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Nonlocal optics of plasmonic nanowire metamaterials
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We present an analytical description of the nonlocal optical response of plasmonic nanowire metamaterials that
enable negative refraction, subwavelength light manipulation, and emission lifetime engineering. We show that
dispersion of optical waves propagating in nanowire media results from coupling of transverse and longitudinal
electromagnetic modes supported by the nanowires and derive the nonlocal effective medium approximation for
this dispersion. We derive the profiles of electric field across the unit cell, and use these expressions to solve the
long-standing problem of additional boundary conditions in calculations of transmission and reflection of waves
by nonlocal nanowire media. We verify our analytical results with numerical solutions of Maxwell’s equations
and discuss generalization of the developed formalism to other uniaxial metamaterials.
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I. INTRODUCTION

Nanowire-based composites have recently attracted signifi-
cant attention due to their unusual and counterintuitive optical
properties that include negative refraction, subwavelength
confinement of optical radiation, and modulation of photonic
density of states [1–6]. Due to relatively low loss and
ease of fabrication, nanowire composites found numerous
applications in subwavelength imaging, biosensing, acousto-
optics, and ultrafast all-optical processing, spanning visible
to THz frequencies [7–19]. Wire materials are a subclass
of uniaxial metamaterials that have homogeneous internal
structure along one preselected direction. In all, this class
of composites represents a flexible platform for engineering
of optical landscape from all-dielectric birefringent media,
to epsilon-near-zero, to hyperbolic, and epsilon-near-infinity
regimes, each of which has its own class of benefits and
applications [20–23].

In this work we present an analytical technique that
provides adequate description of electromagnetism in wire-
based metamaterials taking into account nonlocal optical
response originating from the homogenization procedure.
The approach can be straightforwardly extended to describe
optics of coaxial-cable-like media [24–26] and numerous other
uniaxial composites. The developed formalism reconciles
the local and nonlocal effective-medium theories often used
to describe the optics of nanowire composites in different
limits [27–35]. More importantly, the formalism relates the
origin of optical nonlocality to collective (averaged over
many nanowires) plasmonic excitation of wire composite,
and provides the recipe to implement additional boundary
conditions in composite structures.

We illustrate the developed technique on the example
of plasmonic nanowire metamaterials, formed by an array
of aligned plasmonic nanowires embedded in a dielectric
host. For simplicity, we fix the frequency of electromagnetic
excitations and the unit cell parameters of the system, and vary
only the permittivity of the wire inclusions. (The developed
formalism can be readily applied for systems where both
permittivity and frequency are changed at the same time.)
We assume that the system operates in the effective-medium
regime (its unit cell a � λ0 with λ0 being the free-space

wavelength) and that the surface concentration of plasmonic
wires is small p = πR2/a2 � 1. The parameters used in this
work are R = 20 nm, a = 100 nm, εh = 1 or εh = 2.25,
L = 1 μm, λ0 = 1.5 μm (see Fig. 1), which are typical for
composites fabricated with anodized alumina templates [2,13].
Supplementary information (SI) [36] presents the analysis of
full-wave solutions of Maxwell equations in wire media.

II. ELECTROMAGNETIC WAVES SUPPORTED BY BULK
NANOWIRE COMPOSITES

As previously mentioned, the optical response of nanowire
materials resembles that of uniaxial media with optical axis
parallel to the direction of the nanowires (z). Therefore,
dielectric permittivity tensor describing properties of waves
propagating in the wire media is diagonal with components
εx = εy = εx,y and εz.

It has been shown that at optical and near-IR frequen-
cies, the behavior of these components is largely described
by Maxwell-Garnett type effective medium theory (EMT)
[27–30,37]. In this approach, the microscopic distribution of
the field is given by solutions of the Maxwell equations in
quasistatic limit

Emg
z = emg

z ,

Emg
x = emg

x ×
{

2 εh

εh+εi
, r � R,

1 + R2 εh−εi

εh+εi

y2−x2

(x2+y2)2 , r > R,
(1)

with εi and εh being the permittivities of wire inclusions and
of host material, respectively, and parameters e

mg
x and e

mg
z

are the field amplitudes. Straightforward averaging of the j th
component (j = x,y,z) of the fields over the unit cell yields the
effective permittivity ε

mg

j = 〈ε(x,y)Emg

j (x,y)〉/〈Emg

j (x,y)〉:

εmg
x,y = εh

(1 + p)εi + (1 − p)εh

(1 + p)εh + (1 − p)εi

,

εmg
z = pεi + (1 − p)εh.

