystems depend on the specific structure of the
mean fields.

If J = 0, the c -f hybridization does not take place, so
the f fermions give rise to a flat band, while the c fermions
produce the usual multidimensional cosine-free band. When J

is increased, the two species hybridize, causing the opening of
a gap in the band structure, with the typical avoided crossings.

Although the H MF
g has an unconventional form, it is

important to stress that according to (18), one obtains

Fn = 〈f †(n)f (n)〉 = 1/2 − 〈
Sz

f (n)
〉
, (33)

therefore if the impurity-spin order parameter is constant in
space (ferromagnetic order), then the g fermions are described
by a simple noninteracting model, while any space modulation
introduces p-wave pairing terms in the g Hamiltonian.

From these considerations, it is evident that the structure of
the Fn field plays a central role in the mean-field Hamiltonian.
In fact, it is the scattering of the g electrons on the modulations
of Fn that causes the opening of a gap in the g band.
Moreover, one should keep in mind that the magnitude of
Fn also determines the bandwidth of the g-fermion band. This

band renormalization is the most unconventional feature of the
Hamiltonian (28) and it is remarkable, especially considering
that we obtain it in a mean-field framework. Indeed, band
renormalization effects do not typically appear in mean-field
contexts, while they are obtained in more involved approxi-
mation schemes, such as Gutzwiller projection methods.

From all these considerations, it is clear that it is very
difficult to predict the properties of the mean-field ground
state, so that the only way to tackle the problem is numerically.
We did it following the algorithm presented in Appendix B,
generating a system of nonlinear equations whose solutions
coincide with the values of the order parameters for the
mean-field solutions. In order to find all the possible solutions
of the nonlinear system, we created a grid in the entire
parameter space and used each point of the grid as starting
point for a Newton-Raphson root finder. We repeated this
procedure for different values of chemical potential and Kondo
coupling, mapping the full phase diagram [55]. This procedure
permitted us to find not only the mean-field ground state, but
also higher-energy mean-field states and to follow them in their
complicated evolution in the phase diagram.

In the following, we will focus our attention on translation-
ally invariant solutions, which should be dominant away from
half-filling and from the weak coupling limit; therefore we will
consider constant values for all the mean fields on the entire
lattice. We must stress the fact that this does not mean that
we are forcing the system into a ferromagnetic state. In fact,
paramagnetic states, which posses this kind of translational
invariant property, will still be, in principle, included into the
sector of the theory that we are going to analyze. What will
be excluded are states and effects that are characterized by
nonlocal correlations between different sites. So we expect
our solution to not be able to capture the physics of the RKKY
liquid phase, for example. To describe (at the mean-field level)
states that posses these kind of nonlocal correlations, we
should allow for the spatial modulation of the mean fields.
Only at the end, we will discuss this option, considering the
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possibility of adding a staggered modulation for the mean
fields, restricting the analysis to the half-filled system. In
this way, it would be possible to see how the RKKY effect
enters into the Hamiltonian and why antiferromagnetic or
spiral orders can appear at mean-field level. Unfortunately, the
analysis will reveal that a neat separation between the RKKY
and Kondo effect is, in general, impossible. To go beyond
the known results [38], we should allow for the competition
of these two effects, but this would make the mean-field
analysis more involved. Therefore, in this work, we do not
consider this extremely general case that in our opinion should
instead be tackled with different approximation schemes [43].
However, we will point out the connection with the known
mean-field treatments of the RKKY effect in the KLM and
provide a discussion of the half-filled system showing how
the paramagnetic Kondo insulating phase becomes the mean

filed ground state at high coupling. Since this phase is also
translationally invariant, our mean-field study becomes quite
meaningful and, in particular, very efficient in the analysis
of the quasiparticle gap. Although our mean-field algorithm
works for any temperature T and number of dimensions, we
performed a study only in one dimension and in the T → 0
limit; we leave the other cases for future studies.

A. Ferromagnetic solutions away from half-filling

We will now focus our attention on the results that we
obtained imposing translational invariance, i.e., assuming a
constant value of all mean fields on the entire lattice. The
translational invariant Hamiltonian, which we indicate as
H MFTI

cgf , looks like

H MFTI
cgf = −t

∑
n

c†c̃ + c̃†c − 4t(S − P)
∑

n

f †f + J

4

∑
n

2 (G + I) [i(c†f − f †c)] + (2C − 1)f †f + (2F − 1)c†c

+ 2t

(
1

2
− F

) ∑
n

g†g̃ + g̃†g + J

4

∑
n

(−1 − 4I)g†g + H MF
chem + H MF

shift, (34)

where we putR = 0, without loosing generality and en passant
we note that S − P = 〈g†g̃ + g̃†g〉.

The g-fermion subsystem is described by a trivial nonin-
teracting Hamiltonian. Therefore all the mean-fields G and
S − P may be computed analytically as functions of the other
variables.

We analyzed the system for discrete values of the adimen-
sional coupling parameter x = J/t between 0.05 and 6 and
for different values of the chemical potential, in order to have
a description of the most relevant region of the (x-nc) phase
diagram. For each value of x and μ, the nonlinear system
was solved and the free energy E − T S − μ∗N was used to
order the different solutions and to identify the mean-field
candidate ground state. In general, the final picture that we
obtain can be split in four regions: the first at half-filling
and the other three away from half-filling, respectively, at
low coupling (x � 2), intermediate coupling (2 � x � 3), and
high coupling (x > 3). In the second region, it is possible to
obtain, from our mean-field analysis, quantitative information
about the structure of the ground state for any value of the
filling. Instead, in the last two regions, our approach becomes
less efficient, providing only indications on the nature of the
system.

In the low-coupling regime, we discovered the existence
of two ferromagnetic phases FM-I and FM-II, divided by a
second-order phase transition that takes place at the critical
conduction electron density nF

crit(J ). This part of the phase
diagram is plotted in Fig. 1, where it is possible to see how
closely our line of phase boundary is, when compared with the
one found by DMRG methods [35,41]. This result improves
significantly the available previous [38] mean-field ones. In
particular, we do not identify the unphysical (global Kondo-
singlet-like) paramagnetic solution, discovered by other mean-
field methods, but we correctly find a ferromagnetic state

stabilized by the Kondo effect. This is remarkable, since
we do not force the system to a magnetic sector, but just
to a translationally invariant one. The paramagnetic solution
appears only at half-filling, which is the only region of the
phase diagram where such a solution is expected.

We invite the reader to not confuse the paramagnetism
induced by nonlocal correlations, with the one that we analyze.
The nonlocal kind of paramagnetism has been excluded by
our study when we chose to not spatially modulate our mean

FM�I

FM�II

Coex.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Conduction electron density

x
�
J�
t

FIG. 1. (Color online) The x = J/t vs nc phase diagram. The
thick continuous blue line represents the phase transition line between
the FM-I and FM-II phases and should be compared with the
dashed red line that shows the ferromagnetic-paramagnetic transition
characterized by the DMRG calculations in Refs. [35] and [41].
The dashed blue line and the dot dashed green line represent the
transition line between the ferromagnetic phases and the region of
phase coexistence between the KI and the FM-I phases. The point at
x = 0 is an extrapolation of the results, because our approach cannot
be applied for that specific coupling value.
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fields. In fact, the zone occupied by the paramagnetic states
away from half-filling is instead covered by the FM-II state,
which is a different kind of ferromagnetic phase.

