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We study analytically the evolution of superconductivity in clean quasi-two-dimensional multiband supercon-
ductors as the film thickness enters the nanoscale region by mean-field and semiclassical techniques. Tunneling
into the substrate and finite lateral size effects, which are important in experiments, are also considered in our
model. As a result, it is possible to investigate the interplay between quantum coherence effects, such as shape
resonances and shell effects, with the potential to enhance superconductivity, and the multiband structure and
the coupling to the substrate that tend to suppress it. The case of magnesium diboride, which is the conventional
superconductor with the highest critical temperature, is discussed in detail. Once the effect of the substrate is
considered, we still observe quantum size effects such as the oscillation of the critical temperature with the
thickness but without a significant enhancement of superconductivity. In thin films with a sufficiently longer
superconducting coherence length, it is, however, possible to increase the critical temperature above the bulk
limit by tuning the film thickness or lateral size.
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I. INTRODUCTION

Advances in sample growth and a better experimen-
tal control have substantially reinvigorated research in
low-dimensional superconductivity [1–6]. Refined scanning
tunneling microscope techniques have been recently em-
ployed [4,7] to study superconductivity in single isolated
nanograins and also measure its size. It has also become
possible [5,6] to measure with unprecedented precision the
size dependence of the capacitance in nanoscale supercon-
ducting islands. Epitaxial growth of superconducting thin
films by adding single atomic layers [1–3], together with
scanning tunneling microscope techniques, have permitted
one to track the evolution of superconductivity as the
film approaches the two-dimensional limit. For Pb, it was
found that, on average, the critical temperature (Tc) is a
decreasing function of the thickness. Oscillations, below the
bulk critical temperature, were observed for intermediate
thicknesses [1].

These oscillations in Tc have been predicted theoreti-
cally [8] in the limit of no coupling to the substrate. However,
the maxima of the oscillating pattern, usually referred to
as shape resonances, were expected to correspond to Tc

substantially higher than in the bulk limit. These shape
resonances occur as a consequence of an enhancement of
the spectral density at the Fermi energy for thicknesses for
which a new quantum state becomes available in the well
potential that describes the confinement in the dimension
perpendicular to the thin film. It was later realized [9–12]
that more realistic boundary conditions, including the charge
neutrality condition, suppress this enhancement. In contrast,
recent studies of heterostructures and interfaces based on
cuprates [13], iron pnictides [14], and LaAlO3/SrTiO3 [15]
heterostructures have clearly shown that superconductivity can
occur on a single atomic layer and that the critical temperature
can be enhanced with respect to the bulk limit.

From these results, it is not yet clear whether it is possible
to enhance superconductivity in thin films by simply tuning
the thickness. The enhancement observed in interfaces and het-

erostructures based on cuprates or iron-based superconductors,
which is of special interest due to its high critical temperature,
is difficult to model theoretically as there is not yet a good
understanding of these materials. In contrast, magnesium
diboride (MgB2), a two-band superconductor, is a more
attractive choice as it has a relatively high critical temperature
(∼39 K) but still is a conventional superconductor [16]
for which many theoretical tools are available. In recent
experiments, it has been possible to grow good quality MgB2

films of thicknesses less than 10 nm [17–19]. Despite these
advances, the experimental control and growth techniques in
MgB2 films are still not comparable to Pb and other metallic
superconductors, but the gap is rapidly closing.

It is, therefore, timely to develop a theoretical description of
quantum size effects in multiband thin-film superconductors
that can clarify whether superconductivity is enhanced in
some region of parameters. Indeed, several papers [20–25]
have already studied size effects in thin-film multiband
superconductors, but a definitive answer is still missing:
Bianconi and co-workers [21–24] were the first to suggest, by
combining qualitative arguments with numerical simulations,
that shape resonances could enhance superconductivity in
MgB2 and others multiband superconductors. Shell effects
in multiband superconductors [25], though suppressed with
respect to the one-band case, are still capable of increasing the
critical temperature with respect to the bulk limit. By contrast,
a numerical analysis of MgB2 thin films [20] that included the
charge neutrality condition at the surface, but did not address
directly the role of the substrate or shell effects, showed no
enhancement of superconductivity.

Here we generalize the one-band model of Thompson
and Blatt [8] for infinite thin film to the multiband case,
including finite lateral size effects and the coupling to the
substrate. Explicit analytical results are obtained by combining
mean-field and semiclassical techniques. Therefore, our model
is capable of accounting for the interplay of shape resonances
and shell effects that can enhance superconductivity and the
multiband structure and the substrate that tend to suppress
these coherence effects. All of these ingredients are important
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in the description of realistic thin films with negligible
disorder.

The main results of the paper are summarized as follows: for
an infinite, free-standing, multiband thin film, we observe that
the critical temperature is a nonmonotonous function of the
thickness with maxima well above the bulk limit, but smaller
than in the one-band case. Once the substrate is included, the
oscillations in the Tc are significantly reduced. For MgB2,
we do not observe a substantial enhancement of the critical
temperature. For materials, such as metallic superconductors,
with a longer coherence length, or weaker electron-phonon
coupling, size effects are stronger and an enhancement of
Tc by tuning the thickness is feasible. A finite lateral size
does also affect the average value of the shape resonances and
induces shell effects with the potential to further increase Tc

with respect to the bulk limit.
The paper is organized as follows. First we review the one-

band thin-film model of Thompson and Blatt [8]. Then, within
a mean-field approach, we generalize it to the case of two-band
superconductors including, by semiclassical techniques, the
effect of a finite lateral size and the leakage of probability
due to the coupling with the substrate. In the second part of
the paper, we explore the evolution of Tc with thickness as a
function of the lateral size, band structure parameters, electron-
phonon interaction strength, and the coupling to the substrate.
We discuss the optimal settings to enhance superconductivity
in realistic multiband thin films. Explicit results are presented
for MgB2 as well as for other band structure parameters and
electron-phonon coupling constants.

II. BACKGROUND: ONE-BAND SUPERCONDUCTING
THIN FILM

We start with a brief summary of the Thompson and
Blatt [8] mean-field description of shape resonances in
free-standing—Dirichlet boundary conditions—one-band thin
films. For a thin film of infinite lateral size, the one-particle
electron eigenstates are simply

ψ�k(�r) ∼ un(x)
1

L
ei(kyy+kzz), (1)

where periodic boundary conditions have been imposed in the
lateral dimensions, y and z, and ψ�k(x = 0) = ψ�k(x = a) = 0
in the perpendicular dimension x where a is the thin-film
thickness. The latter results in

un(x) =
√

2

a
sin

(nπx

a

)
, n ∈ N. (2)

For a finite-size system, where the spectrum is discrete, the
BCS Hamiltonian in terms of a set of good quantum numbers,
for instance n in Eq. (2), is

H =
∑
n,σα

ξnαcα†

nσ cα
nσ +

∑
n,n′,α,β

cα†

n↑cα†

n↓Vαn,βn′c
β

n′↓c
β

n′↑β,

(3)

Vαn,βn′ = −λαβ δ̃αV
∫
V

ψ2
nα(�r)ψ2

n′β(�r)d3�r,

where Vαn,βn′ are the interaction matrix elements, λαβ are the
dimensionless inter- and intraband coupling constants, V is the
volume, δ̃α is the mean level spacing (the inverse of the density
of states at the Fermi level), σ is the spin index, α and β are

the band indices, and ξnα = εnα − μ and cnσ , c
†
nσ are the usual

quasiparticle annihilation and creation operators.
The maximum quantum number allowed, n ≡ ν in Eq. (2),

must occur for a film thickness in the interval [aν,aν+1],
where [8]

a3
ν = π

2N/V

(
2

3
ν3 − ν2

2
− ν

6

)
. (4)

For a thickness a ∈ [aν,aν+1], the superconducting order
parameter �, obtained from the Hamiltonian given by Eq. (3)
in the mean-field approximation, and chemical potential μ are
given by [8]

μ = π�
2a

νm

[
N

V
+ π

6a3
ν

(
ν + 1

2

)
(ν + 1)

]
,

� = �ωD

sinh[Ka/(ν + 1/2)]
, K = 1

λ

(
3N

πV

)1/3

,

(5)

where λ is the dimensionless coupling constant, N/V is the
number of electrons per unit volume, and �ωD is the Debye
energy.

For sufficiently small thicknesses a, ν = 0 and the system
is purely two dimensional. However, as the thickness is in-
creased, eventually ν = 1, which corresponds to a subband of
allowed states in the perpendicular dimension. This increases
the spectral density around the Fermi energy. The dimension-
less electron-phonon coupling constant is proportional to the
spectral density, so an enhancement of the latter increases
the former. As a consequence, the order parameter and the
critical temperature increase as well. This is what is usually
called a shape resonance. As the thickness further increases,
there exists a region in which still ν = 1. The spectral
density gradually becomes smaller and the critical temperature
decreases. For the smallest thickness for which ν = 2, a new
subband is available which induces a new enhancement of
superconductivity. As is depicted in Fig. 1, that results in a
sawlike dependence of the superconducting gap and the critical
temperature as a function of the film thickness.
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FIG. 1. The superconducting order parameter � at T = 0 K in
units of the bulk value �bulk as a function of the film thickness
for a free-standing one-band superconducting thin film [8]. Shape
resonances are clearly observed as the thickness is increased each
time a new state becomes available in the direction perpendicular to
the film.
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III. TWO-BAND SUPERCONDUCTING THIN FILM

A. Free-standing film model

In this section, we extend the Blatt and Thompson formal-
ism to the case of a two-band superconductor. Assuming again
periodic boundary conditions in the lateral dimensions and
Dirichlet boundary conditions in the perpendicular dimension,
we have the equivalent of Eq. (1) in each band, but now with
two quantum numbers: nσ , nπ , analogous to n in Eq. (2). The
dispersion relation is still quadratic,

ε
(σ )
�k = �

2

2

[(
k(σ )
y

)2

m2σ

+
(
k(σ )
z

)2

m3σ

]
+ �

2

2m1σ

(nσπ

a

)2
,

(6)

ε
(π)
�k = �

2

2

[(
k(π)
y

)2

m2π

+
(
k(π)
z

)2

m3π

]
+ �

2

2m1π

(nππ

a

)2
+ e0π ,

but with an offset e0π between the two bands. A mean-field
treatment of the microscopic Hamiltonian given by Eq. (3) for
the two-band system [20,23–25] results in the following two
coupled gap equations at zero temperature:

�σ = −1

2

∑
k′

[
�σVσkσk′√

(εσ − μ)2 + �2
σ

+ �πVσkπk′√
(επ − μ)2 + �2

π

]
,

�π = −1

2

∑
k′

[
�σVπkσk′√

(εσ − μ)2 + �2
σ

+ �πVπkπk′√
(επ − μ)2 + �2

π

]
,

(7)

while at finite temperature a factor
tanh[

√
(εα − μ)2 + �2

α/2kBT ] multiplies each term on
the right-hand side of the equations; the index α takes the
value of the index of the order parameter in the corresponding
term.

Vαkβk′ are the interaction matrix elements corresponding to
two intraband coupling constants and two interband coupling
constants,

Vαkβk′ = −Jαβ

∫
V

d3�r|ψ (α)
k (�r)|2|ψ (β)

k′ (�r)|2

= − Jαβ

aL2

(
1 + 1

2
δnαn′

β

)
,

(8)

where α and β take the value of the band labels σ and π .
Jαβ = λαβV δ̃α and ψ

(α)
k (�r) are of the form given by Eq. (1).

We then substitute Eq. (8) into (7) and perform the sums
in k(σ )

y , k(σ )
z , k(π)

y , k(π)
z by introducing the two-dimensional

density of states in each band.1 After carrying out the resulting
integrations, we obtain the following system of two coupled
equations at T = 0:

�σ = 1

2aL2

[
�σJσσ g

(σ )
2Df (σ ) + Jσπ�πg

(π)
2Df (π )

]
,

(9)

�π = 1

2aL2

[
�πJππg

(π)
2Df (π ) + Jπσ �σg

(σ )
2Df (σ )

]
,

with f (α) = (να + 1
2 )asinh( �ωD

�α
).

1For the dispersion relations given by Eq. (6), the two-dimensional

density of states is g
(α)
2D = L2√

m1αm2α

π�2 .

For the calculation of the critical temperature, a simple
algebraic manipulation of Eq. (7) leads to the following
relation between the two gaps:

1 + 1
2

∑
k′

Vσkσk′√
(εσ −μ)2+�2

σ

tanh
√

(εσ −μ)2+�2
σ

2kBT

1
2

∑
k′

Vπkσk′√
(εσ −μ)2+�2

σ

tanh
√

(εσ −μ)2+�2
σ

2kBT

=
1
2

∑
k′

Vσkπk′√
(επ−μ)2+�2

π

tanh
√

(επ−μ)2+�2
π

2kBT

1 + 1
2

∑
k′

Vπkπk′√
(επ −μ)2+�2

π

tanh
√

(επ −μ)2+�2
π

2kBT

. (10)

Repeating the steps described previously to obtain Eq. (9)
and taking the limits �σ ,�π → 0 and T → Tc gives

1 − Jσ,σ gσ
2D

2aL2

(
νσ + 1

2

)
F (Tc)

− Jπ,σ gσ
2D

2aL2

(
νσ + 1

2

)
F (Tc)

= − Jσ,π gπ
2D

2aL2

(
νπ + 1

2

)
F (Tc)

1 − Jπ,π gπ
2D

2aL2

(
νπ + 1

2

)
F (Tc)

.

(11)
We have used that for b � 1,

∫ b

0 dx tanh(x)/x �
log( 4eγ

π
b) = F (T ), with γ the Euler-Mascheroni constant and

b = �ωD

2kBTc
. We note that νπ and νσ , i.e., the generalization of

ν in Thompson and Blatt’s one-band model given by Eqs. (4)
and (5), are the maximum integers for which the condition
|ε(α)

�k − μ| � �ωD holds. The superconducting gaps �α(T =
0) and the critical temperature Tc are therefore obtained by
solving Eqs. (9) and (11), respectively. Similarly, the chemical
potential μ is obtained analytically from

N =
∫ μ

0

[
gσ

3D(E) + gπ
3D(E)

]
dE

=
νσ∑

j=1

∫ μ−ησ
j

0
gσ

2Ddξσ
xy +

νπ∑
j=1

∫ μ−ηπ
j

0
gπ

2Ddξπ
xy

=
νσ∑

j=1

gσ
2D

(
μ − ησ

j

) +
νπ∑

j=1

gπ
2D

(
μ − ηπ

j

)
, (12)

where ηπ
j (a) = e0π + �

2π2j 2

2m1π a2 and ησ
j (a) = �

2π2j 2

2m1σ a2 .
Using Faulhaber’s formula for the second power sum of the

first n positive integers, it is also straightforward to obtain an
explicit expression for the chemical potential,

μ = aπ�
2

νσm∗σ + νπm∗π

{
N

V
+ π

2a3

[
m∗σ h(νσ )

m1σ

+ m∗πh(νπ )

m1π

]}

+ e0πνπm∗π

νσm∗σ + νπm∗π
,

(13)

with m∗α = √
m2αm3α and h(να) = ν3

α

3 + ν2
α

2 + να

6 .
In order to find a = a(νσ ,νπ ), we first assume a value of

νσ , νπ such that μ � ηπ
νπ

(a) � ησ
νσ

(a), i.e.,

νσ �
√

m1σ

m1π

ν2
π + 2m1σ a2

π2�2
e0π . (14)

Substituting, for every νπ = 1,2,3, . . ., both μ and νσ in
Eq. (13), we solve for a and then calculate all of the possible
states that are occupied as the thickness increases. In order
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to proceed, we start with arbitrary values of νσ , νπ and
assume that either ησ

νσ
> ηπ

νπ
or ησ

νσ
< ηπ

νπ
, which results either

in μ � ησ
νσ

or in μ � ηπ
νπ

where, in order to simplify the
notation, we have dropped the dependence in the thickness
a. By substituting these expressions into Eq. (12), we obtain
two equations for a which are solved numerically. Once a is
obtained, we check which assumption (ησ

νσ
> ηπ

νπ
or ησ

νσ
< ηπ

νπ
)

holds and obtain the chemical potential from Eq. (13).
From these solutions, we get the chemical potential given by

Eq. (13), the gap given by Eq. (9), and the critical temperature
given by Eq. (11) for a fixed νσ , νπ and a ∈ [aνσ νπ

,aν̃σ ν̃π
],

where νσ νπ , ν̃σ ν̃π are consecutive states of the spectrum.

B. Role of the substrate

In realistic circumstances, a thin film is never isolated. It is
usually placed on a substrate so there is some probability for
the electrons to hop from the film into the substrate or at least
penetrate a finite distance in it. Generally, this can be taken
into account by assigning a finite lifetime to the quantized
states and also by modeling the substrate thin-film interface
by a potential more realistic than an infinite well.

The details of the coupling between the substrate and the
thin film are very sensitive to the substrate material and the na-
ture of the interface which depends on the growth techniques.
A detailed microscopic description of the tunneling process is
beyond the scope of this paper.

Here we use recent experimental results [19] for MgB2 and
assume a linear dependence for the level broadening with the
film thickness. We note that both the energy spectrum and the
wave functions inside the film are modified by tunneling into
the substrate. The latter has a direct impact on the interaction
matrix elements given by Eq. (8), while the former smoothes
out the one-dimensional density of states from a set of isolated
Dirac’s δ functions to a distribution with broader peaks.

In order to proceed, we write the density of states [26] as

gα(E) = dnα(E)

dE

{
1 + 2

∞∑
l=1

κ(l) cos[2lπnα(E)]

}
, (15)

where nα(E) = √
(E − e0α)/Eα

0 and n ∈ N in the case of a
infinite well potential, Eα

0 = �
2π2/(2m1αa2), e0σ = 0, and

e0π �= 0. For no tunneling into the substrate, κ(l) = 1 and
we recover the usual expression in terms of Dirac δ functions.
Tunneling or any other decoherence mechanism makes the
system open, which effectively induces level broadening,
namely, the eigenvalues become complex. A natural way to
mimic this effect is to introduce a cutoff,

κ(l) ≈ e−(lt/τ )2
, (16)

where t = 2m1αa/�kα
n and τ is the typical lifetime of a

quasiparticle at that energy. Physically, it is the typical time
that an electron stays in the thin film. The specific functional
form of κ(l) depends to some extent on the mechanism that
causes decoherence. The above result is obtained (see Sec. 5.5
in Ref. [26] for more details) by replacing the original Dirac δ

functions with Gaussians of width � ∼ �/τ .
Regarding the energy quantization, we model the thin film

plus the substrate as a semi-infinite potential well, infinite in the
film/vacuum interface and finite in the film/substrate interface.

The height of the step corresponds to the mismatch between
the bulk Fermi levels of the film and substrate materials.
Furthermore, it will also be assumed that the lifetime of all
of the states is described by a single parameter since the total
energy of the states is always very close to the Fermi level.

C. Chemical potential of a two-band film on a substrate

In order to compute the chemical potential in the presence
of the substrate, we apply the Poisson summation formula [27],
given in Eq. (A1), to Eq. (12) (see Appendix). This results in
the following transcendental equation for μ:

N =
νσ∑

j=1

gσ
2D

(
μ − ησ

j

) +
νπ∑

j=1

gπ
2D

(
μ − ηπ

j

)

=
∑

α

gα
2D

{
2

3
√

Eα
0

(μ − e0α)3/2 − μ − e0α

2

+
∞∑
l=1

[
−

√
(μ − e0α)Eα

0

π2l2
cos

(
2πl

√
μ − e0α

Eα
0

)

+ Eα
0

2π3l3
sin

(
2πl

√
μ − e0α

Eα
0

)]
e−(lt/τα )2

}
, (17)

where the sum over α refers to both bands, Eα
0 =

�
2π2/(2m1αa2), e0σ = 0 and e0π �= 0.

D. Matrix elements and critical temperature of a
two-band film on a substrate

Before we proceed to the computation of the critical
temperature, we study the modification of the interaction
matrix elements by the coupling to the substrate. We expect
smaller matrix elements than those given by the infinite
potential well model [8] since the amplitude of probability for
all of the states inside the well is smaller. Moreover, since the
energy states have a finite lifetime, the interaction is weighted
by a smooth density of states, resulting in smooth shape
resonances. The eigenstates inside a semi-infinite potential
well are

u(in)
n (x) = An sin(knx), (18)

where kn is the solution of the quantization condition: kna =
nπ − 2 arctan(−k/κ̃n), κ̃n = min

mout
κn = min

mout

√
2mout

�2 (V0 − En)
obtained after imposing the BenDaniel-Duke boundary condi-
tions [28]:

1

mout

∂u(out)
n

∂x

∣∣∣∣
x=b

= 1

min

∂u(in)
n

∂x

∣∣∣∣
x=b

, (19)

where b is the position of the interface and mout (min) is the
effective mass outside (inside) of the well. We have taken the
free electron mass for mout and m1α for min.

The matrix elements resulting from the above expression for
un lead to a system of equations for two momentum-dependent
superconducting order parameters, which are difficult to solve.
In order to have a more tractable expression, we approximate
the interaction of all of the states by the interaction of the states
whose energies are equidistant between those corresponding to
the highest and lowest occupied levels. If the highest (lowest)
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occupied states were used to estimate the interaction, the
eigenstates’ leakage out of the film would be overestimated
(underestimated). In our notation, this means the replacement
of An by Amα

and kn by kmα
, where mα refers, from now on,

to the state whose energy is the closest to being equidistant
from the highest- and the lowest-energy states. Moreover, we
approximate kn in the argument of the sine of Eq. (18) by
nπ/a, while leaving the amplitude An unchanged.

With these further simplifications, the matrix elements are

Vαkβk′ = −aJαβ

4L2
Kαβ

(
1 + 1

2
δnαn′

β

)
, (20)

with Kαβ = |Amα
|2|Amβ

|2, given explicitly in Eq. (A3). We
now take into account the smoothed spectrum given by Eq. (15)
due to the substrate. The sums of the matrix elements in
Eq. (10) are simplified to

νβ∑
n′

β=1

(
1 + 1

2
δnαn′

β

)
= 1

2
+

∫ μ

e0β

gβ(E)dE = f (β),

(21)

f (β) ≡ 1

2
+

√
μ − e0β

E
β

0

+
∞∑
l=1

e
− t l

τβ

πl
sin

(
2πl

√
μ − e0β

E
β

0

)
,

where e0σ = 0 and e0π �= 0. Finally, we substitute Eqs. (20)
and (21) into Eq. (10) to obtain

1 − aJσ,σ gσ
2D

8L2 Kσσf (σ )F (Tc)

− aJπ,σ gσ
2D

8L2 Kπσf (σ )F (Tc)
= − aJσ,π gπ

2D

8L2 Kσπf (π )F (Tc)

1 − aJπ,π gπ
2D

8L2 Kππf (π )F (Tc)
,

(22)

where F (Tc) = log( 4eγ

π
�ωD

2kBTc
), Kαβ is given in Eq. (A3), and

f (α) is given in Eq. (21). The final step to compute the critical
temperature is to solve Eq. (22) for Tc and different thicknesses.

E. Lateral size effects in a two-band superconducting thin film

We now study the case in which the thin-film lateral size
dimensions (y = L1 and z = L2) become comparable to the
film thickness a. We will not go through the details of the
calculations regarding the modification of the two-dimensional
density of states. A detailed derivation can be found in
Ref. [29]. The underlying idea is to use the semiclassical
approximation, valid in the limit (kF L)−1 � 1 with L in this
case the lateral film size, to write down the density of states as
a sum over the classical periodic orbits of the two-dimensional
system. The density of states is an oscillatory function of the
energy around the Fermi level so, in principle, it should enter
explicitly in the sums over ky and kz which are needed to
solve the gap equation (7). However, it was demonstrated in
Ref. [29] that the density of states can be taken out of the
integral, provided it is smoothed out, as follows:

g̃
(α)
2D � g

(α)
2D

[
1 + g(α) + g

(α)
l

]
, (23)

where the correction g(α) is an average term, while g
(α)
l is an

oscillatory term that depends on the length l of the periodic

orbits in the yz plane. These corrections are

g(α) = − L1 + L2

k
(α)
yz L1L2

,

g
(α)
l = g

(2α)
12 − 1

2
g

(1α)
1 − 1

2
g

(1α)
2 ,

(24)

and

g
(2α)
12 =

∞∑
�n�=�0

J0
(
k(α)
yz L

1,2
�n

) × K0
(
L

1,2
�n /ξ (α)

)
,

g
(1α)
1 = 4

k
(α)
yz L2

∞∑
n=1

cos
(
k(α)
yz L(1)

n

) × K0
(
L(1)

n /ξ (α)
)
, (25)

g
(1α)
2 = 4

k
(α)
yz L1

∞∑
n=1

cos
(
k(α)
yz L(2)

n

) × K0
(
L(2)

n /ξ (α)
)
,

with α the band index and k(α)
yz the in-plane Fermi

momentum. L
1,2
�n = 2

√
L2

1n
2
1 + L2

2n
2
2, L(1)

n = 2nL1, L(2)
n =

2nL2, n, n1, n2 ∈ N are the lengths of the periodic orbits.
J0(x) is the Bessel function of the first kind and K0(x) is the
modified Bessel function of the first kind which suppresses
the contribution of orbits longer than the superconducting
coherence length in the yz plane, ξ (α). Therefore, replacing
g

(α)
2D by g̃

(α)
2D in the equations obtained for an infinite thin film,

we simulate a finite lateral size, comparable but still larger
than the thickness.

F. Quantum and thermal fluctuations

The mean-field formalism that we use is only applicable
for sufficiently large systems for which quantum and ther-
mal fluctuations are negligible. In the case of a thin film
with infinite lateral size, quantum fluctuations due to size
effects are negligible. At finite temperature, experimental
results [3,18,30] seem to be well described by a mean-field
theory even in the limit of few monolayers. This is, at
first glance, surprising because, at least in the strictly two-
dimensional limit, it is expected that at finite temperature there
is a Kosterlitz-Thouless transition due to vortex-antivortex
unbinding. A reason for this unexpected behavior might be
that the coupling to the substrate increases the effective system
dimensionality. However, this must still be considered an open
problem. Here we take a conservative approach and present
results for thin films of at least several monolayers where it
is expected, especially taking into account the coupling of the
substrate, that a mean-field approach is applicable.

As the finite lateral size enters the nanoscale region, the thin
film becomes effectively a zero-dimensional grain. At very
low temperatures (T � Tc), the deviations from mean-field
predictions caused by quantum fluctuations can be neglected
when the mean level spacing δ is smaller than the BCS
bulk energy gap, δ/�bulk � 1 [31,32]. At finite temperature,
thermal fluctuations smear out the superconducting phase
transition in a region of temperatures γ Tc, with γ = √

δ/kBTc,
around the bulk Tc [33]. We restrict the range of lateral sizes
so that these deviations from the mean-field predictions are
negligible.
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IV. RESULTS

In this section, we employ the theoretical formalism
developed previously in order to study the interplay between
shape resonances and shell effects that, in some cases, enhance
superconductivity. We also investigate the influence of the
coupling to the substrate and the multiband structure that tend
to suppress these size effects.

We present explicit results for the evolution of supercon-
ductivity in a two-band thin film as a function of the thickness,
including also the coupling to the substrate. First we report
results on the differences between one and two bands, the
dependence of Tc on the coupling constant, and the band
structure parameters. We then investigate the role of shell
effects that occurs when the lateral size becomes comparable
to the thickness. Most results correspond to MgB2, but we also
explore a broader range of parameters (see below) in order to
clarify whether in realistic situations it is feasible to observe an
enhancement of superconductivity due to shape resonances.

The coupling to the substrate is modeled by a finite step
potential of height (V0), which corresponds to the difference
between the substrate and the thin-film chemical potential.
Moreover, we assign a phenomenological finite lifetime to all
of the states τ = γ + βa, where a is the thickness and the
parameters β and γ are estimated from recent experimental
results in MgB2 thin films [19].

As was mentioned previously, V0 and τ modify the density
of states in the superconductor and therefore are important to
understand its role to suppress size effects.

The effective masses that enter in quadratic dispersion
relation for each band, calculated from miα = |∂2E(α)/∂k2

i |
where E(α) is the full energy band for MgB2 [34], are, in units
of the electron mass,

m1σ = 3.27, m2σ = m3σ = 0.28,

m1π = 0.33, m2π = m3π = 1.00.
(26)

The constant e0π is set to different values as a way to study
the influence of the band structure on superconductivity.
The Debye temperature in MgB2 is θD = 1050 K, which
corresponds to a Debye energy ED = �ωD = 90.48 meV. The
factors Jα,βg

β

2D/2aL2 in Eq. (11) and aJα,βg
β

2DKαβ/8L2 in
Eq. (22) were fixed such that the solution in the bulk limit is
the MgB2 critical temperature Tc ≈ 38.01 K. Finally, we use
the following set of coupling constants [20]:

gσ = 0.149 eV−1, gπ = 0.29 eV−1,

Ṽσ,σ = 0.694 eV, Ṽπ,π = 0.056 eV,

Ṽσ,π = Ṽπ,σ = 0.353 eV,

λσσ = 0.206, λππ = 0.033, λσπ = 0.205, λπσ = 0.105.

(27)

In Sec. IV D, we employ another set of λαβ in order to study the
dependence of size effects on the electron-phonon coupling.

A. Influence of the band structure on the shape resonances of a
two-band thin film

In this section, we analyze in detail the influence of the
band structure parameters on the shape resonances observed

2 
3 

e0

2 
3 

e0

Ex 

kx 

(a) (b) 

FIG. 2. (Color online) Sketch of the dispersion relation for the σ

band (blue) and π band (red). The number of available states in the σ

band between two consecutive states of the π band increases as e0π

increases.

in a two-band thin film of infinite lateral size. As it has
been explained previously [8], the superconducting properties
of thin films show a nonmonotonous dependence with the
thickness. A sawlike dependence is observed for one-band thin
films where the peaks are located at values of the thickness for
which a new energy subband of allowed states is occupied.
Once such state is occupied, the spectral density decreases
and the critical temperature drops as the thickness increases,
until the following empty state can be filled. If two conduction
bands are present, the same mechanism applies to each one
separately. Therefore, the shape resonances’ pattern in the
two-band case is presumably more complex or intricate than
that of a one-band film depicted in Fig. 1.

According to Eq. (6), the parameters that control the
dispersion relation are the offset between the bands e0π and the
effective masses m1α . As e0π is slowly increased, the number
of smaller peaks, corresponding to subbands in the π band
not present in the one-band case, is expected to increase. This
behavior is straightforward to explain by simple inspection of
the two dispersion relations; see Fig. 2.

We observe that, as the energy increases, states in the two
bands become closer in energy. At the same time, for larger
e0π [see Fig. 2(b)], the number of states in the σ band (blue)
between two consecutive states of the π band (red), labeled
“2” and “3” in the figure, is larger than for smaller e0π ; see
Fig. 2(a). Therefore, as e0π increases, there are more occupied
states in the σ band before the next state in the π band is filled.

Furthermore, as m1σ and m1π decrease, the discrete energy
states are less closely packed. Therefore, when a new state is
occupied, the change in the chemical potential is larger. This
produces larger shape resonances in Tc.

Results for the critical temperature, depicted in Fig. 3, are
fully consistent with this picture. Shown in black and blue
are the oscillations in Tc for different effective masses and
the same e0π = 1.3 eV. As was expected, the shape reso-
nances (blue) for m1σ = 1.089me,m1π = 0.330me are slightly
larger than those (black) for m1σ = 1.500me, m1π = 1.336me.
Moreover, in agreement with the theoretical prediction, we
observe that as e0π increases (red line), more peaks around
the one corresponding to the one-band case start to be
observed.

To summarize, the band structure of the film plays an
important role not only in the pattern of the shape resonances,
but also in their amplitude.

024510-6



SHAPE RESONANCES AND SHELL EFFECTS IN THIN- . . . PHYSICAL REVIEW B 89, 024510 (2014)

3 4 5 6 7 8
4

Thickness (nm)

4
1

1.2

1.4

T
c/

T
cbu

lk

1

1.2

1

1,2
1.3

FIG. 3. (Color online) Tc in units of T bulk
c = 38.0 K as a function

of the film thickness for two-band free-standing films [Eq. (11)]
and different effective masses. The rest of the parameters are those
of MgB2 [Eq. (27)]. In order to observe more clearly the shape
resonances, we show the region between 2.5 and 8 nm. The in-plane
effective masses are set to m3α , m2α in Eq. (26), while e0π and m1α

are indicated in each figure. Band parameters not only change the
position of the shape resonances’ pattern but also their amplitude.

B. Differences between one and two bands

In the previous section, we have studied the intricate pattern
of shape resonances observed in two-band superconducting
films. In this section, we compare it to the one observed in a
one-band thin film with similar parameters.

The one-band case can be recovered in two ways: the first, in
which we are not interested, corresponds to the limit e0π → ∞,
i.e., there is only one band available. Here we focus instead
in the situation in which there are occupied states with similar
energies in both bands. Provided that e0π = 0, we obtain states
with identical quantized energies simply by setting m1σ =
m1π = 3.27me.

Using the free-standing model introduced in Sec. III A,
we obtain more regular shape resonances, depicted in Fig. 4,
than those for m1σ �= m1π , depicted in Fig. 3. In Fig. 4, we
compare the case of e0π = 1 eV (black line) with e0π = 0
(blue line). In the latter case, the quantized components of
the momentum are identical in both bands, which results in
the same sawlike pattern as in the one-band superconducting
film shown in Fig. 1. By contrast, for the reasons given in
the previous section, the oscillating pattern in the two-band
case has a more complex distribution of maxima and minima.
Furthermore, the amplitude of the shape resonances is also
smaller than in the one-band limit. This indicates that finite-
size effects in two-band superconducting films are smaller than
in the one-band case.

C. Role of the substrate in an infinite two-band thin film

Once the shape resonances in the critical temperature of a
two-band superconducting free-standing film have been stud-
ied, we address the problem of the substrate influence by using
the model introduced in Secs. III B–III D. We compute the criti-
cal temperature Tc and chemical potential μ as a function of the

3 4 5 6 7 8
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FIG. 4. (Color online) Tc in units of T bulk
c = 38.0 K as a function

of the film thickness for a one-band (blue) and a two-band (black) free-
standing thin film. The parameters are those of MgB2 [Eq. (27)] with
m1σ = m1π = 3.27me and in-plane masses m2α , m3α from Eq. (26).
The offset value e0π = 0 corresponds to the one-band limit. The
pattern of the shape resonances becomes more regular as the offset
decreases and the the masses become more similar. In the one-band
limit, the shape resonances have larger amplitude than in the two-
band case (black). Therefore, the multiband structure suppresses size
effects.

thickness and compare them to those corresponding to a free-
standing film. We restrict to infinite lateral size and thicknesses
in the window [2,12] nm, a region for which recent experimen-
tal results suggest that the mean-field approximation holds
reasonably well.

The substrate is modeled by two parameters: the height
of the step function V0, namely, the mismatch between
the bulk Fermi levels of the film and substrate, and the
phenomenological quasiparticle lifetime τ . The first deter-
mines the eigenstate extension out of the film. The smaller
the V0, the larger the leaking of probability outside the
film. The second parameter controls the broadening of the
energy levels. We have chosen V0 between 0.9 and 1.9 eV
above the bulk film Fermi energy. This is the typical mis-
match found, for example, in Pb films grown over a Si
substrate [35].

The quasiparticle lifetime τ smoothes the shape resonances
and decreases their amplitude. Since quasiparticles reach the
film/substrate interface more frequently the thinner the film
is, it is expected tunneling to be stronger as the thickness
decreases. More specifically, we expect a linear dependence
with the thickness. Based on this fact and on the recent (see
Fig. 3 of Ref. [19]) experimental scattering rate � (τ = 2�/�)
results in MgB2 thin films, we propose a phenomenological
expression for τ ≈ (c1 + c2a) where a is the film thickness
and c1 = 44.76 fs, c2 = 0.83 fs nm−1 are obtained from the
experimental results of Ref. [19] between 6 and 14 nm. Even
though the scattering rates in Ref. [19] are attributed to the
film granularity, tunneling into the substrate is expected to also
contribute to the level broadening. In any case, decoherence
of any form is effectively modeled by a finite τ so our
results are, at least qualitatively, applicable to more general
situations.

As is explained in Secs. III B and III D, in order to
obtain momentum-independent matrix elements, we approx-
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FIG. 5. (Color online) Tc in units of T bulk
c = 38.0 K as a function

of the film thickness for different couplings to the substrate, given
by Eq. (22) in Sec. III D. e0π = 0.05 eV, the effective masses are
given in Eq. (26), and the coupling constants are given in Eq. (27).
The lifetime is τ → ∞ (black) for the free-standing film, while (red
and blue) τ (fs) = c1 + c2a, c1 = 44.76 fs, c2 = 0.83 fs nm−1, and
a in nm. These parameters were obtained by fitting the data from 6
to 15 nm in Fig. 3 of Ref. [19]. In the region of strong coupling to
the substrate (blue and red lines), shape resonances are only slightly
smoothed, but a significant suppression relative to the free-standing
limit (black) is observed. Much smaller values of the lifetime are
needed for a substantial smoothing of the shape resonances.

imate the interaction between all of the states by that
between the eigenstate whose energy is closer to being
equidistant from the highest and the lowest occupied energy
level.

We are now ready to analyze the size effects in a
two-band infinite thin film for three different couplings to
the substrate. In Fig. 5, we depict the dependence of Tc

on the thickness for various values of V0. It is clearly
observed that shape resonances are smaller in amplitude as
both the quasiparticle lifetime τ and V0 decrease. Shape
resonances are not substantially smoothed by the finite τ

estimated from experimental results [19]. The reason for
that is that the energy associated to a finite lifetime, � ∼
�/τ , is still much smaller than the mean spacing of energy
levels in the one-dimensional potential that describes con-
finement in the direction perpendicular to the film. Typical
lifetimes of a few femtoseconds are needed to substantially
smooth out the peaks and fully suppress size effects for
thicknesses ∼5 nm.

In summary, as V0 or τ decreases, the substrate becomes
more important and any enhancement of superconductivity
due to size effects is severely suppressed. We note that even
the small enhancement observed in certain cases is likely not
to be observable for materials for which the surface charge
neutrality condition fully applies.

Shown in Fig. 6 are the shape resonances in the chemical
potential for a thickness in the same region as in Fig. 5.
The overall magnitude of μ shows no significant difference
compared to the free-standing limit. However (see inset of
Fig. 6), the pattern is slightly smoothed. As in the case of Tc,
a smaller τ results in a smoother behavior, which becomes
monotonically decreasing for sufficiently small lifetime.
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FIG. 6. (Color online) μ in units of μbulk = 3.6 eV as a function
of the film thickness. Free-standing (black) and substrate (red) of
height V0 = EF + 0.9 eV. The lifetime is τ → ∞ (black) for the free-
standing film, while (red and blue) τ (fs) = c1 + c2a, c1 = 44.76 fs,
c2 = 0.83 fs nm−1, and a in nm. Masses are given by Eq. (26) and
e0π = 0.05 eV. For the free-standing film [Eq. (13)], sharp shape
resonances are clearly observed. Once the film is coupled to the
substrate [Eq. (17)], shape resonances become smoother. In the inset,
smaller peaks corresponding to the occupation of states in one band
are observed between two larger ones, corresponding to the filling of
states in the other band.

D. Influence of the electron-phonon coupling constants

In this section, we study size effects for different electron-
phonon coupling constants and fixed band structure parame-
ters. We take the effective masses given in Eq. (26), e0π =
0.05 eV, V0 = EF + 0.9 eV, and τ (fs) = c1 + c2a, c1 = 44.76
fs, c2 = 0.83 fs nm−1, and a in nm.

Black lines in Fig. 7 correspond to the coupling constant
employed in previous sections [Eq. (27)] and are also shown
in Fig. 5. Shown in blue are the results corresponding to
the coupling constants from Ref. [36] and a Debye energy
�ωD = 7.4 meV [37] that gives T bulk

c = 38.3 K. Red lines
correspond to a set of coupling constants and a Debye
energy, not related to MgB2, but with the same bulk critical
temperature T bulk

c = 38.2 K. It is clearly observed (see Fig. 7)
that larger coupling constants lead to weaker finite-size effects
and less suppression of Tc with respect to the bulk limit. This
follows straightforwardly from Eqs. (4) and (5) by calculating
the first-order correction to �, which is inversely proportional
to the dimensionless coupling constant. Therefore, a larger
coupling constant leads to smaller finite-size effects.

E. Finite lateral size and shell effects

In this section, we study the role of a finite lateral size
in the two-band thin films studied previously. In order to
neglect thermal fluctuations, which are beyond the mean-field
approximation, we restrict to lateral sizes of the order of, but
larger than, the film thickness ∼10 nm. Technically, the first
consequence of a finite lateral size is that the integrals over ky

and kz in the gap equations have to replaced by discrete sums.
Moreover, due to the isotropic in-plane effective masses and
assuming a square shape, we expect level degeneracy, namely,
several states occupy the same energy level, usually referred to
as a shell. This bunching of levels induces larger fluctuations in

024510-8



SHAPE RESONANCES AND SHELL EFFECTS IN THIN- . . . PHYSICAL REVIEW B 89, 024510 (2014)

1

1.1

1.2

1.3

1.4

2 3 4 5 6 7 8
0.8

0.85

0.9

0.95

1

1.05

Thickness (nm)

=1.017 =0.448 =0.213 =0.155

=0.5 =0.1 =0.113 =0.155

=0.206 =0.033 =0.205 =0.105

=7.4 meV
=18.5 meV
=90.5 meV

T
c/

T
cbu

lk

FIG. 7. (Color online) Tc in units of T bulk
c ≈ 38.0 K as a function

of the film thickness for different values of the electron-phonon
coupling constant. Upper: free-standing film [Eq. (11)]. