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We study the stability against disorder of surface states of weak Z2 topological insulators (superconductors)
which are stacks of strong Z2 topological insulators (superconductors), considering representative Dirac
Hamiltonians in the Altland-Zirnbauer symmetry classes in various spatial dimensions. We show that, in the
absence of disorder, surface Dirac fermions of weak Z2 topological insulators (superconductors) can be gapped
out by a Dirac mass term which couples surface Dirac cones and leads to breaking of a translation symmetry
(dimerization). The dimerization mass is a unique Dirac mass term in the surface Dirac Hamiltonian, and the
two dimerized gapped phases which differ in the sign of the Dirac mass are distinguished by a Z2 index. In other
words the dimerized surfaces can be regarded as a strong Z2 topological insulator (superconductor). We argue
that the surface states are not localized by disorder when the ensemble average of the Dirac mass term vanishes.
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I. INTRODUCTION

Three-dimensional topological insulators (TIs) [1–6] are
classified into strong and weak TIs. A three-dimensional
strong TI is characterized by an intrinsically three-dimensional
topological index (strong Z2 index ν0) and has an odd
number of gapless Dirac cones on every surface. By contrast,
a three-dimensional weak TI is adiabatically connected to
stacked layers of two-dimensional TIs, characterized with
three weak topological indices (ν1,ν2,ν3) specifying the
stacking direction, and has an even number (typically two)
of Dirac cones on its side surfaces. Since an even number of
Dirac cones can be gapped out without breaking time-reversal
symmetry, it was initially considered that gapless surface states
of weak TIs are fragile.

However, recent theoretical studies have revealed unex-
pected strength of weak TIs. It was first argued by Ringel et al.
[7] that surface Dirac fermions of weak TIs are not localized by
random potential which is weaker than a band gap and has zero
mean. This was confirmed by a numerical study of effective
Hamiltonian of two Dirac cones on the surface of a weak
TI perturbed by various disorder potentials which preserve
time-reversal symmetry [8]. The surface Dirac Hamiltonian
used in this simulation has 4 × 4 matrix representation and
has a single Dirac mass term which physically represents
dimerization of stacked layers [3,7–10]. Mong et al. have
also shown that a nonvanishing average of the Dirac mass
induces a transition from a metallic phase to an insulating
phase [8]. A more recent numerical study using a network
model has shown that the metal-insulator transition in the
presence of a finite dimerization belongs to the standard univer-
sality class of two-dimensional symplectic class of Anderson
localization [11].

The remarkable stability against disorder of surface states
of undimerized weak TIs is ascribed to the uniqueness of
the dimerization mass term in the effective Hamiltonian for
the surface states [8,10]. The point is that the sign of the
unique Dirac mass term distinguishes topologically distinct
phases, since the effective Hamiltonian has the same form as
the Bernevig-Hughes-Zhang model [12] of two-dimensional
quantum spin Hall insulators. This then leads to the following

semiclassical picture of surface transport. When random
potential (including the Dirac mass) varies slowly in space, the
two-dimensional surface of a weak TI is divided into positive-
mass domains and negative-mass domains. Every domain
boundary has helical gapless modes, which will percolate over
the surface when positive- and negative-mass domains appear
with the same probability, i.e., when the random potential
has zero mean. As pointed out by Fu and Kane [10], this
physics is similar to integer quantum Hall plateau transitions.
It is well known that the two-dimensional Dirac Hamiltonian
H = kxσx + kyσy + mσz exhibits anomalous quantum Hall
effect σxy = −sgn(m)e2/2h, where σi are Pauli matrices and
kx and ky are momenta. The critical point between the quantum
Hall plateaus σxy = ±e2/2h is realized by tuning ensemble
average of the random mass m to zero [13]. Similarly, a clean
surface of an undimerized weak Z2 TI is exactly at a quantum
critical point separating two dimerized insulating phases which
are distinguished by a Z2 index. A weak disorder then turns
the quantum critical point into a metallic phase (because of
antilocalization), as observed in numerical simulations [8].