It is important to point out how the FM-II phase at low
coupling is a very competitive state, which has a better energy
than the typical trial variational ground states [38] obtained
via the introduction of spiral order in the impurity spins. This
behavior marks the important role, also at low coupling, of
the Kondo effect, which is able to stabilize a low-energy
ferromagnetic state, if properly considered. Since it is well
proved [2,3,56] that in this regime the spin-spin correlation
function is peaked at 2kF , it is expected that variational states
with (properly modulated) spiral spin order are energetically
more competitive; the existence of the FM-II phase shows
that the ordering of the spins alone is not enough to obtain
a physically relevant trial ground state and the Kondo effect
cannot be disregarded. Of course, these considerations are
valid in the coupling regime that we considered. We did not
perform any analysis of the extremely low-coupling regime,
where it is not excluded that the spiral ordered states can
become dominant.

1. Ferromagnetism in the low-coupling limit

In the coupling regime x � 2, we found for each value of
μ∗ and x two possible solutions. Varying the two parameters,
these two solutions formed two sets of adiabatically connected
mean-field states. One of the families was clearly very well
separated in energy and so we discarded it, focusing only on
the lowest (free) energy mean-field states. On this branch, as
mentioned previously, it is possible to identify two different
phases: the phase FM-I that extends from nc = 0 to nF

crit(J )
and the phase FM-II that goes from nc = nF

crit(J ) to 1. Though
both the phases are ferromagnetic, they are characterized by
different physical properties. In Fig. 2, we plot the values of the
commensurability, total magnetization, and free energy versus
the conduction electron density, using as example the coupling
x = 1.4. Evidently, there exist a discontinuity in the behavior
of these quantities at nF

crit ≈ 0.35 that corresponds to the critical
chemical potential μcrit/J ≈ −1.1. Such discontinuities in
the derivatives of the curves continue to exist also if they
are plotted with respect to the chemical potential, with the
exception of the free energy. Indeed, as shown in Fig. 3,
the free energy curve looks continuous and we were not able
to resolve any discontinuity in the derivate. A more detailed
analysis reveals the origin of the discontinuity in the derivate
of the free energy curve in Fig. 2. Starting from the plots of the
mean-field bands for the two phases FM-I and FM-II (some
examples are plotted in Fig. 4), it is easy to understand how
the system goes from the FM-I phase to the FM-II phase, via a
Lifshitz transition[57], when the c-like band (curve always on
the top in Fig. 4) crosses the Fermi level at zero energy. The
discontinuity in the free energy versus the electron density is
therefore due to the divergent contribution to the density of
states, generated by the bottom of the c-like band that gets
occupied. This is also consistent with the behavior of the
density versus the chemical potential, where a vertical flex
in correspondence of nF

crit is present.
Focusing now on the FM-I phase, we identify this state

with the ferromagnetic ground state discovered by DMRG
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0 0.25 0.5 0.75 1
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0

0.5

1

Total electron density

FIG. 2. (Color online) Free energy (plotted in units of 4t/π )
(red), total magnetization 〈Sf 〉 + 〈c†↑c↑ − c

†
↓c↓〉/2 (green), and com-

mensurability 〈A3〉 + 1 = 〈c†c + f †f 〉 (yellow) vs total electron
density per site nc, for the coupling x = 1.4. Evidently, in the
FM-I phase, the magnetization is described by the known relation
|1 − 〈n̂c〉|/2. The critical line (continuous vertical) is put in cor-
respondence of the critical density nF

crit ≈ 0.35. Beyond that value,
the commensurability increases and the total magnetization becomes
quickly almost constant. It is evident that there exists a discontinuity
in the derivative of the free energy with respect to the electron
density, which may indicate a phase transition of the Lifshitz kind, as
explained in the text.

calculations. In fact, as shown, for example, in Fig. 2,
we recognize that this state has a density-dependent total
magnetization that correctly [1,41] goes linearly with the
total electron density as |1 − 〈nc〉|/2, starting from a totally
ferromagnetic state at infinitesimal density [1,26]. It is also
evident from Fig. 2 (but, of course, this is true for any ground
state of the FM-I phase) that on the FM-I ground state the
commensurability parameter is equal to one for each value of
the electron density, exactly as in the DMRG solutions [41].

Beside these quantitative agreements, we discover that also
the physical picture of the “spin-selective Kondo insulator”
(SSKI) is perfectly consistent with the picture offered by our

Μ

FIG. 3. (Color online) The free energy (plotted in units of 4t/π )
(red) and the total electron density (blue) vs the (rescaled) chemical
potential μ∗/J for x = 1.4. The vertical flex of the density line, due
to the contribution of the divergent density of state of the c-like band
is very well visible.
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FIG. 4. (Color online) The cgf mean-field band structure for
different parameter values. In (a) and (b), the FM-I band structure
respectively at x = 2.8, nc ≈ 0.5 (i.e., μ∗/J = 1.8) and x = 2.8,
nc ≈ 0.67 (i.e., μ∗/J = 1.49). In (c) and (d), the FM-II phase at
x = 1.4, nc ≈ 0.5 (i.e., μ∗/J = 1.375), and x = 1.4, nc ≈ 0.95 (i.e.,
μ∗/J = 0.2). The g band (blue) presents always a Fermi surface at
zero energy; in the FM-I phase, the yellow (c-like) band is completely
empty, while in the FM-II phase it is partially filled. The red f -like
band is instead always filled. The hybridization gap is well visible in
all the plots. The band structure is symmetric under k → −k and on
the y axis the energy is always given in units of t .

mean-field ground state in the FM-I phase. The physics behind
the SSKI, as proposed in Refs. [41,42], is very interesting
and our cgf description of the system exposes it perfectly.
Starting from the one-conduction-electron limit, it is possible
to understand the main features of this mechanism. The
one-electron system is notoriously ferromagnetic as can be
proved analytically [1,26] or understood invoking the double-
exchange mechanism [2]. Indeed, since the electron hopping
operator preserves the spin of the electron and considering
that the system wants to maximize the energy gain from
the antiferromagnetic coupling, it must happen that all the
impurity spins align in the direction opposite to the spin of
the only conduction electron present. This effect is taken
into account in H MFTI

cgf by the density-correlated g-hopping
term (16): it is clear that in order to maximize the gain
from the kinetic energy contribution, the system will develop
ferromagnetism. Therefore, with an infinitesimal electron
density, the result must be F = 1, so that via (18) 〈Sz

f 〉 = 1/2
and the bandwidth of the g band is maximized [58]. It is easy
to understand this process in the semiclassical picture, i.e.,
turning off the spin-flip part of the electron-impurity spins
interaction and considering only the Ising-like part.