(2)

By adjusting composition of the metamaterial and operating
wavelength, the optical response of the composite can be
controlled between all-dielectric elliptic (εmg

x,y > 0,ε
mg
z > 0),
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FIG. 1. (Color online) Schematic geometry and a unit cell of a
nanowire composite.

epsilon-near-zero (ENZ, ε
mg
z � 0) and hyperbolic (εmg

x,y >

0,ε
mg
z < 0) regimes. In the two latter regimes, metamaterial

supports optical waves with either small or large effective
modal index motivating a number of potential applications
in molding of light [20–22], cloaking [14–16], and subwave-
length light manipulation [1,9–12].

At the same time, it has been shown that at lower frequen-
cies where −εi � 1, εz of wire composites becomes strongly
nonlocal (exhibits strong dependence on kz) [31–34]. Similar
dependence has been recently shown to take place at visible
frequencies in the ENZ regime [35]. Nonlocality, especially in
the ENZ regime, has been shown to fundamentally alter the
optical response of wire composite, leading to excitation of
new types of optical waves, and requiring additional bound-
ary conditions for analytical description of their excitation
[32–35,38]. Despite extensive previous research, existing
first-principal theoretical models describing optics of wire
composites [32–34] cannot be used at visible and (near)-
IR frequencies (see Appendix C), with remaining models
requiring fitting [35] or numerical solutions of Maxwell
equations. Here we present a formalism free of the above
shortcomings.

The dispersion of plane waves propagating inside homoge-
neous (nonlocal) uniaxial materials can be derived from the
well-known relation

det

∣∣∣∣�k · �k δij − kikj − εij

ω2

c2

∣∣∣∣ = 0, (3)

with �k and ω being the wave vector and the angular frequency
of the plane wave, respectively, c being the speed of light in
vacuum, ε being the generally nonlocal dielectric permittivity
tensor of the metamaterial, and subscripts ij corresponding to
Cartesian components [39]. In the local regime permittivity
tensor is diagonal with εii = ε

mg

i .
We now focus on the development of the model for the

nonlocal effective permittivity of a nanowire composite. For
propagation along the optical axis (kx = ky = 0), Eq. (3)
allows two types of solutions. One is the well-known solu-
tion k

mg
z = √

εx,yω/c. In nanowire composites, this solution
corresponds to the local permittivity εxx = εyy = ε

mg
x,y which is

related to plasmonic oscillations perpendicular to the wire axes
[27–30] and is thus influenced by the plasmonic resonance
of the composite, slightly shifted from the position of the
localized surface plasmon resonances in isolated wires due to
interwire interaction.

The second solution of Eq. (3) corresponds to εz(kz) = 0.
It describes a longitudinal wave propagating in the z direction,
with �E‖�k‖ẑ. This solution is also known as the additional
(TM-polarized) wave.

As we show below, in nanowire systems this mode results
from the interaction between cylindrical surface plasmon
(CSP) modes [40] of the individual wires that comprise the
collective (related to many wires) longitudinal electromagnetic
mode. The components of the fields of the this mode can be
related to its z components that in turn can be written as a linear
combination of cylindrical waves. For the square unit cell
geometry, considered in this work, the latter combination will
only contain cylindrical modes with m = 0,4,8, . . .. Explicitly,

El
z = e−ikl

zz
∑
m

cos(mφ)

×
{
amJm(κir), r � R,

[α+
mH+

m (κhr) + α−
mH−

m (κhr)], r > R,

H l
z = e−ikl

zz
∑
m

{
1, m = 0
sin(mφ), m � 1

}

×
{
bmJm(κir), r � R,

[β+
mH+

m (κhr) + β−
mH−

m (κhr)], r > R,
(4)

with κ2
{i,h} + kl

z

2 = ε{i,h}ω2/c2. Note that continuity of
Ez,Hz,Eφ , and Hφ at r = R uniquely define the parameters
α+

m,β+
m,am, and bm as a function of α−

m , and β−
m . The details of

these derivations are provided in Appendix A.
The field of the mode has to satisfy the periodicity

condition E,H |x=−a/2 = E,H |x=+a/2. An analysis of the
fields produced by a series in Eq. (4) suggests that such a
solution can be realized when β−

m = 0, and kz and α−
m are

obtained from the eigenvalue-type problem∑
m

Ĥyjm

(
kl
z

)
α−

m = 0, (5)

with jm elements of matrix Ĥy corresponding to the y

component of the magnetic field produced by the mth Hankel
function at the location {x,y} = { a

2 ,j a
2Nm

}, with Nm being the
number of m terms in Eq. (4) (see Appendix B for details). Our
analysis suggests that as number of terms in Eq. (4) increases,
the dispersion produced by this analytical technique quickly
converges to the dispersion obtained by direct numerical
solution of Maxwell’s equations (here we use finite element
method and rigorous-coupled-wave analysis [36]). Figure 2
demonstrates the excellent agreement between the numerical
and analytical solutions corresponding to two- and three-term
series m = {0,4},m = {0,4,8}, and clearly demonstrates the
longitudinal character of this mode. This wave is strongly
dispersive in the regime εi → −εh, corresponding to the
surface plasmon oscillations on the metal-dielectric interface.
On the other hand, when −εi � εh (realized at mid-IR and
lower frequencies for noble metals), the wave vector of the
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FIG. 2. (Color online) (a) and (b) Dispersion in nanowire composite (εh = 1) as a function of wire permittivity. Dashed and solid lines
represent transverse and longitudinal waves [kmg

z and kl
z, Eq. (5), m = {0,4,8}], respectively; dotted line represents results of Eq. (5) for

m = {0,4}; symbols represent numerical solutions of the Maxwell’s equations; for −εi � εh, kl
z → nl

∞ω/c [dotted line in inset in (a)]. (c)–(e)
electric field in the unit cell; surface plots and arrows represent Ez and �Ex,y components, respectively. (f) Modal dispersion for off-axis
propagation [Eq. (7)].

longitudinal mode approaches nl
∞ω/c, and its transverse coun-

terpart approaches light line (see Refs. [32–34] and Fig. 2).
Comparing the dispersion relation corresponding to mi-

croscopic [Eq. (5)] and effective medium approximation
εz(kz) = 0, a complete description of the nonlocal effective
permittivity can be obtained. The functional dependence of
nonlocal permittivity can be approximated as

εz(kz) = ξ
(
k2
z − kl

z

2) c2

ω2
, (6)

where kz is the wave vector of the mode in the nonlocal
effective medium approximation, kl

z is the wave vector of the
mode of the composite in the microscopic theory, and ξ is the
factor which will be determined below.

The above considerations can be extended to the case
of propagation of waves at an angle to the optical axis.
For simplicity we consider the case ky = 0, kx �= 0. It is
relatively straightforward to transform Eq. (3) into a set of two
uncoupled dispersion relations. For nanowire composites, the
first of these, k2

x + k2
z = ε

mg
x,yω

2/c2 describes the propagation
of transverse-electric (TE)-polarized waves. The second one,
εz(kz)(k2

z − ε
mg
x,y

ω2

c2 ) = −ε
mg
x,yk

2
x , describes the propagation of

the transverse-magnetic (TM)-polarized waves. Taking into
account Eq. (6), the latter relation can be rewritten as

(
k2
z − kl

z

2) (
k2
z − εmg

x,y

ω2

c2

)
= −ε

mg
x,y

ξ

ω2

c2
k2
x (7)

that reflects the fact that similar to other nonlocal materials
[38], nanowire composites support two TM-polarized waves
propagating with different indices.