The purpose of this paper is to show that the stability of
surface states of weak TIs against disorder discussed above
can be generalized to a much broader class of weak TIs
and topological superconductors (TSCs) of any symmetry
class which are characterized by weak Z2 indices. It is well
known that, in every spatial dimension, two out of the ten
Altland-Zirnbauer symmetry classes [14] of noninteracting
fermion systems can have topologically nontrivial gapped
phases of noninteracting fermions characterized by a strong
Z2 index [15–17]. For example, symmetry class AII, a
set of free-fermion Hamiltonians which are invariant under
time-reversal operation T with T 2 = −1, has two- and three-
dimensional TIs with a strong Z2 index [1,2]. In this paper
we shall study (d + 1)-dimensional weak Z2 TIs (TSCs)
which are stacks of d-dimensional strong Z2 TIs (TSCs).
As a representative model for d-dimensional strong Z2 TIs
(TSCs), we take a d-dimensional Dirac Hamiltonian satisfying
symmetry conditions of a given symmetry class. We will show
that a side surface of stacks of d-dimensional strong Z2 TIs
(TSCs) has two Dirac cones which are again described by a
d-dimensional Dirac Hamiltonian. It admits a unique Dirac
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mass term which couples the two Dirac cones and opens a
gap. To this end, we will employ Clifford algebras to treat a
Dirac Hamiltonian and symmetry constraints on equal footing
and make use of topological properties of classifying spaces
which in our case are sets of all possible Dirac mass terms. The
sign of the unique Dirac mass corresponds to a Z2 topological
index of insulating phases. We will then argue that surface
Dirac fermions cannot be localized by weak random potential
if disorder average of the Dirac mass term vanishes.

The organization of this paper is as follows. In Sec. II, we
briefly review the classification of TIs and TSCs using relevant
Clifford algebras. In Sec. III, we describe a model of weak
(d + 1)-dimensional TIs/TSCs which are stacks of strong Z2

TIs/TSCs for real symmetry classes, and derive an effective
Dirac Hamiltonian for surface states with a unique Dirac mass
term. In Sec. IV, we discuss a couple of examples of weak Z2

TIs and TSCs. We explicitly show that the mass term gapping
out the surface states is of dimerization type and unique. In
Sec. V, we conclude by summarizing the main results.

II. MINIMAL DIRAC MODEL AND CLIFFORD ALGEBRAS

In order to introduce theoretical formalism which we
employ in the following sections, we give a brief review of
Clifford algebras and their application to classification of TIs
and TSCs. We consider a Dirac Hamiltonian

H = γ0m +
d∑

i=1

γiki, (1)

where γi’s (i = 0,1, . . . ,d) are gamma matrices anticommut-
ing with each other,

{γi,γj } = 2δi,j , (2)

ki is a momentum in the ith direction, and m is the Dirac
mass that corresponds to a band gap [16]. We have set the
velocity of Dirac fermions to unity. The Dirac Hamiltonian
[Eq. (1)] is a minimal (irreducible) model, as we assume that
no unitary operator (generator of continuous symmetry such as
rotation) commutes with H . Such a Hamiltonian is classified as
a member of one of the ten Altland-Zirnbauer (AZ) symmetry
classes [14], according to the presence or absence of the three
generic symmetries: time-reversal symmetry (TRS), particle-
hole symmetry (PHS), and chiral symmetry. The Hamiltonian
H has a TRS when it commutes with an antiunitary operator
T for time-reversal transformation as

[T ,H ] = 0, (3a)

which implies

{T ,γi} = 0 (for i �= 0), [T ,γ0] = 0, (3b)

for the Dirac Hamiltonian H , because complex conjugation
operator K involved in T changes ki to −ki . Similarly, the
Hamiltonian H has a PHS when it anticommutes with an
antiunitary operator C,

{C,H } = 0, (4a)

TABLE I. Real symmetry classes and their topological clas-
sification. The eight real symmetry classes are characterized by
the presence or the absence of time-reversal symmetry (T ) and
particle-hole symmetry (C). Their presence is labeled by the sign
of the squared operator, T 2 or C2, and their absence is indicated by
0. For each class, the parameters (p,q) specifying the relevant real
Clifford algebra, real classifying space Rq−p , and its zeroth homotopy
group at d = 0 are listed.

class T C � (p,q) Rq−p π0(Rq−p)|d=0

AI +1 0 0 (d + 2,2) R0−d Z
BDI +1 +1 1 (d + 1,2) R1−d Z2

D 0 +1 0 (d,2) R2−d Z2

DIII −1 +1 1 (d,3) R3−d 0
AII −1 0 0 (d,4) R4−d Z
CII −1 −1 1 (d + 3,0) R5−d 0
C 0 −1 0 (d + 2,0) R6−d 0
CI +1 −1 1 (d + 2,1) R7−d 0

or

[C,γi] = 0 (for i �= 0), {C,γ0} = 0, (4b)

where C serves as an operator for particle-hole transformation
of Bogoliubov-de Gennes (BdG) Hamiltonian of a supercon-
ducting system. The Hamiltonian H has a chiral symmetry, if
there exists a unitary operator � that anticommutes with H ,

{�,H } = 0, (5a)

or

{�,γi} = 0. (5b)

We note that from two of the three relations (3)–(5) follows the
third relation where the transformation operator is the product
of those from the two relations. For example, if H has both
TRS and PHS, then H has a chiral symmetry with � = T C.
The antiunitary operators T and C square to plus or minus
identity operator.

Among the ten AZ symmetry classes, two symmetry
classes (A and AIII) which have neither TRS nor PHS
are called complex classes, and the other eight symmetry
classes are called real classes shown in Table I. For a more
detailed introduction to the classification of single-particle
Hamiltonians into the ten AZ classes, we refer the reader to
Sec. 1.1 in Ref. [16].

It is known that, in each spatial dimension, five out of the
ten AZ symmetry classes have topologically distinct gapped
phases, which are characterized by either an integer (Z) or a
binary (Z2) topological index [15–17]. For example, gapped
phases of minimal Dirac models can be topologically classified
by examining how many distinct mass terms the Dirac
Hamiltonians can have under given symmetry constraints
[18]. When H can accommodate more than one mass terms,
m1γ0,1 + · · · + mnγ0,n, where γ0,i’s anticommute with each
other and with other γi’s (i = 1, . . . ,d), all the gapped ground
states of H with different values of m = (m1, . . . ,mn) �= 0
are adiabatically connected without closing a gap. This means
that the gapped phase of H is topologically trivial. On the
other hand, when H has only a unique mass term (mγ0),
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the ground state of H with positive m (denoted by H+), and
the ground state of H with negative m (denoted by H−), are
topologically distinct gapped states separated by a critical point
at m = 0; i.e., the two gapped phases with opposite signs of m

are topologically distinct phases. Distinction between the two
classifications, Z and Z2, becomes clear, when we consider
a doubled system H ⊗ σ0, where σ0 is a unit 2 × 2 matrix.
For gapped phases with Z2 classification, we find an extra
mass term in the doubled system, with which we can find
a continuous deformation from H+ ⊗ σ0 to H− ⊗ σ0 or vice
versa. For gapped phases with Z classification, on the other
hand, we do not find an extra mass term in the doubled system;
in this case topological indices of gapped ground states of H±
can add up.

The classification of mass terms in minimal Dirac models
described above can be systematically performed by consid-
ering an extension problem of Clifford algebra [17], as briefly
summarized below. For more details see, e.g., Sec. III of
Ref. [18]. In this paper we are concerned with real symmetry
classes. For each real AZ class and each spatial dimension d,
we can define a real Clifford algebra Clp,q (as described later in
this section) whose generators are symmetry operators (such as
T , C, or �) and kinetic gamma matrices (γi , i = 1, . . . ,d). We
take a real representation of sufficiently large matrix dimension
for Clifford algebras. We then examine the possibility of
extending a given Clifford algebra (with a fixed representation)
by adding a mass term γ0 to the set of generators of the
Clifford algebra. A set of possible representations of γ0 form
a manifold called a classifying space [17]. The classifying
space for the extension Clp,q → Clp,q+1 is given by Rq−p,
whose explicit form can be found in literature [17,18]. The
relation Rn+8 = Rn is known to hold (the Bott periodicity)
[17,19]. The topological classification of the Dirac mass terms
is then obtained from the connectivity of the classifying space,
i.e., the zeroth homotopy group of the classifying space. The
last columns of Table I show topological classification for the
eight real symmetry classes at d = 0. The classification in
d dimensions is obtained by using the Bott periodicity [17].
We note that insulators (superconductors) characterized by a
nontrivial topological index discussed above are called strong
TIs (TSCs), which should be distinguished from weak TIs
(TSCs) discussed in the next section.

In the rest of this section we give a list of Clifford algebras
and their extension problems which are used to obtain the
above-mentioned classification of strong TIs and TSCs for
the eight real symmetry classes and which will serve as a
basis for the discussion in the following sections. To this end,
we first introduce a real Clifford algebra Clp,q , which is a
2p+q -dimensional real linear algebra generated by a set of
generators {e1,e2, . . . ,ep+q} satisfying the algebraic relations

{ei,ej } = 0 for i �= j (6a)

and

e2
i =

{ −1, 1 � i � p,

+1, p + 1 � i � p + q.
(6b)

We also introduce an operator J which plays a role of the
imaginary unit “ i ” in real algebras and obeys the relations

J 2 = −1, {T ,J } = {C,J } = [γi,J ] = 0. (7)

Symmetry classes C and D. These two classes have only a
PHS: C2 = −1 in class C and C2 = +1 in class D. We define
a Clifford algebra Clp,q generated by the operators

{C,CJ,Jγ1, . . . ,J γd}, (8a)

where p and q are listed in Table I. For topological classifica-
tion we consider extending Clp,q to Clp,q+1 with the generators

{γ0,C,CJ,Jγ1, . . . ,J γd}. (8b)

Symmetry classes BDI, CI, CII, and DIII. These four classes
have both TRS and PHS. We have a Clifford algebra Clp,q

generated by

{C,CJ,T CJ,Jγ1, . . . ,J γd}, (9a)

which is to be extended to Clp,q+1 generated by

{γ0,C,CJ,T CJ,Jγ1, . . . ,J γd}, (9b)

where (p,q) are listed for each class in Table I.
Symmetry classes AI and AII. These classes have a TRS

only. We define a Clifford algebra Clp′,q ′ generated by

{T ,T J,γ1, . . . ,γd}, (10a)

where p′ and q ′ denote the numbers of generators squaring to
−1 and +1, respectively;

(p′,q ′) =
{

(0,d + 2), AI,
(2,d), AII. (10b)

We consider extending Clp′,q ′ to Clp′+1,q ′ , with the generators

{Jγ0,T ,T J,γ1, . . . ,γd}. (10c)

Instead of directly studying the extension problem Clp′,q ′ →
Clp′+1,q ′ , we make use of the isomorphism [17,18] Clp′,q ′ ⊗
Cl0,2 � Clq ′,p′+2 by tensoring redundant degrees of freedom
Cl0,2 � R(2), to obtain the equivalent extension problem

Clp,q → Clp,q+1, (p,q) = (q ′,p′ + 2), (11)

with (p,q) listed in Table I. Here R(2) is an algebra of 2 by 2
matrices.

In the following sections we will study the stability of
surface states of weak Z2 TIs and TSCs, using minimal
Dirac models and Clifford algebras. We will make use of the
one-to-one correspondence between the existence of a single
mass (multiple masses) in a minimal Dirac Hamiltonian and
nontrivial (trivial) topology of the corresponding classifying
space.

III. GENERAL THEORY BASED
ON CLIFFORD ALGEBRAS

In this section we study surface states of (d + 1)-
dimensional weakZ2 TIs and TSCs which are stacked layers of
d-dimensional strong Z2 TIs and TSCs. We will show that the
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TABLE II. Classification of mass terms and existence condition
of an additional kinetic term in weak topological insulators and
superconductors. They are determined by the value of q − p, where
p and q are the numbers of generators squaring to −1 and +1 of the
real Clifford algebra which is specified by the symmetry class and
the spatial dimension as listed in Table I. The column with γ0 shows
classification of a mass term γ0. The column with γd+1 shows the
existence condition of the kinetic term along the (d + 1)th direction,
where 0 indicates the existence of such a term, and both Z and Z2

mean the absence. The last column with γ̃0 shows classification of
the mass term γ̃0, where Z or Z2 denotes uniqueness of the mass
term gapping the surface states of a weak topological insulator or
superconductor, while 0 indicates the existence of multiple mass
terms.

q − p γ0 γd+1 γ̃0

(mod 8) π0(Rq−p) π0(Rp−q ) π0(Rq−p)

0 Z Z Z
1 Z2 0 Z2

2 Z2 0 Z2

3 0 0 0
4 Z Z Z
5 0 0 0
6 0 Z2 0
7 0 Z2 0

d-dimensional Dirac Hamiltonian for the surface states admits
only a single mass term, which corresponds to dimerization
of the stacked layers. The dimerized insulating states with a
finite mass are labeled by a Z2 index (the sign of the mass). We
will further argue that the surface states are not localized by
disorder as long as disorder average of the dimerization mass
term vanishes. We show these in several steps below.