Inserting now more electrons into the system and consid-
ering the effect of the spin-flip processes that the electrons
experience scattering against the impurity spins, the situation
becomes more involved. The configuration where all the
electrons share the same spin is not energetically optimal nor
consistent with the existence of the electron-spin scattering,
so also the band of cc,↑ electrons (minority-electrons) must
be partially filled. This is problematic for the system, because
the up electrons have spins parallel with the ferromagneti-

cally ordered impurity spins (majority spins). To solve this
problem, the system binds the minority-spins (generated by
the scattering of the electrons against the ferromagnetically
ordered majority spins) to the minority electrons, performing
a sort of “effective annihilation,” via the creation of Kondo
singlets. The latter become the relevant objects of the system
and the minority spins and minority electrons cease to exist
as independent degrees of freedom, becoming only highly
correlated components of the singlets. Of course, this process
has to happen not just locally, but taking into account the
delocalization of the singlets on the entire system. Obviously,
the wave function of the quantum liquid formed by the
delocalized Kondo singlets must be entangled with the one
describing the Fermi liquid of the majority electrons, because
also (part) of the cc,↓ must participate in the creation of the
singlets.

These singlets are responsible for the formation [41,42] of
the SSKI that is described by the two c -f hybridized bands (in
the following called c-like and f -like bands) in the Figs. 4(a)
and 4(b), where we chose to plot the mean-field band structure
for the ground-state solution at x = 2.8, nc ≈ 0.5 and 0.67.
The high value of the coupling has been chosen to give a better
visualization of the features of the FM-I phase; anyway, all the
ground states in this phase share the same characteristics. Of
course at mean-field level, considering our assumptions (26),
the entanglement of the two many-body wave functions is lost,
so the partially filled g band represents (effectively) the band
formed by the majority electrons that are not bound into the
Kondo singlets.

The previous description gives a qualitative rationale for
the unit value of the commensurability. The idea is that there
must occur a fine-tuning between the density of the minority
electrons and of the minority spins. Indeed, the creation of
minority spins is energetically expensive; for any majority spin
turned into a minority spin, there is a loss in the kinetic energy
of the g fermions, because of the reduction of the mean-field
F . Therefore the density of the minority spins will be as small
as possible, i.e., there will be an equal number of minority
spins and minority electrons.

It is now clear that in our description, while the c fermions
represent the minority-electrons, the f fermions represent the
majority spins; thus the vacancies in the completely filled f

band must represent the minority spins and hybridize with
the c fermions. Imposing the same value for the densities
of the minority electrons and minority spins, remembering
that the average number of minority electrons is C and
that the average number of minority spins is 1 − F , it is
straightforward to obtain

C = 1 − F ⇒ C + F = 1.

This is exactly the justification provided in Ref. [41] for the
unitary value of the commensurability parameter, given in
terms of cgf fermions. As is evident, our cgf formalism fits
perfectly the physics of the SSKI and therefore the FM-I phase.

We plot an enlightening outcome of our cgf map mean-
field analysis in Fig. 5. The curves represent the momentum
distribution of the conduction electron density operators. As
can be seen, the Fermi surface of the cc,↑ minority electrons
is completely destroyed by the hybridization and as a matter
of fact the minority electrons are not expected to show any
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FIG. 5. (Color online) Expectation values on the FM-I cgf

mean-field ground state at x = 2.8 and nc ≈ 0.5, corresponding to the
band structure in Fig. 4(a). Momentum distribution on the Brillouin
zone of the operators nc,↑(k) = 〈c†c,↑(k)cc,↑(k)〉 (thin red), nc,↓(k) =
〈c†c,↓(k)cc,↓(k)〉 (dotted black), and nc,tot(k) = nc↓(k) + nc,↑(k) (thick
blue). (Inset) For the same state, the momentum distribution on
the Brillouin zone of the operators 〈g†(k)g(k)〉 (dot-dashed green),
〈−i(f †(k)c(k) − c†(k)f (k))/2〉 (dashed orange), 〈f †(k)f (k)〉 (dotted
cyan), and 〈n̂c↑ (k)〉 (thin red). Both figures are symmetric for k → −k.

Fermi-liquid behavior, because they exist only as components
of the coherent Kondo singlets and not as free particles. The
only jump is visible in the majority-electron distribution (and
consequently in the total distribution also). The fact that a
part of the majority electrons participate in the formation
of the Kondo singlets is made evident by the fact that their
occupation number is not equal to one inside the Fermi volume.
The position of the Fermi momentum is compatible with the
picture presented, where almost all the electrons are stored in
the cc,↓ (majority) band and only those that are not bounded
into singlets contribute to the Fermi volume. This explains
what is the nature of our mean-field solution: it separates
the part of the majority-electron wave function and the spin
singlets one, i.e., it stores the effective fraction of the majority
electrons that can be thought as free in the g sector. The
more they are, the less the Kondo singlet wave function is
entangled with the majority electrons one. We want to point
out how our description is not only able to move the Fermi
momentum correctly, but also to renormalize the jump at the
Fermi surface. This happens because the creation of the Kondo
singlets spreads part of the electron-quasiparticle weight over
the entire Brillouin zone. For future convenience, we also
plot the momentum distribution of some cgf operators in
Fig. 5 (inset). As can be seen, the hybridization takes place
at every momenta, indicating that all quantum states of the
minority electrons are involved into the generation of the
Kondo singlets.

In the FM-I phase, the double-exchange effect clearly
dominates and the Kondo effect enters as a way to optimize
the energy, permitting the “annihilation” of the unwanted
minority electrons, but without creating any global Kondo
singlet state. In spite of that, increasing more and more the
filling, the status quo does not survive up to half-filling. When
a critical value nF

crit(J ) is reached, the physical properties of
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FIG. 6. (Color online) Expectation values on the FM-II cgf

mean-field ground state at x = 1.4 and nc ≈ 0.5, corresponding to the
band structure in Fig. 4(c). Momentum distribution on the Brillouin
zone of the operators nc,↑(k) = 〈c†c,↑(k)cc,↑(k)〉 (thin red), nc,↓(k) =
〈c†c,↓(k)cc,↓(k)〉 (dotted black), and nc,tot(k) = nc↓(k) + nc,↑(k) (thick
blue). (Inset) For the same state, the momentum distribution on
the Brillouin zone of the operators 〈g†(k)g(k)〉 (dotdashed green),
〈−i(f †(k)c(k) − c†(k)f (k))/2〉 (dashed orange), 〈f †(k)f (k)〉 (dotted
cyan), and 〈n̂c↑ (k)〉 (thin red). Both figures are symmetric for k → −k.

the system change completely, passing from the FM-I to the
FM-II phase. As mentioned earlier, this happens when also the
c-like band crosses the Fermi level at zero energy and starts to
get filled. The filling of the c-like states is not the only thing
that changes in this process. In fact, the states that get filled
do not contribute anymore to the hybridization field I, as can
be seen in Fig. 6 (inset), which is an example for x = 1.4 and
nc ≈ 0.5, corresponding to the band structure of Fig. 4(c). The
hybridization field I (k) = 〈−i(f †(k)c(k) − c†(k)f (k))/2〉 is
zero where the C(k) = 〈c†(k)c(k)〉 is one, indicating that the
filled states are well-defined cc,↑-electron states, characterized
by no charge fluctuations, in contrast with the FM-I ground
state where no cc,↑ state was fully occupied, because all were
involved in the Kondo singlets formation.

