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We study the strong coupling limit of the extended Hubbard model in two dimensions. The model consists
of hopping, on-site interaction, nearest-neighbor interaction, spin-orbit coupling, and Zeeman spin splitting.
While the study of this model is motivated by a search for topological phases, and in particular, a topological
superconductor, the methodology we develop may be useful for a variety of systems. We begin our treatment
with a canonical transformation of the Hamiltonian to an effective model, which is appropriate when the
(quartic) interaction terms are larger than the (quadratic) kinetic and spin-orbit coupling terms. We proceed by
analyzing the strong coupling model variationally. Since we are mostly interested in a superconducting phase,
we use a Gutzwiller projected BCS wave function as our variational state. To continue analytically, we employ
the Gutzwiller approximation and compare the calculated energy with Monte Carlo calculations. Finally, we
determine the topology of the ground state and map out the topology phase diagram.
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I. INTRODUCTION

First introduced in 1963 [1–3], the Hubbard model is
regarded by many to be the simplest possible Hamiltonian
that captures the essential physics of many-body systems with
strong interactions. Owing to its simplicity, the Hubbard model
has been used for decades to describe a variety of systems. Its
applications have ranged from antiferromagnetism [4] to the
treatment of the metal-insulator transition [5,6].

The standard Hubbard model contains hopping on the
lattice sites (with hopping amplitude denoted by t) and on-site
repulsion in the form of an energy penalty U whenever two
electrons are on the same site. It has been studied extensively
in two dimensions on the square lattice mainly in the context
of the high-Tc cuprates [7]. The strongly interacting limit of
this model at half-filling is the Heisenberg Hamiltonian with
antiferromagnetic coupling J = 4t2/U . Close to half-filling
(but not quite there), an appropriate approximation for the
Hamiltonian is the t-J model where some hopping is allowed.
This model is challenging to deal with since it contains both
quadratic (kinetic) terms and quartic (spin) terms. Over the
years, many approaches where developed for the study of this
strong interaction physics both analytically and numerically
[8]. However, it is fair to say that at arbitrary doping x (where
x is the hole density measured from half-filling) any treatment
uses some additional approximations.

In this paper, we revisit the strong coupling limit of
the Hubbard model with two additional terms (and hence
the terminology “extended Hubbard”). The first is spin-orbit
coupling, which results in additional quadratic terms. These
can be regarded as spin dependent/spin-flip hopping processes.
The second is off-site electron-electron interaction. We use
this term to emulate the effect of the full Eliashberg method
on the four fermion vertex [9]. In other words, instead of
renormalizing the interaction vertex by the electron polariza-
tion bubble, we add nearest-neighbor attraction, V < 0. This
effective attraction is appropriate whenever the polarization
bubble of the fermions is maximal at (π,π ) [10].

The model we consider here is motivated by recent interest
in topological superconductors and their promise to support
Majorana fermions as bound excitations in vortex cores. The

realization of topological superconductors has been proposed
in different setups such as semiconductor heterostructures
[11–13] and devices containing nanotubes [14–17]. In these
heterostructures, the topological superconductivity is a result
of spin-momentum locking provided by the spin-orbit coupling
and tendency for pairing is induced through proximity to
a superconductor. Inspired by the above advances, we have
proposed a model in which superconductivity arises from
interactions (rather than proximity) in a system with spin-orbit
coupling [18].

While the above model was studied in the weak coupling
limit [18], superconductivity occurs at intermediate to strong
coupling. In this paper, we lay the foundation of a strong
coupling study of the extended Hubbard model in the presence
of off-site interaction as well as spin-orbit coupling. We
believe that this versatile model is useful beyond the scope
of our specific application. For example, it might be useful
in describing complex oxide heterostructure interfaces where
the inversion symmetry is broken due to the superlattice. The
broken inversion symmetry gives rise to Rashba spin-orbit
coupling at the interface. Further, we feel that the methods
developed here may be of use in other applications. One
example of this might be the Kane-Mele-Hubbard model,
which, among other things, is relevant to studies of how
interactions affect topological band structures [19,20]. It is
therefore desirable to get a handle on the strong coupling limit
of our model, and this is the purpose of the present work.

To achieve the strong coupling limit of our model, we
assume that the interaction part of the Hamiltonian is large
compared to the kinetic and spin-orbit coupling terms and
develop a strong-coupling expansion. When this expansion
is truncated at the second order and specialized to electron
densities close to half-filling, it is a generalization of the t-J
model with Dzyaloshinskii-Moriya and compass anisotropy in
the spin interaction. In this regime, we employ the Gutzwiller
approximation [2,21–23] to study the resulting model. This
approximation has been successful in describing d-wave
pairing and superconducting phase fluctuations [24,25] in the
standard Hubbard model in two dimensions.

The Gutzwiller approximation consists of two stages.
During the first stage, a variational wave function is
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generated. When pairing is present, the appropriate variational
wave function is a Gutzwiller projected BCS wave function
[24,26,27]. This wave function may contain any mean-field-
like orders (such as density waves, superconductivity, or
antiferromagnetism) and the Gutzwiller projection builds
the strong interactions into it by eliminating any doubly
occupied configurations. At this point, one should evaluate the
variational energy as the expectation value of the Hamiltonian
with respect to the projected mean-field wave function and
minimize it with respect to the mean-field order parameters.

The minimization of the variational energy in the many-
body projected state is not trivial due to the projection oper-
ation and can not be done analytically. The evaluation should
be done repeatedly until the energy is minimized and this can
be done numerically using the Monte Carlo technique [28].
In the current work, we choose to take a different approach
and proceed analytically by making another approximation.
Assuming that the charge (holes) is distributed uniformly
on the lattice, we may estimate the effect of the Gutzwiller
projection on the various components of the variational energy.
We may therefore renormalize the Hamiltonian parameters
instead of performing the projection. This is the second stage of
the Gutzwiller approximation, which leads to a mean-field-like
Hamiltonian whose parameters depend on the filling and can
be analyzed in the standard way.

The rest of this article is organized as follows. In the next
section we introduce the model and briefly present the gener-
alized strong coupling expansion while leaving the details to
Appendix A. Once we have obtained the effective Hamiltonian,
we project it on a subspace which is close to half-filling on the
hole doped side and obtain a generalization of the t-J model.
We then study the strong coupling Hamiltonian first without
spin-orbit coupling and a Zeeman term in Sec. III, and then
with finite spin-orbit coupling in Sec. IV. We conclude with a
mapping of the superconductor’s phase diagram according to
the ground-state topology.

II. STRONG COUPLING EXPANSION

A. The model

The extended Hubbard model we consider is given by the
following Hamiltonian on a two-dimensional square lattice:

H = T + HSO + Hint, (1)

where

T = − t

2

∑
i,δ,σ

(c†i,σ ci+δ,σ + c
†
i+δ,σ ci,σ ) (2)

is the tight-binding kinetic energy, and

HSO =
∑

k

ψ
†
kHkψk, (3)

where ψk = (ck,↑,ck,↓)T , Hk = dk · �σ (with �σ a vector
of Pauli matrices acting on the spin), and d =
(A sin kx,A sin ky,2B(cos kx + cos ky − 2) + M) (A, B, and
M are material parameters that describe the various spin-orbit
coupling and Zeeman strengths). The three parameters in the
spin-orbit coupling model above may originate from a variety
of different sources. For example, the parameters A, B may

come from a traditional spin-orbit model like the Rashba and
Dresselhaus terms in Refs. [12] and [13]. A second source may
be parameters such as those used in the BHZ model, suitable
for quantum wells [29–31]. Similarly, the Zeeman field
parameter M may be the result of a band gap [32], an external
magnetic field or a magnetic field of a nearby ferromagnetic
layer [12]. As M may come from a variety of sources, we will
ignore any orbital effects that could arise in some cases.

The interaction terms denoted by Hint above are given by

Hint = U
∑

i

ni↑ni,↓ + V
∑
〈i,j〉

ninj , (4)

where U > 0 is the on-site repulsion strength and V < 0
describes attraction between nearest neighbors.

For the purpose of making the strong coupling expansion,
we will need to express the Hamiltonian in real space. We
therefore transform the spin-orbit coupling to real space and
divide it into two types of terms. The Zeeman Hamiltonian HZ

will contain all on-site terms, proportional to σz:

HZ =
∑
α,i

σ z
αα(M − 4B)c†i,αci,α. (5)

The other terms in HSO amount to hopping processes, which
act nontrivially on the spin. We write them in real space
and combine them with the hopping into a 2 × 2 generalized
hopping matrix such that

T + HSO = Hz + T + HSO =
∑

i,δ,α,β

t̂αβ(�δ)c†i,αci+δ,β + HZ,

t̂ =
(

−t + B −i A
2 δx − A

2 δy

−i A
2 δx + A

2 δy −t − B

)
. (6)

The reader should note that this model has been proposed
not with a specific physical system in mind but for the sake of
versatility. The work to follow is meant to motivate a search
for a specific material with these properties. One possible
candidate that may be described by this model is copper
intercalated Bi2Se3 which, although a 3D material, develops a
2D-like Fermi surface at certain doping [33].