Equation (7) clearly shows that off-angle (kx �= 0) prop-
agation of the two TM-polarized waves in anisotropic wire
media can be mapped to a microscopic model of optical
properties of a nanowire array. In this description, the two
TM modes are determined by the components of the effective
permittivities arising from (i) transverse (electron oscillations
perpendicular to the nanowire axes) and (ii) longitudinal
(electron oscillations and the wave vector parallel to the
nanowire axes) parts of the cylindrical plasmons of the wires.
The off-angle wave vector plays the role of the coupling
constant. This nonlocality is present only in the effective
medium model due to the homogenization procedure; in the
microscopic model of the nanowire array, all the quantities are
local.

The remaining free parameter of the model, multiplicative
factor ξ , can be determined by requiring that in the limit
of small kx the properties of one of the two TM-polarized
waves follow elliptic or hyperbolic dispersion and has kz(kx) =
const dependence, observed in the wire media when ε

mg
z >

0, ε
mg
z < 0, and ε

mg
z � −1, respectively [27–30,32–34]. The

relationship

ξ = p
εi + εh

εh − (nl∞)2
(8)

adequately describes optics of wire media in these three limits.
The excellent agreement between the predictions of Eq. (7)
and the full-wave numerical solutions of Maxwell equations
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FIG. 3. (Color online) (a)–(d) Isofrequency contours of TM-polarized modes in nanowire composites with εh = 1. Solid lines and symbols
correspond to Eq. (7) and numerical solutions of Maxwell equations, respectively; dashed lines represent local EMT; (a) and (b) represent
properties of main TM-polarized mode; (c) and (d) correspond to additional wave. (e) and (f) The effective medium permittivity of nonlocal
nanowire composite for kx = 0 (c) and for kx �= 0 (d); ε(1)

z ,ε(2)
z represent two solutions of Eq. (6); cross mark indicates ENZ condition (εmg

z � 0).

is shown in Figs. 2–4. As expected, the isofrequency of the
“main” TM-polarized wave resembles ellipse or hyperbola that
for small values of kx is well described by ε̂mg . At the same
time, the dependence kz(kx) in “additional” wave is opposite to
that of its main counterpart. The z component of permittivity
is described by Eq. (2) only for on-axis (kx = 0) propagation,
and exhibits strong spatial dispersion for oblique propagation
of light.

The presented formalism provides a mechanism to calculate
the deviation of the dispersion of the waves in nanowire
materials from the prediction of local effective medium
technique. In particular, this deviation places fundamental
limits on subwavelengh light manipulation and on increase
of local density of photonics states [3–6]. It is also likely to
affect the cloaking performance of nanowire-based structures
[14–16].

Now that the origin and dispersion of the modes propagating
in nanowire systems is understood, we focus on the analysis
of the optical properties of finite-size wire arrays. Since in
the EMT approximation the fields of TE- and TM-polarized
modes are orthogonal to each other, and since propagation
of TE-polarized light through the wire-based system is only
affected by x,y components of permittivity, this propagation
can be successfully described by Eq. (2) [27–30]. Here we
focus on the analysis of propagation of TM-polarized light.
This analysis must answer two important questions: (i) What
is the structure of electromagnetic waves propagating in the
system, and (ii) what are the additional boundary conditions
needed to determine the amplitudes of the two TM-polarized
modes inside the wire system?

Consistent effective medium description requires that the
unit-cell averaged fields satisfy both constituent relations εj =
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FIG. 4. (Color online) Same as Figs. 3(a)–3(d) for εh = 2.25.

〈εEj 〉/〈Ej 〉 and relations between the field components of the
plane wave 〈εEz〉 = −kx/kz〈εEx〉. With these constraints,
we start from Eqs. (1) and (4), determine the parameters
α−

0 ,e
mg
z , and e

mg
x by normalizing 〈El

z〉 = 〈Emg
x 〉 = 〈Emg

z 〉 = 1,
and construct the fields of the two waves propagating in the
wire media as �E(x,y)eiωt−ikxx−ikzz with

Ex(x,y) = Emg
x ,

(9)
Ez(x,y) = γ mgEmg

z + γ lEl
z|z=0,

and

γ mg = −ε
mg
x,ykx

εzkz

εz − εl

ε
mg
z − εl

,

(10)

γ l = −ε
mg
x,ykx

εzkz

εz − ε
mg
z

εl − ε
mg
z

.

In the expressions above εz ≡ εz(kz) is given by Eq. (6), kz(kx)
by Eq. (7), and εl = 〈ε(x,y)El

z(x,y)〉/〈El
z(x,y)〉.

Equation (9) represents a transition between full-wave
solutions of Maxwell equations in the nanowire array where
the fields oscillate on the scale of the individual wires, and
effective-medium solutions where plane waves propagate in
the homogenized material. Since our model for �Emg assumes
quasistatic limit [Eq. (1)], Eq. (9) is technically valid in the
limit a � 2π/kx, a � λ0. Any effective medium technique is
expected to fail in the limit kx � 2π/a.

III. TRANSMISSION AND REFLECTION PROPERTIES OF
NONLOCAL METAMATERIAL SLABS

Finally, we consider the problem of reflection/refraction of
light at the interface of nonlocal (meta-) materials, extending
the well-developed transfer-matrix formalism [41,42] to non-
local composites. The typical geometry of light propagation
through a finite-thickness slab of nanowire material is shown
in Fig. 5.The problem of calculating reflection/transmission of
light through the slab of nanowire material can be reduced
to the problem of finding the amplitudes of reflected and
transmitted waves throughout the system in terms of the

x

z
1

2

3

c1,1
-c1,1

+

c2,1
-

c2,2
-

c2,1
+

c2,2
+

c3,1
-

FIG. 5. (Color online) Schematic of TMM for a nanowire com-
posite. Each mode is labeled to clarify notation as well as interface
numbers.

amplitude of the single wave incident on the material (c−
1,1).

This problem, in turn, can be reduced to the problem of finding
the amplitudes of waves scattered by each individual interface
in terms of the amplitudes of the (multiple) waves incident at
this interface.

Maxwell equations require continuity of (microscopic) Ex

and Dz, and the effective-medium boundary conditions can
be obtained by averaging these relationships across the unit
cell. Multiple, linearly independent boundary conditions can
be obtained by requiring the continuity of En = 〈e2πin x

a Ex〉
and Dn = 〈e2πin x

a Dz〉 with different integer n.
In particular, for the interface between two conventional

materials, continuity of E0,D0 yield conventional TMM
results. If one of the media is nonlocal metamaterial, we
suggest to complement the above boundary conditions by
the additional boundary condition (ABC) of continuity of D1

(if both materials are nonlocal, addition of second ABC of
continuity of E1 is required). Explicitly, assuming that the top
interface is located at z = z0, the boundary conditions for this
interface are implemented as

c+
1,1E

0
1,1e

ikz1,1 z0 + c−
1,1E

0
1,1e

−ikz1,1 z0

=
∑
l=1,2

c+
2,lE

0
2,le

ikz2,l
z0 + c−

2,lE
0
2,le

−ikz2,l
z0 ,

c+
1,1D

0
1,1e

ikz1,1 z0 − c−
1,1D

0
1,1e

−ikz1,1 z0

=
∑
l=1,2

c+
2,lD

0
2,le

ikz2,l
z0 − c−

2,lD
0
2,le

−ikz2,l
z0 ,

c+
1,1D

1
1,1e

ikz1,1 z0 − c−
1,1D

1
1,1e

−ikz1,1 z0

=
∑
l=1,2

c+
2,lD

1
2,le

ikz2,l
z0 − c−

2,lD
1
2,le

−ikz2,l
z0 . (11)

In the expressions above the double subscript represents the
layer number in the system and the mode number within
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FIG. 6. (Color online) Transmission and reflection of light through a parallel slab of nanowire media, suspended in air for (a)–(d) and in
polymer with εh = 2.25 (e) and (f) with Im(εi) = −0.1 (a), (b), (e), and (f), and Im(εi) = −0.25 (c) and (d). (a), (c), and (e): Local TMM
calculations. (b), (d), and (f): TMM simulations with the nonlocal EMT developed here (lines) and numerical solutions of Maxwell equations
(symbols). Solid lines and filled symbols represent reflection. Dashed lines and empty symbols represent transmission; different colors/shapes
correspond to different angles for incident angles, blue circles: 0◦, green squares: 20◦, red triangles: 40◦.

the layer, while the “±” superscript represent the direction
of the wave propagation (see Fig. 5). The amplitudes of
the wave propagating in the system represent the amplitude
of E0; therefore, the amplitudes of Ex are symmetric with
respect to change of propagation direction kz → −kz, while
the amplitudes of Ez,Dz are antisymmetric

Note that since polarization along the optical axis Pz

is dominated by the field of longitudinal wave, this ABC
is close to the heuristic condition P nonlocal

⊥ = 0, proposed
for homogeneous [38] and composite [35] materials, and
to condition of continuity of εhE0, suggested for ultrathin
high-conductivity wires [32–34] (in general the above ABCs
are not identical to each other). When both media across
the interface are nonlocal, continuity of E1 plays the role of
the second additional boundary condition. Note that due to
presence of longitudinal modes on both sides of the interface,

P nonlocal
⊥ may not vanish in this configuration. As an additional

crosscheck, the proposed combination of ABCs ensures full
transmission of light through “virtual” interface between two
identical nanowire metamaterials.

Transmission and reflection of metamaterial are compared
to the full-vectorial numerical solutions of Maxwell’s equa-
tions, predictions of conventional (local) effective medium
theory, and predictions of the nonlocal EMT developed in this
work in Fig. 6. It is seen the smaller the loss and the larger the
angle of incidence the more important it becomes to take into
account the nonlocal optics of nanowire composites. Interest-
ingly, nonlocal response strongly affects optical response of
the wire metamaterials across the broad range of the effective
permittivities. This effect is most clearly seen in reflection,
but is also visible in transmission, especially in the ENZ
regime.
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IV. CONCLUSIONS

We presented an approach to describe optics of nonlo-
cal wire metamaterials across the whole optical spectrum.
The formalism demonstrates excellent agreement with the
results of numerical solutions of Maxwell’s equations and
is essential in development of an adequate description of
optics in wire arrays, from understanding the true density of
photonic states to the limits of resolution in these systems.
Although not presented here, in our studies we also varied
radius and lattice size in the composite (within p � 0.3 limit
of applicability of Maxwell-Garnett formalism [29]), and
obtained good agreement between analytical and numerical
solutions of Maxwell equations. The developed formalism
can be straightforwardly extended to describe the optics of
other wirelike composites including coated wire structures,
and coax-cable-based systems [24–26].
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APPENDIX A: DISTRIBUTION OF ELECTROMAGNETIC
FIELDS ACROSS THE UNIT CELL

Since the geometry of the system (see Fig. 1) is homo-
geneous along the z direction, the field in the unit cell can
be represented as a linear combination of cylindrical waves
having a well-defined value of the wave vector component kz,
given by Eq. (4).

The symmetry of the unit cell chosen in our work dictates
the choice of m = 0,4,8, . . .. The approach can be generalized
to different unit cells by choosing an appropriate combination
of m values. The technique can be further generalized by
replacing {sin mφ, cos mφ} → exp imφ and expanding the
summation over positive and negative values of m. In-plane
components of the microscopic fields can be expressed as
follows:

El
r = i

κ2

(
kl
z

∂El
z

∂r
+ ω

rc

∂H l
z

∂φ

)
,

El
φ = i

κ2

(
kl
z

r

∂El
z

∂φ
− ω

c

∂H l
z

∂r

)
,

H l
r = i

κ2

(
−εω

rc

∂El
z

∂φ
+ kl

z

∂H l
z

∂r

)
,

H l
φ = i

κ2

(
εω

c

∂El
z

∂r
+ kl

z

r

∂H l
z

∂φ

)
. (A1)

Equation (A1) is valid both inside (r � R) and in-between
(r > R) the nanowires; the value of r determines the choice of

ε,κ =
{
εi,κi, r � R,

εh,κh, r > R.

For brevity, from this point on, we omit the arguments of
Bessel functions; unless otherwise specified, it is assumed that
Jm = Jm(κir); H±

m = H±
m (κhr).

Note that only one of the three sets of coefficients
{am,bm},{α+

m,β+
m }, and {α−

m,β−
m } is independent. We begin

by using the continuity of the tangential components of the
electric and magnetic fields at r = R to obtain an expression
for {am,bm},{α+

m,β+
m } in terms of {α−

m,β−
m }. Explicitly, the

linear relationship⎛⎜⎝ α+
m
...

β+
m

⎞⎟⎠ = Ŝ

⎛⎜⎝ α−
m
...

β−
m

⎞⎟⎠ (A2)

can be derived from⎡⎣ kl
zmH+

m

R

(
1
κ2

i

− 1
κ2

h

)
ω
c

(
J ′

mH+
m

κiJm
− H ′+

m

κh

)
ω
c

(
εiJ

′
mH+

m

κiJm
− εhH

′+
m

κh

)
kl
zmH+

m

R

(
1
κ2

i

− 1
κ2

h

)⎤⎦ (
α+

m

β+
m

)

=
⎡⎣ kl

zmH−
m

R

(
1
κ2

i

− 1
κ2

h

)
ω
c

(
J ′

mH−
m

κiJm
− H ′−

m

κh

)
ω
c

(
εiJ

′
mH−

m

κiJm
− εhH

′−
m

κh

)
kl
zm

R

(
1
κ2

i

− 1
κ2

h

)
H−

m

⎤⎦(
α−

m

β−
m

)
,

(A3)

where each of the four submatrices is a diagonal matrix with its
elements corresponding to the Bessel function combinations
evaluated at r = R. In this cylindrically symmetric case,
the S matrix can be formally divided into four (diagonal)
submatrices

Ŝ =
[
S11 S12

S21 S22

]
. (A4)

The components S11 and S22 represent polarization-preserving
TE, TM reflection, while the components S12,S21 represent
polarization-mixing coupling of TM to TE waves. Note that
in the cylindrical geometry, polarization-preserving reflection
is only possible when either m = 0 or kz = 0, which yields
det S12 = det S21 = 0.

The relationships

amJm = α+
mH+

m + α−
mH−

m ,

bmJm = β+
mH+

m + β−
mH−

m (A5)

allow one to calculate the amplitudes {a,b} based on the
amplitudes of {α−,β−}.

Combined, Eqs. (1), (A1), (A2), (A3), and (A5) provide
complete information about the field distribution inside the
unit cell once the parameters kl

z and {α−,β−} are known. The
formalism presented here can be straightforwardly expanded to
calculate the field inside the structures with more complicated
unit cells, that include multishelled wires, coax-cable-like
systems, etc. (see, e.g., Refs. [24–26]). The formalism can
be further extended to calculate fields inside the systems with
noncircular cross section of the wires, in which case the S

matrix ceases to be block diagonal [43–45].

APPENDIX B: DISPERSION OF THE
LONGITUDINAL MODE

We now focus on the problem of calculating the dispersion
of the mode, which reduces to the problem of calculating
the relationship between internal structure of the unit cell
and the set of parameters kz and {α−,β−}. The field of the
eigenmode propagating in the periodic array of wires should
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satisfy the Bloch-periodicity condition

E

H

∣∣∣∣
x=− a

2 ,y

= E

H

∣∣∣∣
x=+ a

2 ,y

(B1)

(here we enforce periodicity of y components of electric and
magnetic fields). Although this condition should ideally be
satisfied for all values of the y coordinate from the interval
y ∈ [−a/2,a/2], in practice it suffices to enforce the Bloch-
periodicity condition for a number of fixed points {xj ,yj } equal
to the number of m values in Eq. (4). In our calculations we
assume yj = a

2Nm
j , with Nm being the number of m terms in

expansion in Eq. (4). Our analysis suggests that the choice of
the exact location of the points does not significantly alter the
dispersion of the mode, derived with the technique described
in this work.

Noting that sin(φ) = sin(π − φ), cos(φ) = − cos(π − φ),
sin(mφ) = − sin[m(π − φ)], and cos(mφ) = cos[m(π − φ)],
it can be shown that components of electric and magnetic field
possess the following symmetry:

Ey(x,y) = Ey(−x,y),

Hy(x,y) = −Hy(−x,y).

Therefore, Eq. (B1) becomes equivalent to(
0̂ 0̂̂̃H+ Ĥ+

) (
α+

m

β+
m

)
+

(
0̂ 0̂̂̃H− Ĥ−

) (
α−

m

β−
m

)
=

(
0
0

)
,

(B2)

where the elements of the submatrices H± are evaluated based
on Eqs. (1), (A1), and (A2) according to the following rules:
The submatrices H̃ and H represent the magnetic field of
TM- and TE-polarized waves, respectively; the superscript of
the expression ± corresponds to the superscript of the Hankel
function; and the jmth element of each submatrix represent the

FIG. 7. (Color online) Dispersion of the modes guided by the
nanowire metamaterial, calculated with full-wave solutions of
Maxwell equations (symbols), the analytical technique presented in
this work (solid lines), and with earlier approach, designed for highly
conducting wires [33,34] (dashed lines); inset in (a) shows Re[εi];
Im[εi] = −0.1; εh = 1.

0
k c/ω
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k z
c/
ω
]

(a)
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0 0.5 1 1.5

-Im
[k
zc
/ω
]

(b)

0
kxc/ω

0.5 1 1.5

R
e[
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ω
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]
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FIG. 8. (Color online) Same as Fig. 7 but for highly conductive
wires εi = −200 − 0.1i; note that |Im[kzc/ω]| � |Re[kzc/ω]| in
(a) and (b) and that |Im[kzc/ω]| � |Re[kzc/ω]| in (c) and (d).

y component of the magnetic field due to mth Hankel function,
evaluated at the point {xj ,yj } = {a/2,yj }.

With the help of the S matrix, Eq. (B2) can be further
simplified as(

0̂ 0̂̂̃H+Ŝ11 + Ĥ+Ŝ21 + ̂̃H− ̂̃H+Ŝ12 + Ĥ+Ŝ22 + Ĥ−

)(
α−

m

β−
m

)

=
(

0
0

)
. (B3)

Finally, we represent the amplitudes of the field of longitu-
dinal TM-polarized wave as (α

−
m

0 ) with values of the coefficients

FIG. 9. (Color online) Effective permittivity [defined as εz =
〈ε(x,y)Ez(x,y)〉/〈Ez(x,y)〉, see text] calculated with full-wave so-
lutions of Maxwell equations (symbols), the analytical technique
presented in this work (solid lines), and with earlier approach,
designed for highly conducting wires [33,34] (dashed lines); note
the difference in vertical scale between (a) and (c) and (b) and (d).
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given by nontrivial solutions of the linear relationship

Ĥyα
− = (̂̃H+Ŝ11 + Ĥ+Ŝ21 + Ĥ−)α− = 0, (B4)

resulting in Eq. (5).

APPENDIX C: COMPARISON WITH EARLIER
NONLOCAL HOMOGENIZATION ATTEMPTS

As described in the paper, the problem of light interaction
with nonlocal wire media has been considered before [24–35].
The majority of the studies that focus on high-frequency
response of wire composites [24–31] predict a single extraor-
dinary and a single ordinary wave at every frequency. The
majority of studies that do predict existence of additional
electromagnetic waves [32–35] have focused on optics for
highly conductive (PEC-like) wires. References [33] and [34]
present an attempt to generalize the developed formalism to
the case of plasmonic media. Figures 7, 8, and 9 present a

comparison of the formalism from Refs. [33] and [34], the
approach described in this work, and full wave numerical
solutions of Maxwell equations.

Figures 7 and 8 clearly demonstrate that, in contrast to the
formalism presented in this work, the approach developed in
Refs. [32–34] severely underestimates effective modal index
of the waves propagating in plasmonic wire media (similar
phenomenon can also be seen in Fig. 3 of Ref. [33]). This un-
derestimation yields significant errors in calculations of optical
properties of wire composites, seen in Fig. 5 of Ref. [34] that
can be only be eliminated by using heuristic correction factor.

Finally, we note that our formalism not only adequately
describes the effective modal index of light propagating in
plasmonic wire media, but it also correctly predicts effective
nonlocal permittivity of these modes. The latter fact is clearly
seen in Fig. 9 (note that due to difference in vertical scale
agreement for Im[εz] looks worse than the agreement for
Re[εz]).
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