In terms of the cc,↑ (minority) and cc,↓ (majority) electrons,
what happens is that for nc > nF

crit(J ) the system is not anymore
able to keep such a high unbalance between the two electron
species and tries to equilibrate the two populations. Some
minority electrons escape the process of bonding into the
Kondo singlets and so are allowed to hop freely from site
to site. This is manifested by the creation of a Fermi surface
also for the minority cc,↑ electrons, that remarkably appears in
the FM-II phase, as shown in Fig. 6 for illustration purposes.

The physics of the FM-II phase is much less exotic than
the one described by the FM-I phase. In fact, since the
hybridization is less pronounced and both the fermion species
have a Fermi surface, it is easy to relate this phase with
that of an electron liquid polarized by the magnetic field
generated by the impurity spins, i.e., what was previously
called RKKY-ferromagnet and which corresponds to the
mean-field ferromagnetic state considered in the standard
literature [38]. For example, in Figs. 4(c) and 4(d), it is very
evident how the c-like and g bands roughly represent the two
cc,↑ and cc,↓ bands. In this scenario, the hybridization term,

035121-11



MATTEO BAZZANELLA AND JOHAN NILSSON PHYSICAL REVIEW B 89, 035121 (2014)

remnant of the SSKI formation of the FM-I phase, optimizes
the ground-state configuration incorporating the Kondo effect
into it. This optimization is very efficient and in fact the FM-II
phase gains a lot of energy when the coupling is increased,
beating also the mean-field spiral ordered ground states [38].
The FM-II phase is related to the RKKY ferromagnetic one, in
the sense that for low filling and low coupling these two kind
of ground states look very much the same, becoming more and
more different increasing the relevancy of the Kondo effect.

It is important to point out how the FM-II phase survives
from nF

crit(x) up to half-filling, for each x � 2. Of course, this
does not mean that it represents the true phase of the system,
and in fact it is known that the region of the phase diagram
occupied by the FM-II phase is mostly paramagnetic and not
ferromagnetic. It is therefore very probable that comparing the
FM-II ground states with mean-field solutions that incorporate,
beside the Kondo effect, also a nontranslational invariant
order (i.e., the analogous of the FM-II states but with spiral
order for the spins), the FM-II states would not be favorable
anymore. Anyway, the numerical simulations [35] clearly
indicate the existence of a ferromagnetic phase, a sort of
ferromagnetic tongue, inside the paramagnetic dome. To the
best of our knowledge, there exist no theoretical explanation
for this tongue, whose ferromagnetism has never been fully
understood. The FM-II states, able to dominate the spiral spin
ordered trial states, provide a possible justification for the
ferromagnetic tongue, and could be regarded as prototype for
this kind of Kondo stabilized ferromagnetic order.

2. Instability of the FM-I phase at intermediate couplings

At x ≈ 2, it appears an instability in the phase diagram. In
fact, the two branches (low and high energy, mentioned at the
beginning of Sec. IV A 1) of mean-field solutions collide for a
critical chemical potential μ12(x), corresponding to a critical
density n

pol
crit(x). This collision implies the disappearance of

both the solutions, which merge into a new one: the half-
filled KI. This solution is the only translationally invariant
mean-field solution for μ

pol
crit < μ∗ < 0 and it appears at

μ
pol
crit > μ12(x) leaving an interval between μ12(x) < μ∗ <

μ
pol
crit (shadowed region in Figs. 7 and 8) where no solution

could be found. In turn, this also means that we found no
solutions between n

pol
crit < nc < 1. Although strange, this result

has a quite reasonable explanation, consistent with the physics
of the one-dimensional Kondo lattice.

To understand this process of collision of two solutions,
one has to keep in mind the nature of the mean-field solutions,
which are fixed points of our Newton-Raphson method, or
also extremal points of the mean-field energy functional (see
Appendix B). The only way for fixed points (or two extrema)
to disappear is via a bifurcation process.

Initially, at x ≈ 2, we found that n
pol
crit ≈ 1; changing the

coupling this critical density moves quickly to much smaller
values, so that at x ≈ 2.2, one has already n

pol
crit ≈ 0.8. In

doing this, the critical density becomes smaller than the
critical density that separates the FM-I and FM-II phases,
making the latter disappear from the phase diagram. So at
intermediate couplings x � 2.1, the FM-II phase does not
exist anymore and we found only two phases: the FM-I phase
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FIG. 7. (Color online) Free energy (red) and (on-site) electron
density (blue) vs μ∗/J , for x = 2.8. On the y axis, the free energy is
given in units of 4t/π and the value 0 and −1 correspond respectively
to the empty and the half-filled noninteracting model; the density can
vary from zero (no electrons) to one (half-filling). The labels 1 and
2 mark the low- (FM-I ground state) and high-energy mean-field
solutions. The label KI indicates the half-filled Kondo insulating
solution. The shaded area, delimitated by the two vertical black lines,
indicates the values of the chemical potential where the bifurcation
takes place. The dots of the branches 1 and 2 indicate the solutions
that we found numerically, while the lines are an interpolation of the
results. In the case of the KI solutions instead, we could obtain an
arbitrary large amount of points, therefore the dashed KI line is drawn
with machine precision. The error bars are not present, because they
are smaller than the marker points.

between 0 < nc < n
pol
crit and the KI phase at nc = 1. We would

like to point out how the value of the coupling where the
FM-II phase disappears is in approximate agreement with the
upper boundary of the ferromagnetic tongue phase mentioned
previously, suggesting again the connection between the two
phases.

� � � � � � � � � � �����������
�

�
�

�
�

11

2
2

� � � � � � � � � � ����������������

11

22

� � � �

�
�

� � � � ����������������

11

22

����

����

FM�I phase

KI phase

�1.25 �1 �0.75 �0.5 �0.25 0
�0.5

�0.25

0

0.25

0.5

0.75

1

Μ��J

FIG. 8. (Color online) Commensurability (yellow), impurity
spin magnetization 〈Sz

f 〉 (blue), and electron spin magnetization

〈c†c,↑cc,↑ − c
†
c,↓cc,↓〉/2 (red) vs μ∗/J , for x = 2.8. The same con-

ventions as in Fig. 7 are used. It is evident how the commensurability
is always equal on the ground state of the FM-I phase (i.e., the branch
labeled by the number 1).

035121-12



FERROMAGNETISM IN THE ONE-DIMENSIONAL KONDO . . . PHYSICAL REVIEW B 89, 035121 (2014)

The absence of a solution between n
pol
crit < nc < 1 is an

annoying feature, but it hides a possible physical explanation.
The picture becomes more clear analyzing the behavior of
the mean-field solutions at varying chemical potentials, rather
than varying density. In Fig. 7, we plot the dependence of the
free energy and electron density on the chemical potential,
for our mean-field solutions, choosing x = 2.8 for illustrative
purposes (the same structure holds for all the intermediate
couplings). In Fig. 8, we plot also the behavior of other
physical quantities, such as the value of the commensu-
rability parameter, impurity spin polarization and electron
polarization.