Let us consider a d-dimensional strong Z2 TI or TSC
described by the Hamiltonian H in Eq. (1). The gapped ground
state of H has a nontrivial Z2 topological index in accordance
with π0(Rq−p) = Z2 for q − p = 1,2 (mod 8), where Rq−p is
the classifying space associated with the extension problem

Clp,q → Clp,q+1 (12)

with (p,q) listed in Table I for each symmetry class; see also
Table II. In the following discussions where we explain our
theory based on Clifford algebras, we will use, as examples,
the Clifford algebras defined in Eq. (9b) for time-reversal
symmetric TSCs in class BDI, CI, CII, or DIII. The same theory
can be directly applied to classes C and D which have a PHS
only, since their relevant Clifford algebras (8b) are obtained
by just dropping T CJ from Eq. (9b). It is also applicable
to classes AI and AII with TRS only, since their equivalent
extension problems (11) have the same mathematical structure.

We describe gapless surface states of d-dimensional
strong Z2 TIs and TSCs as domain wall states of the
massive Dirac Hamiltonian (1). Namely, we assume that
the Dirac mass m is a function of xd and changes its
sign at xd = 0 (a kink). This yields (d − 1)-dimensional
gapless surface Dirac fermions localized at xd = 0. The
wave function of the surface Dirac fermions can be
written as �(x1, . . . ,xd−1)ψ(xd ), where �(x1, . . . ,xd−1) is
an eigenfunction of the (d − 1)-dimensional surface Dirac

Hamiltonian Hd−1 = −i
∑d−1

j=1 γj∂xj
, and the localized wave

function ψ(xd ) is a solution to the equation [−iγd∂xd
+

m(xd )γ0]ψ(xd ) = 0, i.e.,

ψ(xd ) = exp

[
− i

∫ xd

0
dx ′

dm(x ′
d )γdγ0

]
|n〉, (13)

where |n〉 is chosen from eigenvectors of −iγdγ0 (eigen-
value +1 or −1) such that ψ(xd ) is normalizable. We note
that −iγdγ0 commutes with the gamma matrices γi (i =
1, . . . ,d − 1) and symmetry operators in the Clifford algebra
Clp,q+1. This is formally written as Clp,q+1 � Clp−1,q ⊗
Cl1,1 � Clp−1,q ⊗ R(2). The R(2) degrees of freedom, which
correspond to the localized wave function ψ , should be kept
intact in the following procedures of building weak TIs (TSCs)
by stacking “layers” of d-dimensional TIs (TSCs) in the
(d + 1)th direction. We set the “interlayer” spacing to unity
for simplicity.

As we show later, there always exists a kinetic gamma
matrix γd+1 that satisfies the symmetry constraints [Eqs. (3)
and (4)] and anticommutes with all the other gamma matri-
ces, {γd+1,γi} = 0 (i = 0, . . . ,d). We can use the symmetry
allowed operator γd+1 for “interlayer” coupling between
the (d − 1)-dimensional Dirac surface states on neighboring
“layers”. The d-dimensional surface states of the (d + 1)-
dimensional weak TI (TSC) are then governed by the
Schrödinger equation

−i

d−1∑
j=1

γj

∂�l

∂xj

− i

2
tγd+1(�l+1 − �l−1) = E�l, (14)

where �l(x1, . . . ,xd−1) is the wave function of surface Dirac
fermions in the lth layer, and t is an interlayer hopping matrix
element. Note that the interlayer hopping term is compatible
with TRS and PHS. In the momentum space the d-dimensional
surface Hamiltonian reads

H
(0)
d+1 =

d−1∑
i=1

γiki + tγd+1 sin kd+1. (15)

After linearizing the dispersion near kd+1 = 0 and π , we have
two surface Dirac cones centered at (k1, . . . ,kd−1,kd+1) =
(0, . . . ,0,0) and (0, . . . ,0,π ). While we have chosen a par-
ticular stacking structure in Eq. (14), this should suffice to
discuss properties of weak TIs/TSCs that generally possess
two surface Dirac cones.

We now prove the existence of γd+1. Let us look at the
extension problem of Clp−1,q+1 → Clp,q+1, which is written
in terms of generators as

{γ0,C,CJ,T CJ,Jγ1, . . . ,J γd−1}
→ {γ0,C,CJ,T CJ,Jγ1, . . . ,J γd−1,J γd}, (16)

whose classifying space is Rp−q . The topological classification
for this extension of adding γd is trivial, π0(Rp−q) = 0, for
q − p = 1,2 as shown in Table II. This implies that, when
we try to add one kinetic gamma matrix γd to a set of γi’s
(i = 0, . . . ,d − 1), we can always find another kinetic gamma
matrix, γd+1, that anticommutes with the other γi’s and is
compatible with symmetry constraints. In passing, we note
that, when the d-dimensional TI or TSC is characterized
by an integer topological index Z (Clp,q → Clp,q+1 with
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q − p = 0,4), the zeroth homotopy group of the classifying
space Rp−q for the extension problem (16) is also Z (see
Table II), implying that we cannot find γd+1 to have surface
Dirac cones; instead, we have a chiral metallic surface as
in the case of the two-dimensional surface of layers of
two-dimensional integer quantum Hall states [20]. The surface
states can acquire finite dispersion along the kd+1 direction
from interlayer hopping operators which do not anticommute
with the (d − 1)-dimensional Dirac Hamiltonian Hd−1.

We introduce a grading of 2 by 2 matrix τj to distinguish
the two Dirac cones (τz = +1 for kd+1 = 0 and τz = −1
for kd+1 = π ) on the d-dimensional surface and rewrite the
surface Dirac Hamiltonian as

Hd+1 =
d−1∑
i=1

γiτ0ki + tγd+1τzkd+1. (17)

It is easy to see that there is only a single mass term
Mγd+1τy which can be added to Hd+1, as we show using
Clifford algebras below. In fact, another candidate mass term
γd+1τx is not allowed by TRS and PHS [Eqs. (3b) and (4b)]
(here we have assumed [K,τx] = {K,τy} = [K,τz] = 0 and
{T ,γd+1} = [C,γd+1] = 0). The mass term γd+1τy gaps out
the two surface Dirac cones and is compatible with TRS and
PHS. Physically, this mass term corresponds to dimerization
of the “interlayer” hopping, as one can see from the fact that
the translation in the xd+1 direction (l → l + 1) corresponds
to an operation of τz, and this mass term breaks the translation
symmetry as {τz,γd+1τy} = 0 [10].

The uniqueness of the dimerization mass term γ̃0 =
γd+1τy is understood by considering the extension problem
Clp+1,q+1 → Clp+1,q+2, i.e.,

{γ0,C,CJ,T CJ,Jγ1, . . . ,J γd,Jγd+1τz}
→ {γ̃0,γ0,C,CJ,T CJ,Jγ1, . . . ,J γd,Jγd+1τz}, (18)

whose classifying space is again Rq−p with Z2 classifica-
tion, π0(Rq−p) = Z2 (Table II). Here we have included the
original mass term γ0 and all the kinetic gamma matrices
γi (i = 1, . . . ,d + 1) in the Clifford algebra Clp+1,q+1 to
be extended, because we are seeking an extra mass term
under the fixed representation of those gamma matrices and
symmetry operators. Hence the dimerization term that we have
found, γ̃0 = γd+1τy , is the unique mass term to gap out the
surface Dirac cones of weak Z2 TIs and TSCs. The gapped
d-dimensional surface is a (strong) Z2 TI or TSC.

Finally, let us discuss Anderson localization of the d-
dimensional surface states of (d + 1)-dimensional weak Z2

TIs and TSCs. We assume that disorder is weaker than the bulk
band gap and changes slowly in space. The disorder potential
gives rise to random signs of the dimerization mass M . The
surface is then split into gapped regions (domains) of different
Z2 indices, and there appear gapless helical states propagating
along the domain boundaries. When we assume uniformity
of the disorder-averaged surface and a vanishing mean of
the dimerization mass term Mγ̃0, we expect that helical
domain-wall states should percolate throughout the surface and
never be localized. This mechanism is indeed at work for the
metallic phase separating two insulating phases with distinct
Z2 topological indices in the phase diagram of disordered
two-dimensional insulators in class AII [21]. A similar physics

is known in the integer quantum Hall effect of Dirac fermions,
where an unstable critical point between quantum Hall plateaus
σxy = ±e2/2h is realized under random magnetic fields and
random mass, both with zero mean [13]. We thus conclude that,
even in the presence of disorder, the surface states of weak Z2

TIs and TSCs are not localized and remain either metallic
or critical, as long as the disorder average of the dimerization
mass term vanishes. This conclusion is a natural generalization
of the stability of surface states of three-dimensional weak Z2

topological insulators which was a subject of active research
recently [7,8,10,11].

IV. EXAMPLES

In this section we consider three examples of weak Z2

topological insulators. We start with a three-dimensional weak
TI of class AII, which is a stack of two-dimensional strong Z2

TIs [8,10]. Each TI layer is described as

H2D = kxσxτx + kyτy + m(y)τz, (19)

where σi and τi are Pauli matrices (i = x,y,z). The Hamilto-
nian has a TRS with T = iσyK. The mass m(y) is assumed to
have a kink, where a helical edge mode is formed as one of
the eigenstates of τx = −iτyτz. Here we take τx = +1 without
loss of generality.

We stack two-dimensional TI layers along the z direction
to build a three-dimensional weak TI. The interlayer hopping
term for the helical edge states is given by tσyτx , which
anticommutes with the gamma matrices in Eq. (19) and T .
The effective Hamiltonian for the surface Dirac fermions of
the three-dimensional weak TI then reads

H3D = kxσx + t sin kzσy, (20)

where we have suppressed τx = +1, since the τ sector is
fixed in the helical edge states forming the surface Dirac
cones. The original Z2 classification of two-dimensional TIs
implies that there is no extra mass term in this two-dimensional
representation with σi . However, since we have two valleys of
Dirac cones at kz = 0 and π , which we denote by ρz = +1
and −1 with another set of Pauli matrices ρi (i = x,y,z), we
can find the dimerization mass term m̃σyρy which gaps out
the surface Dirac cones. This yields the massive surface Dirac
Hamiltonian

H3D = kxσx + tkzσyρz + m̃σyρy. (21)

One can easily verify that m̃σyτxρy is the unique mass term
that is invariant under T = iσyK and anticommutes with all
the gamma matrices (τz, σxτx , τy , σyτxρz). The uniqueness
of the mass term means that the gapless surface states are
neither gapped nor localized unless the translation symmetry
in the layer direction is broken by dimerization. We note that
the uniqueness of the mass term in the Dirac Hamiltonian in
Eq. (21) was already pointed out in Refs. [8] and [10]. Mong
et al. studied numerically the Anderson localization of this
Hamiltonian with additional time-reversal invariant disorder
and showed that the critical point m̃ = 0 turns into a metallic
phase separating two dimer insulating phases [8].

Next we discuss two examples of two-dimensional weak
Z2 TSCs which are formed as a multileg ladder of
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superconducting wires. The first of these is a weak two-
dimensional TSC in class D. The BdG Hamiltonian for
a one-dimensional spinless p-wave superconductor can be
written as

H1D = kxσx + m(x)σz, (22)

where σ denotes particle-hole grading. The Hamiltonian has
a PHS (C = σxK). We introduce a kink in the mass m(x)
(which is nothing but the chemical potential of the electrons
in the wire) to obtain a Majorana bound state localized at
the kink, which is an eigenstate of σy = −iσzσx . We can set
σy = +1 for the bound state for simplicity. We find that the
same operator σy can be used as an interchain hopping operator
which commutes with C and anticommutes with σx and σz.
A Majorana bound state from each chain is coupled by the
interchain hopping term and acquires a kinetic term tσy sin ky ,
where ky is the momentum along the direction perpendicular
to the chain direction x. The Majorana edge states thus formed
have two Dirac points (ky = 0 and π ), which we denote by
τz = +1 and −1. We find that the Majorana edge states of the
two-dimensional weak TSC are governed by the Hamiltonian

H2D = tkyσyτz + m̃σyτy, (23)

where m̃σyτy is the unique mass term which anticommutes
with C and all the gamma matrices (σz, σx , σyτz). In
the presence of disorder the Majorana edge states remain
critical (i.e., diverging localization length) as long as the
disorder average of the dimerization mass term vanishes [22].
Incidentally, we note that, if we impose a chiral symmetry on
this model (which is now in class BDI), the Majorana bound
states form a stable flat band at zero energy as follows. In
a TSC of class BDI which is described by the Hamiltonian
(22) with a chiral symmetry � = σy , Majorana bound states
are again an eigenstate of σy . However, the interchain hopping
operator σy is not available anymore, if we impose the chiral
symmetry � = σy . Hence the Majorana end states remain at
zero energy as chiral zero modes and cannot be gapped, which
is in agreement with the fact that one-dimensional BDI TSCs
are characterized by an integer (Z) topological index.

The last example we discuss in this section is a two-
dimensional weak Z2 TSC in class DIII. We begin with a
one-dimensional strong TSC with the Hamiltonian

H1D = kxσzτz + m(x)τx, (24)

where we have TRS T = iσyK and PHS C = σyτyK. This
Hamiltonian was discussed in Ref. [23] as a model of Rashba
wires in proximity to a s±-wave superconductor, where we can
regard the first term as a spin-orbit coupling and the second as
a superconducting pair potential with σ and τ spanning spin
and particle-hole degrees of freedom, respectively. At each end
of a one-dimensional TSC, a Kramers pair of Majorana bound
states appear, and they are an eigenstate of σzτy . We may take
the sector of σzτy = +1 in the following discussion. When we
stack one-dimensional chains of TSCs along the y direction,
we can take σxτz sin ky as a kinetic term due to interchain

hopping. Denoting the two Dirac points at ky = 0 and π by
ρz = +1 and −1, we have the effective Hamiltonian for the
Majorana edge states of the two-dimensional weak TSC,

H2D = kyσxτzρz + m̃σxτzρy, (25)

where m̃σxτzρy is again the unique mass term which is
compatible with TRS and PHS, and anticommutes with
gamma matrices τx , σzτz, and σxτzρz. The Majorana edge
states should remain critical as long as the edge is uniform
on average, i.e., when the dimerization term is absent after
disorder average [22].

V. SUMMARY

We have discussed the surface stability of weak Z2 TIs
(TSCs) which are stacked layers of strong Z2 TIs (TSCs),
by examining the topological structure of the surface Dirac
Hamiltonians, using Clifford algebras. We have shown the
uniqueness of a Dirac mass term which causes scattering
between the two surface Dirac cones and gaps them out
by inducing dimerization of stacked layers. The dimerized
insulating surface is a strong TI (TSC) with a Z2 index
determined by the sign of the unique Dirac mass. Thus the
point where the Dirac mass vanishes is a quantum critical
point, which either remains to be critical or becomes metallic
in the presence of disorder potential with a vanishing mean,
i.e., without dimerization.

We note that our discussion based on Dirac Hamiltonians is
valid only for small energy scale, where we can linearize the
dispersion of gapless surface states. At larger energy scale one
should include a quadratic momentum dependence and take
into account renormalization of a Dirac mass [24]. Further-
more, when disorder strength is large and comparable with a
bulk energy gap, the description with Dirac Hamiltonians is no
longer appropriate. In that case, we have to consider original
lattice Hamiltonians. Indeed numerical calculations on lattice
models have shown that an insulating phase appears at strong
disorder [25,26].

Finally, we point out that the physics we discussed here is
also relevant for topological crystalline insulators which have
gapless surface states protected by spatial symmetries (such
as a mirror symmetry) [18,27–29]. An interesting question we
may ask is the stability of the gapless surface states when
the required spatial symmetry is retained only on average
[30,31]. Using Clifford algebras, we can study stability of these
gapless surface states against disorder which breaks spatial
symmetries, which will be reported elsewhere [32]. This
analysis can be applied to topological crystalline insulators
with an average mirror symmetry, e.g., Pb1−xSnxTe materials
where four Dirac cones appear on the (001) surface [27].
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