B. The strong coupling Hamiltonian

The strong coupling expansion distinguishes between the
high interaction energy scales U, V and other quadratic terms
in the Hamiltonian. Written in real space, the quadratic terms
are either on-site (chemical potential, Zeeman) or hopping.
The on-site terms do not change the potential energy, while
the hopping terms do. Ideally, one would like to diagonalize
the Hamiltonian but due to its quartic terms, this can not be
done analytically. Instead of diagonalizing, we set out to block
diagonalize the Hamiltonian. Since we are interested in the
strong coupling regime, we would like to block diagonalize
the Hamiltonian such that the interaction energy is constant at
each block and work at the lowest interaction energy block. In
other words, there exist a unitary transformation that eliminates
terms that change the interaction energy from the Hamiltonian.
Using the properties of the desired transformation (unitarity
and interaction energy conservation), we can formally write
down the transformation. In order to find a closed form, how-
ever, we resort to a power expansion in a small parameter of the
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FIG. 1. (Color online) Schematic diagram of the a hopping pro-
cess contributing to T1,3,4.

order of the ratio between quadratic part of the energy and the
interaction part of it. We are then able to find the transformation
and the transformed Hamiltonian up to a given order.

Let us sketch the procedure that resembles the treatment
of Ref. [34] of the original Hubbard model. We denote the
unitary transformation that block diagonalizes the Hamiltonian
by exp(iS) and the Hamiltonian terms excluding the (constant)
interaction and Zeeman energy by H1 = T + HSO. In order to
perform a series expansion for both the unitary transformation
and the transformed Hamiltonian, we arrange the terms in
H1 by their effect on the interaction energy. For example, the
operator T0 includes all terms that do not change the interaction
energy at all. We further define the operators Tm,N2,N1 as a
collection of the hopping terms, which change the number of
doubly occupied sites by m and the number of nearest-neighbor
pairs the electron sees from N1 to N2. This amounts to a change
of mU + (N2 − N1)V to the interaction energy. As an example
of one of these processes we refer the reader to Fig. 1. In this
figure, we illustrate one of the hopping processes involved in
the specific operator T1,3,4. An electron starts on lattice site i

and hops to a nearest neighbor. In the process of this hop, we
see a double occupancy is created and so m = 1. Further, the
electron that we are hopping begins on lattice site i, which has
four nearest neighbors and then hops (to the right in the figure)
to a site with three nearest neighbors. Thus this process has
N1 = 4 and N2 = 3. After a few more steps, we arrive at the
expansion and present it up to second order:

H̃ = Hint + HZ +
∑
M

T0,M,M

+
′∑

m,M1,N1,M2

Tm,M1,N1T−m,M2,M1+M2−N1

(mU + (M1 − N1)V )
+ O(1/U 2)

(7)

= Hint + H1, (8)

where the primed sum excludes terms in which mU + (M1 −
N1)V = 0.

The results presented in Eq. (7) are general for any
U,|V | � t,A,B. Moreover, since the denominator of the
above expression is a combination of U and V , it is sufficient
to have only one of them large compared with the band width.
In our system, one may expect that the on-site repulsion
U be large, while the nearest-neighbor attraction is small.
Nevertheless, our formalism allows us to treat both interaction
terms exactly and we do so.

To proceed, we focus on the parameter regime U � |V |
(and V is actually smaller than t such that it does not
induce any charge clustering). For this parameter regime, the
ground state of a system on the hole-doped side of half-filling
before we account for T or HSO will lie in the subspace
of real-space configurations with no doubly occupied sites
[34,35]. We consider a complete subspace of no doubly
occupied sites even though the effects of V may lead to
some phase separation of electrons and holes. We feel this
to be an appropriate simplification to make in order to make
progress with the problem. At half-filling, the second part
of the Hamiltonian that is second order in the Tm,M1,M2

operators can be rearranged as a spin Hamiltonian, which
has been studied elsewhere [36]. At or slightly away (in the
hole-doped side) from half-filling, the dominant contribution
from the term of the form Tm,M1,N1T−m,M2,M1+M2−N1 will see an
initial number of nearest-neighbors M1 + M2 − N1 = 4 and
hop to a site with M2 = 3. All other terms involved in the
second-order contribution are either impossible or occur with
a probability proportional to some power of x, which is very
small near half-filling. Thus, although other terms that are
of order 1/U exist in the second-order term in Eq. (7), the
term with denominator −U + V is the statistically dominant
term. A picture of this process can be formed by looking
at Fig. 1. This process corresponds to T−1,4,3T1,3,4, which
corresponds to the hop shown in Fig. 1 and then one of
the two electrons on the site to the right of site i hopping
back. Close to, but not at half-filling hopping without a
change to the interaction energy is possible and included
in T0,M,M . This is the generalization of the well-known t-J
model to our case and the subject of this paper. The model is
given by

Ht,Jδ
= HZ +

∑
N

T0,N,N +
∑
i,δ

J
μ,ν
δ Sμ

i Sν
i+δ, (9)

where the spin vector is defined by S
μ

i = 1
2

∑
α,β c

†
i,ασ

μ
α,βci,β

and the spin coupling is given by

Jδ = 1

2(U − V )

⎛
⎜⎝

4t2 + A2a(δ) − 4B2 0 −4Atδy

0 4t2 − A2a(δ) − 4B2 4Atδx

4Atδy −4Atδx 4t2 − A2 + 4B2

⎞
⎟⎠ , (10)
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where δ is the nearest-neighbor vector and a(δ) is 1 for
δ = ±x̂ and −1 for δ = ±ŷ. From the above matrix, one can
read off the Heisenberg, Dzyaloshinskii-Moriya, and compass
anisotropy terms:∑

i,δ

J μ,ν
δ Sμ

i Sν
i+δ =

∑
i,δ

[
JSi · Si+δ + Dδ · (Si × Si+δ)

+C(δ)Sx
i Sx

i+δ + C ′(δ)Sy

i Sy

i+δ

]
,

J = 4t2 − A2 + 4B2

2(U − V )
,

D = 2At

U − V
, (11)

C(δ) = A2 + A2a(δ) − 8B2

2(U − V )
,

C ′(δ) = A2 − A2a(δ) − 8B2

2(U − V )
.

Spin models similar to the one above have been employed
in the study of spin-orbit effects in ultracold atoms and other
systems [37–39]. The focus of the remainder of this paper will
be on studying a renormalized version of the above model.

III. A GUTZWILLER APPROXIMATION
AT STRONG COUPLING

In order to find the ground state of the strong coupling
limit of our model, we adapt the Gutzwiller approximation
[21–23] to the extended Hubbard model. The rational of this
approximation is as follows. The Gutzwiller approximation
is a variational method that uses a projected BCS mean-field
wave function.

A projected BCS wave function has proved useful in the
context of strongly correlated electron systems. It is obtained
through projecting out all doubly occupied configurations from
the BCS wave function. The resulting wave function, PG|ψMF〉
encodes both the tendency for developing order such as Cooper
pairing and density waves due to its mean-field starting point
as well as the strong on-site repulsion of the model due to
the Gutzwiller projection. The reader should note that more
sophisticated generalizations of this wave function have been
used in Monte Carlo calculations in the past [40,41].

The variational energy Ev = 〈ψMF|PGHPG|ψMF〉 should
be calculated and minimized with respect to the order
parameters built into |ψMF〉. However, the application of
the Gutzwiller projection on the wave function makes the
evaluation very complicated and not attainable analytically.
One may then resort to numerical methods such as Monte
Carlo integration in order to find Ev [24,26,27]. Monte Carlo
methods have been refined in recent years to the point that
they can be regarded as variationally exact. We take this
numerical approach elsewhere [28]. Here we employ an
analytical approach, namely, the Gutzwiller approximation.
The Gutzwiller approximation, which was developed several
decades ago [21–23], is a method to approximately apply the
Gutzwiller projection operator. First, one should note that the
projection operator can be applied either on the wave function
or on both sides of the Hamiltonian. This means that one may
derive an effective Hamiltonian that acts on the nonprojected

mean-field wave function. The resulting energy is therefore
an approximation of the expectation value of the original
Hamiltonian with respect to the projected wave function. In
this section, we apply the Gutzwiller approximation to the
extended Hubbard model, starting without spin-orbit coupling
and then adding it in the next section.

Without spin-orbit coupling and Zeeman field Eq. (9)
reduces to

Ht,J =
∑
N

T0,N,N +
∑
i,δ

JSi · Si+δ, (12)

where the only difference from the usual t-J model is in the
kinetic term. In this term, we only include hopping processes,
which do not change the number of doubly occupied sites as
well as the number of nearest-neighbor pairs. We assume hole
doping x in the vicinity of half-filling such that 〈n〉 = 1 − x

and x � 0. We further assume that the system is completely
unpolarized, i.e., 〈n↑〉 = 〈n↓〉 = 1

2 〈n〉. While this may be
expected for a spin conserving Hamiltonian, it may not be
locally accurate for a system with spin-orbit coupling and
certainly will not be favorable when a Zeeman term is included.
The variational energy is given by

Evar = 〈ψMF|PGHt,J PG|ψMF〉
〈ψMF|PG|ψMF〉 . (13)

Note that since our projection will be applied to the Hamilto-
nian rather than the wave function, we do not need to specify
the mean-field wave function just yet.