On the left, the two branches of mean-field solutions can
be seen. As evident, the two families become degenerate at
μ12 = μ∗/J ≈ −0.53 and converge to the same point in the
parameter space, as can be understood examining the electron
density curve (we reserve the symbol μ

pol
crit for the value of

the chemical potential at which we are able to resolve the
new KI phase). Increasing the chemical potential, we were
not able to resolve any solution until the appearance of the
KI phase at μ

pol
crit. This is due to the fact that the mean-field

energy functional becomes almost flat, making impossible
the identification of maxima, minima, and flexes for values
of μ∗ between μ12 and μ

pol
crit. The flat shape of the mean-

field energy functional is the result of the collision between
the two branches (fix points) and physically it has a quite
natural interpretation, visible in Fig. 7. Indeed, following the
ground-state branch 1, i.e., the FM-I phase, it is evident that the
function nc(μ∗) is going towards a vertical flex at μ12, which
also means that the derivative dnc(μ∗)/dμ∗ diverges at μ12.
Since dnc(μ∗)/dμ∗ is proportional to the compressibility [59]
of the quantum liquid, its divergence signals an instability and
a phase transition due to a process of phase separation. At
μ12, corresponding to the density n

pol
crit, the energy necessary

to add an electron becomes zero. In terms of our algorithm,
the divergence of the compressibility is manifested by the zero
value of the Jacobian determinant, and so in the impossibility
to resolve the fixed points in the shadowed region in Figs. 7
and 8.

With this in mind, we can try to explain the physics behind
this behavior. As mentioned in the previous section, for small
values of density (i.e., for low chemical potential), the electrons
are able to delocalize on the entire lattice, creating a coherent
magnetization on the entire system and generating the state
FM-I that survives for higher and higher densities, stabilized
by the creation of the SSKI that can be though of as a liquid
of Kondo singlets. However, once the critical density n

pol
crit is

reached at μ12, the FM-I is not anymore able to host new
electrons and small “bubbles” of the half-filled KI phase appear
in the system, separating islands of FM-I phases that become
less and less extended increasing the total electron density. In
these islands, the ferromagnetic order is still realized by the
conduction electrons, via double exchange. With respect to
the SSKI picture discussed previously, one understands that
a qualitative two-liquid picture can be elaborated to take into
account the physics of the system: in the FM-I phase below
the critical density n

pol
crit, the two liquids (the majority-electrons

liquid and the Kondo-singlets liquid) are homogeneously
mixed on the entire lattice and their wave functions entangled.

When the critical n
pol
crit is reached, it is not energetically

favorable to keep this homogeneous configuration and the
two fluids separate. This phase separation is marked by the
divergence of the compressibility.

This picture of the phase separated region resembles the
description provided by bosonization [2,29], where the islands
of coordinated spins are identified as polarons and the phase
coexistence region is the polaronic liquid. In this region of
the phase space, the correct degrees of freedom are [2] the
islands of FM-I phase, or more properly the electrons dressed
by the ferromagnetic polarized cloud of impurity spins. Our
mean-field analysis is not able to describe the dynamics of
these polarons but permits to predict their existence and locate,
at intermediate couplings, their liquid phase in the correct
region [35,41] of the phase diagram, although not perfectly.

Clearly, the impossibility to follow the mean-field ground
state into the polaronic liquid region is a feature of our mean-
field decomposition scheme (26). In principle, allowing for
more hybridization channels, also an analysis of the polaronic
liquid would be possible, but this would spoil the advantages
of the cgf -map, making the solution very involved. It is our
opinion that, if the subject of the study are the properties
of the polaronic liquid, i.e., of the heavy-fermion phase of
the one-dimensional Kondo lattice [2], then it would be more
appropriate to modify the mapping. This unsuitability of the
cgf map, as we have defined it in the mean-field description
of the polaronic phase, is consistent with the fact that we
optimized the mapping for the analysis of ferromagnetic (or in
general translational invariantly ordered) states.

3. The scenario at high couplings

Increasing even more the coupling, reaching x � 3, the
scenario does not change, except for the fact that n

pol
crit

moves to lower and lower values. Moreover, some other
unphysical mean-field solutions appear close to half-filling.
We believe that these are symptoms of the fact that for
such a high value of the coupling, the ground-state structure
changed too much with respect to the original one. The FM-I
phase stabilized by the SSKI mechanism (as we explained it
previously, in the mean-field picture) does not give anymore
a good approximation of the ground-state configuration. This
is obviously due to the enhanced importance of the Kondo
effect, which causes a stronger and stronger entanglement of
the majority-electron wave-function with the Kondo-singlets
one. Eventually, there is not anymore space to think of a part
of the majority cc,↓ electrons as free, i.e., as a g-fermion sector
completely decoupled from the c-f one, and our mean-field
decomposition scheme breaks down.

Anyway, these arguments suggest the possibility for the ex-
istence of two qualitatively different ground states describing
the ferromagnetic phase of the one-dimensional Kondo lattice
at low and high couplings.

B. Half-filled solution: the KI state and the RKKY effect

It is well documented [1] that half-filling is a very special
point for the Kondo lattice model. The configuration of
the ground state is very different from the ones that are
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infinitesimally close to it, in particular, for what concerns the
magnetic properties of the system.

At half-filling, the system forms a spin liquid with total
spin S = 0, characterized by a gap in both the spin and charge
sector. The gaps exist for every value of the coupling, and
no critical x that signals a phase transition has ever been
found, although it is strongly believed that the mechanisms
responsible for the existence of the gap are different in the two
limits.

At small coupling, the RKKY effect causes a local anti-
ferromagnetic [1,20] order in the impurity spins. This order
is only local and quantum fluctuations destroy it at larger
scales, implying the opening of the spin gap [17,21]. However,
the electrons moving on the lattice feel the nearest-neighbor
antiferromnagnetic order, experiencing coherent Bragg
(back-)scattering and a gap opens also in the charge sector [17].
At high coupling, the nature of the gap is instead caused
by the development of the local Kondo singlets. This gap
is much similar to the BCS gap of superconductors [19]: it
opens because a local singlet has to be broken to move the
local charge or flip a local spin, costing an energy of 3J/4.
Since no phase transitions between the two regimes exists, a
crossover [1] must take place around some value x.

It is quite clear that a mean-field approach will not be able
to capture correctly the subtle physics of the spin liquid phase.
As a matter of fact, we already tried to tackle the problem in
more interesting and appropriate way [43], keeping the spin-
rotational symmetry and studying the sector of nonmagnetic
ground states. Anyway, a discussion of the mean-field results
will not be completely meaningless, because some interesting
features are correctly captured by the mean-field solutions.
Moreover, it will be a good occasion to discuss the appearance
of the RKKY effect in the context of the cgf map.

In our mean-field phase diagram, the particularity of the
half-filled point is the existence of the KI state. Such mean-
field solution exists only at half-filling, like a singular point.
It is characterized by perfect [60] paramagnetism F = 1/2
and perfect balance between the up-down population of the
conduction electrons C = 1/2. The value of the mean-field I,
which measures the average hybridization between the species
c and f , is coupling dependent and goes from zero at x → 0
to 1/2 at x → +∞.

Of primary importance is the fact that G = 1 for every value
of the coupling. The fact that the g band is completely filled
means that there is always one g fermion per site and therefore
the available states for the description of the mean-field KI
state are only (see Table I)

|⇓〉, |↑⇓〉, |↓⇑〉, |↑↓⇑〉.
The presence of the states with zero and two electrons
seems annoying, but it is necessary in order to keep in the
ground-state wave function also an uncertainty in the local
conduction electron density. Indeed, only at J → +∞, when
all the conduction electrons are bound into locally inert Kondo
singlets, the local conduction electron density is exactly equal
to one. As can be seen in Fig. 9 (inset), the mean-field KI
solution is characterized by two bands (together with the
flat filled g band), which come from the originally flat f

band, hybridized with the originally cosine-shaped c band.
The hybridization gives to the two bands the avoided-crossing
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FIG. 9. (Color online) The evolution of the mean-field energy of
the state KI, compared with the antiferromagnetic spin ordered ground
state of Ref. [38]. (Inset) The cgf band structure of the KI ground
state for the value x = 1.8; on the y axes, the energy is given in units
of t . The same conventions of Fig. 4 have been kept; the bands are
symmetric for k → −k.

structure typical of Kondo insulators. This band structure
does not change if the chemical potential is modified, as
long as it remains inside the gap. When the critical chemical
potential μpol

crit is reached, i.e., when the chemical potential level
intercepts one of the bands, the KI solution collapses and a new
couple of solutions (the two FM-I solutions that crush at μ12)
become the only mean-field solutions.

Given that G = 1, the two bands of the half-filled KI state
are found diagonalizing the H MFTI

cf . Defining two creation
operators as

s†(k) = sin(θk)c†(k) + i cos(θk)f †(k),

t†(k) = sin(θk)c†(k) − i cos(θk)f †(k),

then the KI solution is given by the ground state

|KI (x)〉 =
π∏

k=−π

s†(k)g†(k)|0cgf 〉

=
π∏

k=−π

( sin(θk)c†(k) + i cos(θk)f †(k))g†(k)|0cgf 〉,

(35)

where the x dependence enters into the functions θk .
For x → +∞, the KI state approaches the correct asymp-

totic ground state with I = 1/2, i.e.,

|KI (x → +∞)〉 =
π∏

k=−π

1√
2

(c†(k) + if †(k))g†(k)|0cgf 〉.

The fact that |KI 〉 is the correct mean-field ground state
for x → +∞ can be understood also without any numerical
analysis looking at H MFTI

cgf putting t = 0 and sending J to
infinity. Approaching the correct infinite-coupling ground
state, it is not surprising that also the correct asymptotic energy
density dependence of −3x/4 is recovered.

It is important to note that in this limit, the ground state
is correctly given by a linear combination of Kondo singlets:
one for each site. In fact, on each site, one has the realization
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FIG. 10. (Color online) The different curves are the numerically
determined f (x) = μ

pol
crit(x)/J (solid red) and f (x) = 	qp(x)/J =

1/6x2 − 1/x + 3/4, (dashed blue) that is the perturbative t/J = 1/x

expansion for the quasiparticle gap.

of the state s†g†|0〉 that means (c† + if †)g†|0〉 that by the
cgf map Table I is |↑⇓〉 − |↓⇑〉. In the case x < +∞, the k

dependence of θk spoils the singlets with components coming
form the states |⇓〉 and |↑↓⇑〉, necessary to take into account
the hopping of the electrons; while the fact that θk �= π/4
implies also the contribution of the triplet component with spin
Sz

tot = 0. These properties are in agreement with the known
high coupling solutions [18,19].

The mean-field gap between the two bands, which corre-
sponds at infinite coupling to the gap between the singlet and
triplet states at S tot

z = 0, is equal to 3x/2. Unfortunately, this
mean-field gap does not agree with the correct spin-gap of
the Kondo insulator solution, which should be equal to x in
the high coupling limit. However, this is not so surprising,
because one cannot expect to predict properties of the excited
states using a trivial (time-independent) mean-field theory. By
construction, the critical chemical potential μ

pol
crit corresponds

to the energy necessary to add or remove one particle from
the system. This energy has been already defined in the
KLM as the quasiparticle gap; we compare the value of
μ

pol
crit and of the quasiparticle gap, using the known [1] high

coupling perturbative expansion to compute it. As evident in
Fig. 10, the asymptotic behavior at high coupling is the same.
Anyway, around x ≈ 10, a qualitative change in the behavior
of the gap is expected [1], due to the non-negligible effect
of the RKKY interaction, therefore both the curves are not
relevant below that value of the coupling. The inadequacy
of the state |KI(x)〉 at small coupling is made evident by
the fact that for x � 2 it is neither the energetically most
favorable solution among the translationally invariant ones,
because also the FM-II phase exists at half-filling. An analysis
of (34) immediately reveals the problem: at small x, clearly
the system prefers the strongly ferromagnetic order to the
paramagnetic one because the kinetic energy contribution of
the g fermions gets maximized (recall that in the FM-II phase,
the g fermions can be interpreted as the cc,↓ electrons). So as
long as one considers only translationally invariant solutions,
the ferromagnetic order at small coupling is not avoidable.

However, if one instead looks at (28), it becomes clear
that there exist a way to recover the kinetic energy of the
g fermions, without implying ferromagnetic ordering of the
impurity spins. In fact, assuming (perfect) antiferromagnetic
order, one obtains for Hg:

H AF
g = t(1 − 2F)

∑
n

(g†g̃† + g̃g) + J

4
(−1 − 4I)

∑
n

g†g,

where F is the mean-field on the first site of the double
unit cell and we assumed I = const for sake of simplicity.
This Hamiltonian can be solved in many ways, for example,
doubling the unit cell, mapping g̃ → a† and making use of
Nambu spinors. It is clear that the contribution from the kinetic
energy is equally well obtained, and so this state will approach
the energy value of the half-filled zero-coupling solution as
well as the ferromagnetic one. This can also be understood
using (11): assuming saturated impurity spin ferromagnetism
then the g-fermion operators are the cc,↓ operators and g† =
c
†
c,↓; assuming instead saturated spin antiferromagnetism we

have g† = c
†
c,↓ on the sites with spin up and g† = cc,↓ on the

sites with spin down. Therefore the hopping term g†g̃† in the
antiferromagnetic case is exactly c

†
c,↓c̃c,↓.

To study the competition of the antiferromagnetic and the
ferromagnetic ground states, we should solve the mean-field
Hamiltonian (34) imposing translational invariance on the
doubled unit cell. This is not the analysis that we carried on.

The imposition of perfect antiferromagnetism, i.e., Fn+1 =
1 − Fn with Fn = 0, implies that no hybridization is possible
between the c and the f fermions (otherwise, the value
of the F field would be spoiled), hence I = 0. This also
means that all the interesting features of our model are
neglected, as the Kondo effect, and only the RKKY effect
is kept into consideration. The solution for the energy of
the antiferromagnetic ground state at half-filling is the well
known [38]:

EAF(x) = − 1

π

∫ π

0

√
x2

16
+ 4 sin2(k)dk. (36)

It is evident that the Hamiltonian (28) contains all this
physics, and therefore its study (without forcing perfect anti-
ferromagnetism) will improve this RKKY-focused description.
In particular, it will permit to study how the Kondo effect
and the RKKY effect relate to each other. However, it is our
opinion that other paths, rather than the mean-field analysis,
could also be followed; see Refs. [40,43], for examples of such
a study. Indeed, at half-filling, the most important feature that
should be captured is the global singlet nature of the ground
state; a feature that would be completely lost in any mean-field
analysis that breaks translational invariance. Moreover, away
from half-filling, the incommensurability of the order would
imply an increase of the unit cell used, bringing quickly to an
untreatable form for the mean-field problem.

For all these reasons and because the focus of the present
work is on the ferromagnetism in the one-dimensional KLM,
we will not analyze these cases, but we will use the known
results of the Neél ordered ground state to make a comparison
and complete our analysis. As can be seen in Fig. 9, the KI
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state has a better energy, with respect to the antiferromagnetic
ordered state, already at x ≈ 1.9.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced an alternative repre-
sentation of the Kondo lattice model, in terms of three
spinless fermions interacting on a lattice. The identification
of this map demonstrates by direct inspection the known [40]
representation of the KLM in terms of six Majorana fermions;
moreover, it generates a Hamiltonian that is very suitable for
the analysis of ferromagnetism in the one-dimensional Kondo
lattice.

We performed such an analysis and showed how, already
at mean-field level, many properties of the phase diagram
could be detected and explained. This is made possible by
the identification of a symmetry of the Hamiltonian that
is responsible for the appearance of the “commensurability
parameter.”

Our work considerably improves the available mean-
field analyses and is consistent with some recent results
obtained [41] by DMRG calculations, on the nature of the fer-
romagnetic metallic phase at intermediate and low couplings.
In particular, we find the same value for the commensurability
parameter and identify the same description of the system in
terms of “minority” and “majority” electrons, together with
the emergence of the spin-selective Kondo insulator (SSKI),
reported in recent studies [41].

We showed how the existence of the SSKI stabilizes the
ferromagnetic FM-I phase in the low density sector of the
phase diagram. At couplings x � 2, the system is in the FM-I
phase only for densities nc < nF

crit(x), while it is in the FM-II
phase for nF

crit(x) < nc < 1.
The phase transition line nF

crit(x) lies reasonably close
to the ferromagnetic-paramagnetic transition line, signaling
correctly the instability of the SSKI mechanism for excessively
high densities. The FM-II phase, which takes over beyond
this transition, was instead identified as a solution related
to the RKKY-ferromagnetic one, but optimized in order to
capture more of the Kondo physics. This phase is present
in the region of the phase diagram typically occupied by
paramagnetic ground states, for x � 2. At low coupling, it
is energetically more competitive than the usual mean-field
states with spiral spin order. This means that our result could,
in principle, be further improved considering modulations
of the mean fields. Existing up to half-filling and for any
coupling x � 2, the FM-II phase represents a valid prototype
for the ferromagnetic tongue phase [35] that exists inside the
ferromagnetic dome. To the best of our knowledge, there exist
no other (not fully numerical) approach able to justify the
existence of a ferromagnetic phase in correspondence of the
ferromagnetic tongue.

At coupling larger than x ≈ 2, the FM-II phase disappears
and a region of phase coexistence between the FM-I phase and
the half-filled Kondo insulating one appears. We believe that
such a region is due to the failure of the hypothesis done in
the mean-field decomposition of the Hamiltonian. However,
the physical picture described by our results is not in contrast
with the known physics of the KLM. Moreover, it suggests a

qualitative change in the properties of the ferromagnet for high
couplings.

At half-filling, we discovered another translational invariant
solution (that exists as a singular point in the phase diagram).
We identify this solution with the Kondo insulating one,
recognizing that asymptotically it converges to the correct
ground state, with the correct coupling dependence for the
energy of the ground state and for the quasiparticle gap.
However, for small couplings, it is not a good trial ground state.
We do not accomplish in this manuscript any detailed analysis
of the half-filled solutions, which instead have been the subject
of a different study. In the present work, we simply identify
the relation between the usual spiral ordered approximate
solutions and our own.

Considered the great amount of physics, and the qualita-
tively convenient pictures that we have been able to elaborate,
we hope to have demonstrated to the reader the convenience
of the analysis of the KLM in terms of Majorana fermions.
In this work, we used the Majoranas to identify the three
spinless fermions c, g, and f . We believe that the Majorana
map is, in general, very advantageous for the definition of these
kind of nonlinear fermion-spin mappings. A generalization
of our approach, if appropriately used, can open the doors
towards a convenient description of a huge amount of unknown
phenomena.

As final remark, we would like to remind the reader that
the cgf map holds in any number of dimension. Therefore dif-
ferently from bosonization or DMRG that find little use away
from one dimension, our analysis can be straightforwardly
applied also in two and three dimensions.

ACKNOWLEDGMENT

We wish to thank the Swedish research council (Veten-
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APPENDIX A: FERMION REPRESENTATION

It is well known that in many condensed matter systems
the electron does not behave as an elementary degree of
freedom. In recent years, it became evident, both from
theoretical and experimental points of view, that under specific
circumstances, the collective electron modes, describing a
normal Fermi liquid, can decompose into more fundamental
excitations with different quantum numbers and statistics [61],
e.g., [62] spinons, holons, and orbitons. The development of a
formalism that does not focus on the quantum numbers of the
electron and puts aside its elementary nature could therefore
be conceptually and formally advantageous. It is our opinion
that the best candidate for such a more elementary formalism is
given by the Majorana representation of the quantum degrees
of freedom.

Using nonlinear transformations [63] on the local Fock
space, it becomes straightforward to represent the fermion
creation/annihilation operators of a spinful electron in terms
of composite holon-spin operators [44]. The analysis of this
kind of transformations turns out to be quite natural in terms
of Majorana fermions [45]. A comprehensive discussion on
these aspects will be the subject of another study [50], so
in this Appendix, we outline some known practical results
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that have been already used in the analysis of the Hub-
bard model [44,45,63] and that will be useful in our main
discussion.

In the literature on Majorana fermions, the most used
representation of spinful electron operators is given by (3)
and (4). Another equivalent one [45] is

c
†
↑ = −

√
2
σ+, (A1)

c
†
↓ = 2
σz + i�√

2
, (A2)

where 
, � are Majoranas and σ+ = (σx + iσy), σ− = (σx −
iσy) and σz are the usual Pauli operators, with the convention
σ 2

z = 1/4. The relation between (3) and (4) and (A1) and (A2)
is given by the identifications


 = 2iγ1γ2γ3, � = γ4, (A3)

σx = −iγ2γ3, σ y = −iγ3γ1, σ z = −iγ1γ2. (A4)

This representation for the creation/annihilation operators of
the spinful electron realizes the decomposition of the electron
into its spinonic and holonic components [44,45], given
respectively by the three Pauli operators σi and by the spinless
fermion with creation operator h† = (
 + i�)/

√
2. With

these definitions, it is possible to see that there exists a one-to-
one correspondence between the Hilbert space generated by
the operators (3) and (4) starting from the vacuum state |0〉 such
that c↓|0〉 = c↑|0〉 = 0, and the Hilbert space generated by the
operators {1,h} ⊗ {σ+,σ−} and their hermitian conjugates,
where h|0h〉 = 0 and σ+|⇑〉 = σ−|⇓〉 = 0. The mapping is
given schematically in Table II.

Two comments are in order on the operators h† and σ .
First of all, it is remarkable that the Pauli operators (A4) have
to be interpreted as spin or (charge) pseudospin operators,
depending upon the presence or the absence of the holon
associated to h†. Secondly, it is appropriate to note that
the spinless-fermion creation operator h† is obtained via
a transformation that mixes the original Majorana γ4 with
the composite Majorana 2iγ1γ2γ3. This gives an immediate
understanding of the connection between the Hilbert space of
the 1-site Anderson model and the Hilbert space of the one-site
Kondo lattice model described in Sec. II: in fact the confining
term U (nf − 1)2 is easily rewritten as U (1 − φ†φ), where φ

is the holon associated to the spinful electron described by
f † in (2). Consequently, also the origin of the operators (6)

TABLE II. Mapping, as introduced in Ref. [45], between the
two different representations of the Hilbert space associated with a
local spinful electron. On the left, the spinor representation, given
by the operators c↓, c↑, and Hermitian conjugates; on the right, the
representation given in terms of holon and Pauli operators.

|0〉 ←→ |0h〉 ⊗ |⇓〉
|↑↓〉 ←→ |0h〉 ⊗ |⇑〉
|↑〉 ←→ |1h〉 ⊗ |⇑〉
|↓〉 ←→ |1h〉 ⊗ |⇓〉

becomes clear: for U → +∞ there must be one holon φ per
site, that means one spinful f electron per site; therefore the
operators (6) must be interpreted as the spin operators of the
original f electron.

APPENDIX B: GENERALIZED ALGORITHM FOR
MEAN-FIELD ANALYSIS OF NONQUADRATIC

HAMILTONIANS

We outline the numerical procedure that we have used
to study our system. The method is not original [64] but
being unpublished it requires a quick (although not complete)
introduction.

Mean-field theories are variational theories where the
variational parameters are the mean fields (order parameters)
and the Hilbert space is given by the states that can be written
as a single Slater determinant of properly defined one-particle
states. The quantity that has to be minimized is the free energy.
In particular, a well-known theorem [65] says that

Ftrue � Ftrial, (B1)

where Ftrue is the free energy associated to the density matrix of
the original Hamiltonian H . A mean-field solution extremizes
the function Ftrial, with respect to small variations of the mean-
field parameters.

Since the mean-field result is expressible as a Slater
determinant, it means that there must exist a quadratic
Hamiltonian H̃mf generating the mean-field one-particle states;
consequently, there must exist a mean-field density matrix
ρ̃mf = exp(−βH̃mf)/Z̃, so that

Ftrial = Tr (ρ̃mfH ) − T Sρ̃mf . (B2)

In second quantization terms, this Hamiltonian must take the
form

H̃mf =
∑

i

μiAi, (B3)

where the μi are (real) parameters that we call variational
parameters and the Ai are all the possible quadratic (Her-
mitian) operators, written in terms of the original particle
creation/annihilation operators that appear in H . For fu-
ture convenience, the parameters αi = 〈Ai〉 = Tr(ρ̃mfAi) are
named order parameters. It is evident that the specific value of
any order parameter αj will (in general) depend on the entire
set {μi}.

This means that the term Tr (ρ̃mfH ) will correspond to the
mean-field energy functional that one can obtain via Wick
decomposition of all the operators that belong to H . So

〈H 〉 = Tr(ρ̃mfH ) = H(αi), (B4)

which implicitly means also H(μi). Of course, the same can
be said for the term T Sρ̃mf that becomes T S(μi).

The best mean-field solution is given by the density matrix
that minimizes (B1), but in general all the solutions that
extremize it are acceptable mean-field solutions. Of course,
the best one will be the one with the lowest free energy.
Extremizing Ftrial(μi) = H(μi) − T S(μi), one obtains the
condition

0 =
(

∂H
∂αi

− μi

)
∂αi

∂μj

. (B5)
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Unless it happens that there exists an αi independent of all the
{μj }, then one must have

∂H
∂αi

= μi. (B6)

This is a set of (nonlinear) equations in the parameters {μi};
clearly, there exists one equation per μi .

The algorithm is then implemented in a straightforward
way. (1) Given the original Hamiltonian H , one has to start
writing down all the possible (not necessarily Hermitian)
pairings of creation/annihilation operators that appear in H ,
generating a set of possible order parameters βi (note that
this set can be infinite in principle, because it can contain
also very nonlocal order parameters). An analysis of the
set {βi} must be done, inserting the information about the
physics: for example, symmetries, continuous or discrete, that
have to be preserved (for example, translational invariance, or
time-reversal symmetry) or conditions given by the Hermitian
character of the Hamiltonian (for example, if 〈c†g†〉 = 	 then

〈cg〉 = −	∗ by Hermiticity). This will create the set of order
parameters {αi}, in general smaller (always finite), introduced
previously.

(2) Given the many order parameters αi , one writes down
the operators Ai that correspond to them, such that 〈Ai〉 = αi .
Note that these operators can be (properly normalized) linear
combinations of quadratic operators.

(3) Given H and the set {αi}, one can write down the
mean-field functional H(αi) obtained by the standard Wick
decomposition.

(4) Using (B6) one writes down the (nonlinear) system in
terms of the variation parameters μi . This nonlinear system
can then be solved numerically, and its solutions are by
construction also mean-field solutions of the Hamiltonian H .

Although there are some physical interesting features
hidden in this method, we are not going to comment on it
further here. The method, treating all the mean-fields on equal
footing, proved itself quite good in the study of the competition
between different order parameters.
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[29] G. Honner and M. Gulácsi, Phys. Rev. Lett. 78, 2180 (1997).
[30] K. Le Hur, Phys. Rev. B 62, 4408 (2000).
[31] S. Fujimoto and N. Kawakami, J. Phys. Soc. Jpn. 63, 4322

(1994).
[32] C. C. Yu and S. R. White, Phys. Rev. Lett. 71, 3866 (1993).
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