First, let us estimate the change in the expectation value
of the hopping term due to the Gutzwiller projection and the
definition of T0,N,N , which is restricted to hopping processes
that do not change the interaction energy. The kinetic part of
the variational energy is therefore

KG =
∑
N

〈ψBCS|PGT0,N,NPG|ψBCS〉
〈ψBCS|PG|ψBCS〉

=
∑

N,i,δ,α

∑
	[N1],	[N2]=N

× 〈ψBCS|PGOi+δ[N2]c†i+δ,αci,αOi[N1]PG|ψBCS〉
〈ψBCS|PG|ψBCS〉 ,

(14)

where the operator Oi[N ] projects out all possible spin orien-
tations of the nearest neighbors of site i except the one speci-
fied by N = (Nx↑,Nx↓,N−x↑,N−x↓,Ny↑,Ny↓,N−y↑,N−y↓),
where Nδσ takes a value of 1 (a value of zero) for site
i + δ occupied (unoccupied) by an electron with spin σ . A
formal definition of this operator is left to Appendix A. Let
us consider the action of PGOi+δ[n2]c†i+δ,αci,αOi[n1]PG on
any configuration that may appear in the BCS state. First, PG

removes all possible double occupancies. For a system close to
half-filling, this projection means that the only configurations
left in |ψBCS〉 are the ones with singly occupied or unoccupied
sites. T0,N,N then moves an electron from an occupied site
with N nearest neighbors to an empty site with N nearest
neighbors. Let us compare this to the normal unprojected
operator, c†i+δ,αci,α , acting on just the BCS ground state. When
this term acts, it finds a lattice site that is occupied by an
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electron of some spin and then moves it to a neighbor site that
is not occupied by this particular spin.

We can assign relative probabilities for each of these
two events. For the latter case, the probability that
the process occurs is just the probability that the lattice
site the electron moves to is void of the particular spin we
are moving. Assuming that the probability that any site is
occupied is uniform then the probability of the particular
move we just described is 1 − 〈ni,α〉 = (1 + x)/2. For the
case of the projected expectation value, there are several
concurrent requirements we must meet. First, we require the
lattice site where the electron is moved to be empty. This
gives a factor of x. Second, the site we move the electron
from must have exactly N occupied nearest-neighbor sites.
The site we are moving the electron to is a nearest-neighbor
site and must be empty, therefore N � 3. The probability
of having N � 3 occupied nearest-neighbor sites is then
the binomial probability of having exactly N successes in
three trials with success probability 1 − x, in other words,
( 3
N

)(1 − x)Nx3−N . Finally, the site we move to must also
have exactly N occupied nearest neighbors, this again occurs
with probability ( 3

N
)(1 − x)Nx3−N . Combining these three

observations, we find that the probability of the entire series
of events is x[( 3

N
)(1 − x)Nx3−N ]2.

This means that

〈ψBCS|PGOi+δ[n2]c†i+δ,αci,αOi[n1]PG|ψBCS〉
〈ψBCS|PG|ψBCS〉

	 2x

1 + x

[(
3

N

)
(1 − x)Nx3−N

]2 〈ψBCS|c†i+δ,αci,α|ψBCS〉
〈ψBCS|ψBCS〉 ,

(15)

and we therefore redefine

t → gt t = 2xt

1 + x

3∑
N=0

[(
3

N

)
(1 − x)Nx3−N

]2

. (16)

We now turn to the quartic terms. Although our goal is to
obtain something that is written as a spin-spin interaction,
we consider the double hopping processes that give rise to
them as this language is more suitable for the projection. The
interaction energy can be written as the expectation value of
the quartic terms in H̃ and reads

VG =
′∑

m,M1,N1,M2

1

[mU + (M1 − N1)V ]

× 〈ψBCS|PGTm,M1,N1T−m,M2,M1+M2−N1PG|ψBCS〉
〈ψBCS|PG|ψBCS〉 ,

(17)

where the primed sum is as defined before.
First, we repeat that in systems with hole doping x � 0,

and after PG is applied to the wave function, there are only
singly occupied or empty sites left in each configuration in
the mean-field state. This means that −m can never be −1,
as it is impossible to reduce the number of doubly occupied
sites. Therefore −m is either 1 or 0. We will ignore the
m = 0 terms above, these terms require the movement of

two electrons to two empty sites and so are a factor of x2

less probable than their m = −1 counterparts. Let us then
consider only T−1,M1,N1T1,M2,M1+M2−N1 . This term creates a
doubly occupied site and then destroys it. This can happen in
two ways: (1) an electron hops to an occupied site and then
one of these two electrons hops back to the original site or
(2) an electron hops to an occupied nearest neighbor and then
one of the two electrons on this site hops to an empty next-
nearest-neighbor site. Keeping with our motive of simplicity,
we will ignore the latter “three site” move as it is less probable
near half-filling. Taking all of these concerns into account,
we have

VG =
∑

M1,N1

〈ψBCS|PGT−1,M1,N1T1N1,M1PG|ψBCS〉
[(M1 − N1)V − U ]〈ψBCS|PG|ψBCS〉 . (18)

We now estimate the Gutzwiller renormalization for VG. First,
consider a nonprojected process. In this case, an electron hops
to an occupied site and then one of the two electrons at the
site hops back. In order for this to occur, both sites must only
be occupied by one spin. The probability of having a site only
occupied by (say) an up spin next to a site that is only occupied
by a down spin is ( 1−x

2 )( 1+x
2 )( 1−x

2 )( 1+x
2 ). Now we consider the

probability with all of the appropriate projections. The net
result of PGT−1,M1,N1T1N1,M1PG is that an electron with an up
spin hops from a site with M1 nearest neighbors to a site with
which is occupied by a down spin with N1 nearest neighbors
and then one of the two electrons now occupying this nearest-
neighbor site hops back to the original site. M1 can range from
1 to 4 while N1 can take values from 0 to 3. The probability of
this process is ( 1−x

2 )2( 3
N1

)(1 − x)N1x3−N1 ( 4
M1

)(1 − x)M1x4−M1 .
We therefore approximate the interaction energy by

VG 	 −J̃
∑

i,δ,α,α′
〈ψBCS|c†i+δ,αci,αc

†
i,α′ci+δ,α′ |ψBCS〉

≡ J̃
∑
i,δ

〈Si · Si+δ〉,

J̃ = gJ gU ,

gJ = 4t2

(1 + x)2
,

gU =
3∑

N1=0

4∑
M1=1

(1 − x)N1x3−N1 (1 − x)M1x4−M1

U − (M1 − N1)V

(
3

N1

)(
4

M1

)
,

(19)

where we have omitted the quadratic terms which originate
from rearranging the fermion operators.

The next step in the Gutzwiller approximation is to evaluate
the variational energy (this time with a nonprojected BCS wave
function) and minimize it with respect to the order parameters.
As this step is similar to the standard variational mean-field
procedure, we do not give the details here. Some sample results
and their comparison to a numerical Monte Carlo evaluation
are given in Appendix B.
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IV. FINITE SPIN-ORBIT COUPLING

In this section, we keep the parameters A, B, and M finite.
Keeping either M or B finite leads to spin polarization of
the electrons in the system. This inequality in the number of
spin-up and spin-down electrons complicates the nature of the
Gutzwiller approximation as the tacit assumption we made
in the last section that 〈n↑〉 = 〈n↓〉 = 〈n〉/2 is now violated.
We therefore must estimate the Gutzwiller renormalization for
processes involving different spin flavors separately.

We begin by considering the hopping term T0,M,M in Eq. (7)
and estimating the effect of the Gutzwiller projection. The first
projection we deal with is the restriction on the number of
nearest neighbors permitted before and after an electron hops
from one site to the other. As this part of the projection depends
only on the site occupation and not the spin it results in a factor
similar to the one we had before:

gNN =
3∑

N=0

[(
3

N

)
(1 − x)Nx3−N

]2

. (20)

Next we treat the different parts of T0,M,M separately. Recall
that we defined the generalized hopping matrix, t̂ , in Eq. (6)
as having two parts. One includes simple hopping (which may
have different amplitudes for different spins) and the other
includes processes in which the spin is flipped during the
hopping. We estimate the effect of the projection on each one
of the processes by considering all possible ways this process
can occur in some state |ψ〉 and all possible ways they can
occur in a Gutzwiller projected state PG|ψ〉 [21,42,43]. This

leads to the renormalized hopping matrix

gt (α) = x

1 − 〈nα〉 ,

gA = x√
(1 − 〈n↑〉)(1 − 〈n↓〉) , (21)

t̂
g

α,α′ (δ) = (
Bσz

α,α − t
)
gt (α)gNNδα,α′

− gAgNN

Ai

2

(
δx + σ

y
α,ᾱδy

)
δα′,ᾱ .

We can see that gt (α) is the relative probability of a hop of
an electron with spin α. In the projected term, we require an
empty site in order to make the hop while in the unprojected
term we simply need the destination site to not be occupied
by a spin α. Similarly, we can understand gA. The projected
process requires an empty site and hence the factor of x in
the numerator. On the other hand, the unprojected process
requires that the site the electron hops to has no electron with
the opposite spin. This accounts for a factor 1 − 〈nα〉, however,
we must equally weight this with the probability for the process
to happen in reverse, this is where the factor of 1 − 〈nᾱ〉 and
the square root come from.

To obtain the Gutzwiller factor of the quartic term in our
strong coupling model at finite spin-orbit coupling, we (again)
neglect three site hopping and processes where the m (in the
Tm,N1,N2 operators) is zero. This leaves us with only terms
that begin and end on the same site, which can be written as∑

i,δ J̃
μν
δ Sμ

i Sν
i+δ . Let us rewrite the coupling matrix as

J̃δ = 1

2

⎛
⎜⎜⎜⎝

J1 + J2a(δ) − J4 0 −J3ŷ · �δ
0 J1 − J2a(δ) − J4 J3x̂ · �δ

J3ŷ · �δ −J3x̂ · �δ J1 − J2 + J4

⎞
⎟⎟⎟⎠, (22)

where we have defined the three couplings J1 = 4gU t2,
J2 = gUA2, J3 = 4gUAt , and J4 = 4gUB2 and the function
a(δ) is 1 if δ = ±x̂ and −1 if δ = ±ŷ. Here, we have
already approximately taken the restrictions on the number
of nearest neighbors permitted by a given hop by replacing the
denominator by the Gutzwiller renormalization gU that has
been defined in Eq. (19). We have not yet taken the occupancy
requirements into account. We now consider the factors that
are spin dependent to obtain individual renormalization factors
for different matrix elements.

To carry out this renormalization, one can group the spin
Hamiltonian

∑
i,δ J̃

μν
δ Sμ

i Sν
i+δ into four separate terms, HJ,i

through HJ,iv. Each one of these four terms describes a
different physical process. The first term, HJ,1, flips the spins
on nearest-neighbor sites (e.g., an up spin on site i and a
down spin on site j are flipped to a down and an up spin,
respectively). The second term looks at the z component of
the spins on neighboring lattice sites and takes the form Sz

i S
z
j .

The third term looks for nearest-neighbor sites with two up or
two down spins and flips both spins. Finally, the fourth flips
a spin on site j , while measuring the z component of a spin
on site i. By considering the amplitude for each of these four

physical processes in the projected and unprojected states, we
can form Gutzwiller renormalization factors for each of them.
We abdicate the details of this process to Appendix C, the result
of performing this weighting of amplitudes is as follows:

gJ,i = 1

(1 − 〈n↑〉)(1 − 〈n↓〉) ,

gJ,ii = 1,
(23)

gJ,iii = 1

(1 − 〈n↑〉)(1 − 〈n↓〉) ,

gJ,iv = 1√
(1 − 〈n↑〉)(1 − 〈n↓〉) .

After making the replacements HJ,i → gJ,iHJ,i for each of
the four terms, we can rewrite the spin contribution as∑

i,δ(J̃ g

δ )μνSμ

i Sν
i+δ . In the first two diagonal entries, the t2 and

B2 terms are renormalized by gJ,i. The Dzjaloshinskii-Moryia
term is renormalized by gJ,iv and the diagonal A2 term
by gJ,iii. Finally, the (z,z) term is renormalized by gJ,ii.
Note that although formally we have obtained gJ,ii = 1, we
have followed [42] and sent gJ,ii → gJ,i in our calculations
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to restore rotational symmetry, which is broken by our
Gutzwiller approximation. This replacement is not motivated
by the specific model we have used [where SU(2) is already
broken], but instead is made to ensure that our Gutzwiller
approximation has not broken any additional symmetry. The
role of the gJ,i factors is to approximately take PG into
account on statistical grounds. There is no reason why PG,
which does not break rotational symmetry, should affect Sz

i

and Sx
i (or Sy

i ) differently. The replacement gJ,ii → gJ,i is
made in order to respect this fact. Note that the roman numeral
subscripts on the renormalization factors should not be thought
of as renormalizing specific couplings J1, J2, etc. nor with
the (italic) site index i; rather they correspond to the four
physical processes that can result when

∑
i,δ J̃

μν
δ Sμ

i Sν
i+δ acts

on a real space configuration of electrons. For example, gJ,i

renormalizes the spin-flip processes that occur as a result of
the J1 − J4 term in entries (x,x) and (y,y) above [44].

The Gutzwiller renormalized spin interaction matrix reads

J̃
g

δ =

⎛
⎜⎝
J2 + J3a(δ) 0 −J4ŷ · �δ

0 J2 − J3a(δ) J4x̂ · �δ
J4ŷ · �δ −J4x̂ · �δ J1

⎞
⎟⎠ , (24)

where J1 = gJ,i (J1−J2+J4)
2 , J2 = gJ,i (J1−J4)

2 , J3 = gJ,iii J2

2 , and

finally, J4 = gJ,ivJ3

2 . With this renormalized exchange matrix,
we have the following fully projected Gutzwiller Hamiltonian:

HGA =
∑
α,α′

∑
i,δ

c
†
i,α t̂

g

α,α′ (δ)ci+δ,α′ +
∑
i,δ

(
J̃

g

δ

)μν
Sμ

i Sν
i+δ, (25)

we now turn our focus to a mean-field study of this Hamilto-
nian.

A. Mean-field decoupling of the projected Hamiltonian

We are now ready to treat the approximately projected
Hamiltonian in mean field. In order to do so, we define
an auxiliary Hamiltonian from which the variational wave
function |
BCS〉 can be found:

HAux =
∑
k,σ

ξk,αc
†
k,αck,α +

∑
k,α

αk,αc
†
k,αck,ᾱ

− 1

2

∑
k,α,α′

(�k,α,α′c
†
k,αc

†
−k,α′ + H.c.), (26)

where ξk,α , αk,α , and �k,α,α′ are all functions to be determined.
Note that we must allow for four channels of pairing �α,α′

(including triplet pairing as well) due to the spin asymmetry,
which is built into the model.

We perform a mean-field decoupling of the Gutzwiller
projected Hamiltonian HGA and compare the result to Eq.
(26). In doing so, we find that the free parameters built into
this auxiliary model have the following forms:

ξk,α =
(

1 − σ z
α,α

B

t

)
gt (α)gNNεk − μ

+ ξ̂x,α cos kx + ξ̂y,α cos ky + σ z
α,α(M − 4B + Meff),

αk,α = gAgNNA(sin kx − iα sin ky)

+ Âx sin kx − Âyiσ
z
α,α sin ky,

�k,↑,↓ = −�k,↓,↑ = �̂x cos(kx) + �̂y cos(ky),

�k,↑,↑ = −�̂↑,↑
x sin(kx) + i�̂↑,↑

y sin(ky),

�k,↓,↓ = �̂↓,↓
x sin(kx) + i�̂↓,↓

y sin(ky), (27)

where εk = −2t(cos kx + cos ky), we have defined the effec-
tive field Meff = 2J1(〈n↑〉 − 〈n↓〉) and the following parame-
ters:

ξ̂i,α = −2J2ξ̃i,ᾱ − J1ξ̃i,α + J4(Ãi + Ã∗
i ),

Âi = −2J3Ãi + J1Ã
∗
i + J4(ξ̃i,↑ + ξ̃i,↓),

(28)
�̂i = 2J2�̃i + J1�̃i − J4(�̃↑,↑

i + �̃
↓,↓
i ),

�̂
α,α
i = 2J3�̃

ᾱ,ᾱ
i − J1�̃

α,α
i − 2J4�̃i .

In the above, there are twelve free parameters that must be
fixed through ensuring that the theory is self-consistent. These
self-consistency conditions are as follows:

ξ̃j,α = 1

N

∑
k

cos kj 〈c†k,αck,α〉,

Ãj = 1

N

∑
k

qj sin kj 〈c†k,↑ck,↓〉,
(29)

�̃j = 1

N

∑
k

cos kj 〈c†k,↑c
†
−k,↓〉∗,

�̃
α,α
j = 1

N

∑
k

q̃j,α sin kj 〈c†k,αc
†
−k,α〉∗,

where to make the equations compact, we have used qx =
1 and qy = −i, and q̃y,α = −i while q̃x,α = −σ z

α,α . These
twelve equations must be solved simultaneously with the
particle number constraints 〈nα〉 = 1

N

∑
k〈c†k,αck,α〉 and x =

1 − 〈n↑〉 − 〈n↓〉. This amounts to solving a 15 × 15 system of
nonlinear equations. For clarity, let us explicitly mention the
hierarchy of notations in moving from Eq. (27) to Eq. (28) and,
finally, to Eq. (29). We have used regular symbols, e.g., ξk,α ,
to denote the k dependent values in the auxiliary Hamiltonian.
The parameters with the hat symbol, e.g., ξ̂i,α , are constants
that enter the definition of k dependent functions used to
define the auxiliary Hamiltonian. Finally, we have used the
tilde symbol, e.g., ξ̃i,α , for self-consistent parameters that are
heretofore unknown until we solve the equations in Eq. (29).

Note that triplet superconductivity arises from the self-
consistency equations whenever spin-orbit or Zeeman terms
are present. With finite spin-orbit coupling the conditions
in Eq. (29) cannot simply be solved by setting the triplet
superconductivity term �̃

α,α
j to zero. This stems from the

nontrivial coupling between ξ̂i,σ and Ãi , Âi and ξ̃i,α , �̂i and
�̃

α,α
i , and �̂

α,α
i and �̃i , that is in place as a result of the

coupling J4. This is seen by inspecting the last term in each
of the definitions in Eq. (28). To see why this coupling refuses
solutions where some of the parameters are identically zero
consider looking for a solution where �̃

α,α
i = 0. The last two

equations in Eq. (28) then become

�̂i = −2J2�̃i − J1�̃i,
(30)

�̂
α,α
i = 2J4�̃i,
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and the relevant equations we must solve are

�̃j = 1

N

∑
k

cos kj 〈c†k,↑c
†
−k,↓〉∗,

(31)

0 = 1

N

∑
k

q̃j,σ sin kj 〈c†k,αc
†
−k,α〉∗.

It is impractical to find analytic expressions for averages such
as 〈c†k,αc

†
−k,α〉 (they depend on eigenvectors of a complicated

four by four matrix), however, we can find these numerically.
Looking at numerics and using some intuition, we argue that
very roughly 〈c†k,αc

†
−k,α〉 ∝ �̂

α,α
i and we have said above that

�̂
α,α
i ∼ �̃i . So, in general, either �̃i = 0 or the sum on the

right of the second equation in Eq. (31) is nonzero and therefore
�̃

α,α
i cannot be zero.
We have solved the equations developed in the theory

above numerically. Where these parameters are nonzero the
general trend we see in the solutions is |ξ̂x,α| = |ξ̂y,α| = ξ̂α ,
Âx = Ây = Â, �̂x = −�̂y and �̂α,α

x = −�̂α,α
y . This equality

of parameters with x and y directionality is not surprising as
our model has no preference for the x or y direction.

We first present our results for M, B = 0 and A �= 0. In
this special case of the spin-orbit coupling parameters, there
is not preferred spin direction and we have ξ̂α = ξ̂ , 〈n〉α =
(1 − x)/2 and �̂

↑,↑
i = �̂

↓,↓
i = �̂t

i . Further, when we solve the
self-consistency conditions, we find that the values of ξ̂ and �̂,
the kinetic energy and d-wave superconductivity parameters,
are effected very little by letting A become finite, their behavior
remains as described in the previous section and plots of their
behavior are presented in Appendix B in Fig. 6. In view of
this, in Fig. 2, we have plotted the doping dependance of �̂t

and Â for various values of A.

FIG. 2. (Color online) Plot of the parameters �̂t and Â for
various values of the bare spin-orbit coupling parameter A. We have
kept M = B = 0 in this plot and the order parameters are plotted in
energies of t . We have set U = 12t and V = −0.05U in this figure.

In Fig. 2, for A = 0, �̂t and Â are zero for all values
of doping. As we allow A to become finite, both develop a
behavior that is monotonically decreasing in the doping x.
Like ξ̂ , Â is finite over the whole range of x values shown
while �̂ and �̂t vanish together at some critical xc, which is
unaffected by A. Both �̂t and Â increase in magnitude with
A but their general shape is unaffected. We also note that the
values of these parameters are an order of magnitude less than
their counterparts ξ̂ and �̂.

B. Self-consistent parameters

We note that with a finite value of M , the system will
experience some spin polarization and there is no reason
to expect 〈n↑〉 = 〈n↓〉. In this case, we must solve all 15
self-consistent equations derived in the previous section of
this paper. Proceeding to do so, we find that the following
results hold: ξ̂x,σ = ξ̂y,σ = ξ̂σ , Âx = Ây = Â, |�̂x | = |�̂y | =
�s , and |�̂σ,σ

x | = |�̂σ,σ
y | = �σ

t .
To explore the implications of a nonzero M , we have

obtained data for U = 12t , V = −0.2U , and A = 0.1t as a
function of both M and x. Our results are shown in Fig. 3. In
Fig. 3(a), we have plotted both ξ̂↑ and ξ̂↓. Starting at M = 0,
we have ξ̂↑ = ξ̂↓ and the hopping amplitude of both spin-up
and spin-down electrons is renormalized in the same way. As
we move away from M = 0, we see that the renormalization
changes so that ξ̂↑ < ξ̂↓ with the difference between the two
renormalizations increasing with M . Therefore for finite M ,
the renormalized hopping amplitude for spin-up and spin-
down electrons are different.

In Fig. 3(b), now we see how changing M changes the
spin-singlet pairing parameter �s . For M = 0, this parameter
goes smoothly to zero for x > xc. As we allow for a finite
M , we see that the amplitude of this pairing parameter is not
altered significantly for small x. The drastic difference comes
in when we look at how and when �s goes to zero at higher M .
There the smooth transition to �s = 0 is replaced by a sharper
drop. The transition becomes sharper as M increases. The
other marked difference between the M = 0 and the M �= 0
case is the critical filling xc at which �s → 0. We see in the
figure that as M is increased xc becomes smaller.

Figure 3(c) gives both the up-up and down-down triplet
pairing parameter for various values of M . Again starting at the
M = 0 limit, we see that both pairing amplitudes are identical
over all x and smoothly go to zero at some xc. Once we turn the
Zeeman field on, a difference between the up and down pairing
parameters develops. Both being identical at half-filling (i.e.,
x = 0), but as the hole doping is increased, the down pairing
value becomes larger than the up pairing amplitude and like ξ̂σ

the difference between the two becomes larger for larger M .
Further, the continuous vanishing of �σ

t at zero M disappears
as we increase M and both the �σ

t discontinuously drop to
zero. Like with �s , the critical value of x at which this drop
occurs decreases as M increases.

C. Topology

The task of calculating the topological invariant in an
interacting system is not at all a simple one. There are
several methods one can explore [45–50], however, all of them
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FIG. 3. (Color online) Self-consistent parameters for a system at finite Zeeman field. In calculating the data above, we have set B = 0,
U = 12t , V = −0.05U , and A = 0.1t , while allowing M to vary. The values of M used are labeled in the legend of the figure. Where the
legend indicates a direction (up or down) this refers to the value for σ in either ξ̂σ or �σ

t . Note that the up and down data at M = 0 are
indistinguishable.

are very involved numerically. In this work, we choose to
circumvent this difficulty by making a plausible conjecture.
We argue that the topology of our ground state, which is a
projected mean-field state, is the same as the topology of the
mean-field state before the projection [i.e., the ground state
of the Hamiltonian in Eq. (26)]. To see why this is plausible,
consider the electronic correlations in a topological system.
In the bulk, we expect the quasiparticle correlations to decay
exponentially with the distance due to the bulk excitation gap.
However, on the edges, the topology guaranties protected edge
modes. The correlation on the edge is therefore long-ranged
and is characterized by a power law. Suppose that we have
a noninteracting ground state whose topological invariant is
nonzero, its correlations are as described above. If we now
apply the Gutzwiller projection to this state, being a local
operation we do not expect it to alter the electronic correlations.
We therefore conclude that its topology is unchanged by the
projection. This is a subtle issue that awaits further study.

We therefore proceed to calculate the topological invari-
ant of the unprojected BCS state, which satisfies the self-
consistency equations we found above. This is equivalent to
determining the topology of the mean-field Hamiltonian HAux.
In order to calculate the topological invariant of HAux, we
appeal to an extremely useful method developed in Ref. [51],
which we do not review here. These authors show based on
symmetry arguments that on a square lattice the topology is
expressed by the first Chern number C1, which can be elegantly
written as

C1 = 1

iπ
ln

[
Q(H(0,0))Q(H(π,π ))

Q(H(π,0))Q(H(0,π ))

]
, (32)

where the Q is defined as

Q(H(k)) = sgn (−Pf [H(k)�]) , (33)

where � = σy ⊗ τy [σ and τ are Pauli matrices acting on
the spin and Nambu spaces, respectively] is a symmetry
of our Hamiltonian and H(k) is the Bogoliubov de Gennes
(BdG) Hamiltonian obtained from writing HAux in the basis
(ck,↑,ck,↓,c

†
−k,↓, − c

†
−k,↑)T . Taking the definition of ln(z)

such that ln(1) = 0 and ln(−1) = iπ and noting that the Q

invariants only ever have values of one or minus, we see that
C1 takes only two distinct values: C1 = 0 for trivial topology
and C1 = 1 for nontrivial topology.

Evaluating the four relevant Q invariants for our system,
we find that the topological invariant C1 is given by

C1 = 1

iπ
ln

(
sgn

{[
η2

↑ − (Vz − μ)2
][

η2
↓ − (Vz + μ)2

]})
,

(34)

where we have defined ησ = ξ̂x,σ + ξ̂y,σ − 4tgt (σ )gNN −
4σBgt (σ )gNN and the effective Zeeman term Vz = M +
Meff − 4B. We now notice that given the above definition for
C1, we can easily “sort” our parameter space into four distinct
categories depending on the values of ησ , μ, and Vz. The
first two categories are |η↓| > |Vz + μ| and |η↑| > |Vz − μ|
(category 1) or |η↓| < |Vz + μ| and |η↑| < |Vz − μ|. If our
parameters lay in either of these categories then C1 = 0 and
the system has trivial topology. Meanwhile, if |η↓| < |Vz + μ|
and |η↑| > |Vz − μ| (category 3) or |η↓| > |Vz + μ| and
|η↑| < |Vz − μ| (category 4), then C1 = 1 and the system has
nontrivial topology.
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FIG. 4. (Color online) Topological phase diagram for several different parameters cuts. In (a), we have set U = 12t , B = 0, V = −0.05U ,
and A = 0.1t and varied M and x, in (b), we fix U = 12t , B = 0, V = −0.05U , and M = 0.1t , while varying A and x, and in (c), M = 0.1t ,
B = 0, V = −0.05U and A = 0.1t , while varying U and x.
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Notice that although the bare parameters A, U , and V

do not appear explicitly in the definition of C1 in Eq. (34)
the parameters μ, ξi,σ , and Meff have been determined self-
consistently and therefore depend implicitly on A, U , and
V . Further, we see that C1 depends on the doping x both
explicitly through the renormalization parameters gt (σ ) and
gNN and implicitly through the self-consistent study completed
to find μ, ξ̂i,σ , and Meff . In this way, C1 depends on all of the
parameters built into the model in a nontrivial way.

It is clear from the above definition of C1 that for a nontrivial
phase either B or M must be nonzero. To see this, suppose we
have set B = M = 0, then there is no spin polarization and
therefore Meff = 0 and Vz = 0. Further, for M,B = 0, we have
ξi,σ = ξ̂ and therefore η↑ = η↓ = η. Thus the argument inside
the logarithm becomes (η2 − μ2)2, which is positive definite
so that C1 = 0 regardless of A/t , V0/t , U/t , or x. Our results
for the topological invariant as a function of the model’s bare
parameters are shown in Fig. 4.

V. CONCLUSIONS

We have studied the strong interaction limit of the extended
Hubbard model with spin-orbit coupling. Performing a strong
coupling expansion, we have found an effective Hamiltonian
for this model valid in the limit U,V � t,A,B. We have shown
that by projecting this model onto a subspace of half-filled
many-body states, we obtain a spin model that is a generaliza-
tion of the Heisenberg model with Dzjaloshinskii-Moriya and
compass anisotropy originating from the spin-orbit coupling
terms in the extended Hubbard model. This model exhibits an
interesting spin texture, which will be explored elsewhere [36].
We then set out to study this effective Hamiltonian via mean-
field theory. When the filling is lower than half the system may
become superconducting and we study the various supercon-
ducting phases in the framework of the Gutwiller approxima-
tion. When we study the system in the presence of spin-orbit
and Zeeman terms, we find a variety of superconducting order
parameters both in the singlet and in the triplet channels. The
topology of the superconducting state is found to be nontrivial
at some finite doping and a phase diagram is given.
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APPENDIX A: STRONG COUPLING EXPANSION

1. Interaction as a constant of motion and channel
decomposition

Here, we will give the full details of the strong coupling
expansion discussed in Sec. II. For an in depth discussion of

the details in this Appendix and Appendix B, please see Ref.
[44]. We begin with the full (untransformed) Hamiltonian,
which reads

H = H1 + H0 + HZ, (A1)

where H0 = Hint = HU + HV , HU = U
∑

i ni,↑ni,↓, HV =
V

∑
〈i,j〉 ninj , and H1 = T + HSO. As stated in the text,

we wish to perform a unitary transformation on the above
Hamiltonian in such a way as to block diagonalize H . An
alternative, but entirely equivalent, approach to this is to insist
that H0 is a constant of motion in the transformed Hamiltonian.
To this end, we write the following unitary transformation of
H :

H̃ = eiS(H1 + H0 + HZ)e−iS = H0 + H̃1 + HZ, (A2)

where HZ should not change under the transformation S since
it does not change H0. In order for H0 to be a constant of
motion, we require that

[H0,H̃ ] = [H0,H̃1] = 0. (A3)

To satisfy this condition, we expand both H̃1 and the
transformation S in a power series of 1/U as follows:

S = −i

∞∑
n=1

Sn

Un
, H̃1 =

∞∑
n=1

H̃1,n

Un−1
(A4)

and then insist that Eq. (A3) is satisfied to a given order in
1/U , i.e., [H0,H̃1,n] = 0 for some n � 1.

To proceed with solving the condition in Eq. (A3), it is
useful to decompose H1 into channels that change H0 by a
given amount. We recall that the first term in H0 and HU counts
the number of doubly occupied sites. We sort the hopping
processes into channels which change the number of doubly
occupied sites by m (changing the on site interaction energy
by mU ). In a single band model, we have only three possible
values m = −1,0,1. Using the electron and hole occupancy
operators, hi,α = 1 − ni,α , we find

T−1 =
∑

i,σ,δ,σ ′
hi,σ̄ c

†
i,σ t̂σ,σ ′(�δ)ci+δ,σ ′ni+δ,σ̄ ′ ,

T1 =
∑

i,σ,δ,σ ′
ni,σ̄ c

†
i,σ t̂σ,σ ′(�δ)ci+δ,σ ′hi+δ,σ̄ ′ , (A5)

T0 =
∑

i,σ,δ,σ ′
(ni,σ̄ c

†
i,σ t̂σ,σ ′ (�δ)ci+δ,σ ′ni+δ,σ̄ ′

+hi,σ̄ c
†
i,σ t̂σ,σ ′(�δ)ci+δ,σ ′hi+δ,σ̄ ′),

and this definition also leads to [Tm,HU ] = mUTm.
In a similar way, we should further classify the terms in H1

according to their effect on the number of nearest-neighbor
pairs. This is done with the help of the nearest-neighbor
projection operator

Oi(ñx,↑,ñx,↓,...ñ−y,↓) =
∏
δ,α

[ñδ,αni+δ,α + (1 − ñδ,α)hi+δ,α]

≡ Oi[n] (A6)

that projects out all possible orientations of the nearest
neighbors of atom site i except the one labeled by n, where
the arguments nδ,α take a value of 1 (a value of 0) for
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site i + δ being occupied (unoccupied). Inserting the identity
1 = ∏

δ,α(ni+δ,α + hi+δ,α) on either side of the summand in
the channels Tm, we obtain the full decomposition operator

Tm,N2,N1

=
∑

i,δ,σ,σ ′

∑
	[n1]=N1

∑
	[n2]=N2

Oi[n2](Tm)i,δ,σ,σ ′Oi+δ[n1],

(A7)

where Tm,N2,N1 changes the number of doubly occupied sites by
m and the number of nearest neighbors from N1 to N2, 	[n] ≡∑

δ,α nδ,α . A tedious but straightforward calculation shows that
[ Tm,N2,N1 ,HU + HV ] = [mU + (N2 − N1)V ] Tm,N2,N1 .

2. The transformed Hamiltonian

To obtain an effective Hamiltonian, we must solve for the
transformation that satisfies [H0,H

′
1,n] = 0 to a given order n.

We then use this transformation to find the properly expanded
Hamiltonian. To do this, we first note that for any operator X,

eiSXe−iS = X + [iS,X] + 1
2 [iS,[iS,X]] + . . . , (A8)

and so we have

H̃ = H0 + (H1 + [iS,H0])

+ ([iS,H1] + 1
2 [iS,[iS,H0]]) + . . . . (A9)

Inserting the expansions for S into the above and redefining
H0 = UH̃0, we find

H̃ ′
1,1 = H1 + [S1,H̃0],

(A10)
H̃ ′

2,1 = [S1,H1] + [S2,H̃0] + 1
2 [S1,[S1, H0]].

The first condition we must satisfy is then

0 = [H0,H1 + [S1,H̃0]]. (A11)

Inserting the channel decomposition H1 = ∑
m,N2,N1

Tm,N2,N1

and using the fact that [H̃0,H1] = 1
U

∑
m,N2,N1

[mU + (N2 −
N1)V ] Tm,N2,N1 the above is then solved by

S1 =
′∑

m,M,N

U Tm,N2,N1

mU − (N2 − N1)V
, (A12)

where the primed sum excludes terms for which mU −
(N2 − N1)V = 0. Using this expression in the first-order
Hamiltonian, we have

H ′
1,1 =

∑
m,N2,N1

Tm,N2,N1 −
′∑

m,N2,N1

Tm,N2,N1 =
∑
N

T0,N,N .

(A13)

Let us pause and examine this result in view of our goals at the
onset of this discussion. This tells us, to order O(1), that the
piece of the full Hamiltonian that does not change HU + HV

involves the sum of all channels with hops that do not change
the number of sites with double occupancy and begin and end
with M occupied nearest-neighbor bonds. We see that none of
these operations change HU or HV and we could have argued
the result above on heuristic grounds.

Next, we must satisfy the condition [H0,H
′
2,1] = 0 by

properly choosing S2. The mathematical expression for S2

is very complicated and not necessary for our discussion. We
therefore simply present the result that is the second-order
contribution to H ′

1:

H ′
1,2 =

′∑
m,M1,N1,M2

U [ Tm,M1,N1 , T−m,M2,M1+M2−N1 ]

2[mU + (M1 − N1)V ]
, (A14)

where the sum is over all indices except ones for which
mU + (M1 − N1)V = 0. Again, we can inspect this term
and see that it is precisely what we would have guessed
from the onset. First, this term is quadratic in the Tm,N2,N1

operators and so it represents a second-order term in our
expansion. Second, the specific combination of the Tm,N2,N1

operators does not change the number of doubly occupied
sites nor the number of occupied nearest-neighbor bounds;
T−m,M2,M1+M2−N1 decreases the number of double occupied
sites by m and changes the number of occupied nearest-
neighbor bounds by N1 − M1 and then Tm,M1,N1 increases the
number of doubly occupied sites by m and changes the number
of occupied nearest neighbors by M1 − N1.

Using the two results above, we can now write the effective
Hamiltonian that has been the focus of this paper. Valid to
order O(1/U 2) this effective Hamiltonian is

H̃ = HU + HV + HZ +
∑
M

T0,M,M

+
′∑

m,M1,N1,M2

Tm,M1,N1T−m,M2,M1+M2−N1

(mU + (M1 − N1)V )
+ O(1/U 2),

(A15)

where we made use of index relabelling symmetry to get rid of
the commutator and the factor of a half in the second term of the
expansion. In principe, we could keep going to higher orders in
1/U . The next order term would involve cubic combinations
of the Tm,N2,N1 operators that collectively do now change the
number of doubly occupied sites nor the number of occupied
nearest-neighbor bonds. We stop here for practicality as these
higher order terms become very complicated to write down
and are not needed to accomplish our current goal.

3. Projection to half-filling: an analogy to the t- J model

An expansion analogous to the one performed in the
previous section is used to write an effective strong coupling
theory for the Hubbard model [34]. If one then projects this
strong coupling Hubbard model to half-filling, one obtains a
model that amounts to the Heisenberg model for spins on a
lattice [52]. This is typically how one shows that the strongly
interacting limit of the Hubbard model is the so-called t-J
model. For the sake of comparison, we will follow a similar
process in this section in order to obtain an effective model for
H̃ that is applicable at half-filling.

Let us begin by considering some state |ψ〉 at half-filling.
For strong U , the electrons will avoid configurations with
double occupancies and the state |ψ〉 will consist of a lattice
of singly occupied sites. Let us consider the action of the
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following term on the subspace of possible states |ψ〉:
′∑

m,M1,N1,M2

Tm,M1,N1T−m,M2,M1+M2−N1

mU + (M1 − N1)V
. (A16)

To begin with, |ψ〉 has only singly occupied sites and so the
only possible value of −m is −m = 1 as in this scenario we
cannot maintain the number of double occupancies (m = 0)
nor can we decrease the number of double occupancies (m =
1). Next, all sites in |ψ〉 have 4 occupied nearest neighbors
and so M1 + M2 − N1 = 4. Next, after a hop has occurred,
the electron will be on a site with three nearest neighbors
and so M2 = 3. If we want to begin and end in a subspace
of all possible half-filled states with no double occupancies,
the second part of the term above, namely Tm,M1,N1 , must now
destroy the doubly occupied site T−m,M2,M1+M2−N1 has created.
For this to be the case, we must have m = −1 and N1 = 3,
which leads to M1 = 4. Plugging in all of these results we get
the following:

′∑
m,M1,N1,M2

Tm,M1,N1T−m,M2,M1+M2−N1

(mU + (M1 − N1)V )
→ −T−1,4,3T1,3,4

U − V
.

(A17)

Taking all of our projections into account and inserting the
definitions of Tm,N2,N1 into the above, we then find

T−1,4,3T1,3,4

U − V

=
∑

i,δ,β,β ′,α,α′

c
†
i+δ,α t̂α,α′ (−�δ)ci,α′c

†
i,σ t̂β,β ′ (�δ)ci+δ,σ ′

U − V
, (A18)

where we have dropped all projection operators because we
have already taken them into account. The spin sums in the
above term can be eliminated if we write things in terms of the
lattice spin operator given by the following:

(S)i = 1

2

∑
α,β

c
†
i,α �σα,βci,β . (A19)

Performing all of these spin sums is tedious but straightfor-
ward. We will describe the process for the specific term β = β̄ ′
with α = ᾱ′ sum and then simply quote the result for all of the
other sums.

Setting β = β̄ ′ and α = ᾱ′ in the summand of Eq. (A18)
gives us the following contribution:

∑
i,δ,β,α,

A2
(
δx + σ

y

β,β̄
δy

)(
δx + σ

y
α,ᾱδy

)
4(U − V )

c
†
i+δ,αci,ᾱc

†
i,βci+δ,β̄ .

(A20)

We first consider the case where �δ = ±x̂, in this case we
have, after making one commutation,

ni −
∑
β,α

c
†
i+δ,αci+δ,β̄c

†
i,βci,ᾱ, (A21)

where we have only written the sum over spins and for brevity
we have dropped the prefactor A2/[4(U − V )], which will be
added back later. Writing out all four terms in the sum above,
using the definition in Eq. (A19) to identify spin operators,
recalling that we are interested in the action of our Hamiltonian
on the subspace of half-filled singly occupied states and doing
a few manipulations, we arrive at

2
[
(Sy)i+δ(Sy)i − (Sx)i+δ(Sx)i + (Sz)i+δ(Sz)i + nini+δ

4

]
.

(A22)

Completing the calculation following the above formula we
arrive at the following result:

T−1,4,3T1,3,4

U − V
= E0 +

∑
i,δ

J
μν
δ Sμ

i Sν
i+δ, (A23)

where we have defined the constant

E0 = − 2Nt2

U − V
− NA2

2(U − V )
− 2NB2

U − V
(A24)

and the 3 × 3 matrix

Jδ = 1

2(U − V )

⎛
⎝4t2 + A2a(δ) − 4B2 0 −4Atδy

0 4t2 − A2a(δ) − 4B2 4Atδx

4Atδy −4Atδx 4t2 − A2 + 4B2

⎞
⎠, (A25)

where a(δ) is 1 for δ = ±x̂ and −1 for δ = ±ŷ. Note that
the above result readily simplifies to the Heisenberg model for
spins on a lattice in the limit V,A,B → 0 as Jδ becomes the
identity matrix times 2t2/U .

To obtain our analogy to the t-J mode, we drop the overall
constant E0 from the above result, we also drop HU from the
results in H̃ because near half-filling and at strong coupling,
the number of doubly occupied sites will be zero and finally, we
drop HV as the number of occupied nearest neighbors should
be constant, 2N , on a square lattice. Thus our effective model
is given by

Ht,Jδ
= HZ +

∑
N

T0,N,N +
∑
i,δ

J
μν
δ Sμ

i Sν
i+δ. (A26)

Compared to the t-J model, we have several obvious differ-
ences. First, with spin-orbit coupling, the exchange constant J

has now become a matrix. Second, instead of hopping that is
restricted to not change the number of doubly occupied sites
in the t part of the t-J model, our term

∑
M T0,M,M not only

restricts changes in the number of doubly occupancies but also
the number of occupied nearest neighbors. Lastly, because of
the Zeeman/mass term in the original model, we have the
magnetic-like contribution HZ .

APPENDIX B: MEAN-FIELD BCS TREATMENT OF THE
PROJECTED t- J MODEL

This Appendix will present detailed results for the
A,M,B = 0 limit of the Gutzwiller approximation developed
in Sec. III. We begin by recalling the form of the BCS wave
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FIG. 5. (Color online) Comparison of Monte Carlo and Gutzwiller approximation results for the kinetic energy KG and magnetic energy
VG. On the left, we compare exact Monte Carlo results for the kinetic energy to the approximation KG, while on the right, we explore the
comparison of VG to Monte Carlo results. All plots are for N = 82 lattice sites, the top plots are for a system with NH = 4 holes, while the
bottom plots are NH = 8 holes. At each doping level, we have tried two different order parameter symmetries, d and s waves. For d-wave
symmetry with �k = �0[cos(kx) − cos(ky)], we have plotted the Gutzwiller approximations given in Eqs. (14) and (19) using a dashed line
(blue online) and numerical Monte Carlo results using triangles (blue online). For s-wave symmetry, we have �k = �0 and have plotted the
Gutzwiller approximation using a solid line (red online) and numerical Monte Carlo results using squares (red online). In both figures, we have
set t = 1 and ξk = εk − μ where εk is defined in the text and μ is the chemical potential. We have also scaled the kinetic energy by the number
of lattice sites, Ns .

function in its most generic form. We begin with ground state

|ψBCS〉 =
∏

k

(uk + vkc
†
k,↑c

†
−k,↓)|0〉, (B1)

where uk =
√

Ek+ξk
2Ek

and vk = eiφk
√

Ek−ξk
2Ek

, and where

Ek =
√

ξ 2
k + |�k|2 and φk is the phase of �k. In this context,

the functions �k and ξk are variational parameters we are
interested in optimizing. In order to explore how well our
Gutzwiller approximation for the energies KG and VG does
in comparison to numerical results for the full expectation
values in the state PG|ψvar〉, we have carried out Monte Carlo
calculations to compare to KG and VG. Our results at doping
values of x 	 0.04878 and 	0.09756 for d-wave and s-wave
order parameter symmetries are presented in Fig. 5. Following
the case made in Ref. [21], we contend that the Gutzwiller
approximation does a fair job at reproducing the quantitative
values of KG and VG and an excellent job at reproducing the
qualitative behavior of the two as it gets the general trend of
the curve correct.

With some credibility for the Gutzwiller approximation
established, we now use |ψBCS〉 to evaluate a variational energy
which we can minimize to find ξk and �k. Calculating the
appropriate expectation values, the Gutzwiller approximated
variational energy reads

E(�k,ξk) = −
∑

k

(gtεk − μ)

(
ξk

Ek

)

− 3J̃

8N

(
d2

x + d2
y + 2e2

x + 2e2
y

)
, (B2)

where εk = −2t(cos kx + cos ky) is the tight-binding spec-

trum, Ek =
√

ξ 2
k + �2

k, and we have defined di =∑
k(�k cos(ki )

Ek
), ei = ∑

k( ξk cos(ki )
Ek

), and μ is determined self-

consistently through x = 1
N

∑
k( ξk

Ek
). Minimizing the above

functional with respect to �k and ξk leads to the following
results:

�k = �x cos(kx) + �y cos(ky),
(B3)

ξk = gtεk − μ + ξx cos(kx) + ξy cos(ky),

where the parameters �i and ξi must be determined self-
consistently through the solutions to the following equations:

�i = 3gJ J

4N

∑
k

[
�k cos(ki)

Ek

]
,

(B4)

ξi = 3gJ J

4N

∑
k

[
ξk cos(ki)

Ek

]
.

We have solved the self-consistent equations in Eq. (B4)
over a space of x, U , and V values. We have fixed U = 12t as
is appropriate from studies of the Hubbard model in the past
[21,24]. We have found that the solution is that of a d-wave
superconductor, �x = −�y with |�x | = |�y | = �̃, and
ξx = ξy = −|ξ̃ |. The results of our calculations are presented
in Fig. 6.

To close this Appendix, we will present calculations of
the superconducting order parameter. The parameter �̃ is not
exactly the “order parameter” as we must take into account the
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FIG. 6. (Color online) Results of self-consistent calculations for
varying values of V and U . The top left figure shows the results for �̃

while the bottom left one shows ξ̃ . For these left figures we have fixed
U = 12t and allowed V to vary. On the right, the top figure shows
the results for �̃ while the bottom one shows ξ̃ when V is fixed to
V = −0.2U and U is allowed to vary. For the economy of space in
the legend of this figure, we have defined v = V/U .

Gutzwiller projection operator. We define the superconducting
order parameter as follows:

�SC(i,j ) = 〈ψBCS|PG(c†i,↑c
†
j,↓ − c

†
i,↓c

†
j,↑)PG|ψBCS〉

〈ψBCS|PG|ψBCS〉 . (B5)

The Gutzwiller approximation for this quantity is then as
follows:

�SC(i,j ) 	 g�

〈ψBCS|(c†i,↑c
†
j,↓ − c

†
i,↓c

†
j,↑)|ψBCS〉

〈ψBCS|ψBCS〉 , (B6)

where g� = 2x/(1 + x) again comes from a proper weighting
using relative probabilities. Upon writing the above in mo-
mentum space, one can easily show the following result for
nearest neighbor (i,j ):

�SC(i) = 4g�

3J̃
�i. (B7)

We have plotted our results for this quantity at the same values
of U as on the left of Fig. 6 and have compared our results to
those of the bare t-J model. The results are in Fig. 7. We see
that the order parameter �SC is a nonmonotonic function of
the doping x, which grows from zero to a maximum and then
returns to zero at xc. Both the maximum value of �SC and the
x value at which it is achieved vary only slightly with v and for
large v both tend to increase with v. We see that our analysis
here leads to an enhancement of �SC. This makes physical
sense as the difference between the model considered here and

FIG. 7. (Color online) Plot of order parameter as given in
Eq. (B7) at various values of v = V/U with U = 12t . For com-
parison, we have also plotted the value of �SC obtained from the
traditional t-J model.

the t-J model is an attractive nearest-neighbor interaction,
something that should favor d-wave superconductivity.

APPENDIX C: SPIN RENORMALIZATION FACTORS
AT FINITE SPIN-ORBIT COUPLING

Here, we discuss how to perform the Gutzwiller approxima-
tion for the term

∑
i,δ J̃

μν
δ Sμ

i Sν
i+δ where J̃

μν
δ is given in Eq. (22)

[44]. We begin by dividing this term into four separate terms
given by

HJ,i = J1 − J4

4

∑
i,δ

(S+
i+δS

−
i + S−

i+δS
+
i ),

HJ,ii = J1 − J2 + J4

2

∑
i,δ

Sz
i+δS

z
i ,

HJ,iii = J2

4

∑
i,δ

a(δ)(S+
i+δS

+
i + S−

i+δS
−
i ),

HJ,iv = J3

2

∑
i,δ

[
δ · (ŷ + ix̂)Sz

i+δS
+
i + δ · (ŷ − ix̂)Sz

i+δS
−
i

]
,

(C1)

where we have defined the spin raising and lowering operators
S+

i = c
†
i,↑ci,↓ and S−

i = c
†
i,↓ci,↑. Let us discuss the renormal-

ization of each term above in the order listed.
HJ,i takes two occupied nearest-neighbor sites and flips

their spins. We discuss S+
i+δS

−
i for concreteness while keeping

in mind that this discussion immediately extends to the second
term. In a Gutzwiller projected state, we only require that
sites i and i + δ are occupied by an up spin and a down spin,
respectively, while in a nonprojected state, we not only require
states (i, ↑) and (i + δ, ↓) to be occupied but also need (i, ↓)
and (i + δ, ↑) to be empty. These considerations lead to the
renormalization factor

gJ,i = 1

(1 − 〈n↑〉)(1 − 〈n↓〉) , (C2)

and we make the approximation HJ,i → gJ,iHJ,i.
Moving on, HJ,ii is relatively straightforward to understand,

it measures the z projection of spin on two nearest-neighbor
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sites. Owing to the fact that we have made the approximation
that the number of electrons on a given lattice site is the same in
both the projected and unprojected state and that Sz

i = ni,↑ −
ni,↓, we obtain equal weighting in both states and so gJ,ii = 1.

Third, we have HJ,iii, which either flips two neighboring
down spins to up spins or flips two neighboring up spins
to down spins. We discuss the latter for concreteness (sym-
bolically this corresponds to the S+

i+δS
+
i term). Naively, in a

Gutzwiller projected state, we only require that sites i and i + δ

are both occupied by a down spin, while in a nonprojected
state we not only require states (i, ↓) and (i + δ, ↓) to be
occupied but also need (i, ↑) and (i + δ, ↑) to be empty. This
would lead to the factor gJ,iii = 1

(1−〈n↓〉)(1−〈n↓〉) and ultimately
to a renormalized HJ,iii term that is not Hermitian for general
values of 〈n↓〉 and 〈n↑〉. It turns out that to remedy this problem
we must form a geometric average between the probability for
the forward process S+

i+δS
+
i and the probability for it to happen

in reverse [42] (i.e., for two up spins to flip to two down spins).

This leads to a geometric average between 1
(1−〈n↓〉)(1−〈n↓〉) and

1
(1−〈n↑〉)(1−〈n↑〉) and ultimately to the renormalization factor

gJ,iii = 1

(1 − 〈n↑〉)(1 − 〈n↓〉) . (C3)

Finally, we discuss the renormalization of HJ,iv. We discuss
Sz

i+δS
+
i for concreteness. This term flips an up spin to a down

spin on site i and then measures the value of the z projection
of spin on a nearest-neighbor site. In the Gutzwiller projected
state, we require only that state (i, ↓) be occupied while in
the unprojected state we need (i, ↓) and (i, ↑) empty. Again
we need to be careful with the equal weighting of forward
and backwards processes [42]. Taking the reverse process into
account then leads to the final renormalization factor

gJ,iv = 1√
(1 − 〈n↑〉)(1 − 〈n↓〉) . (C4)
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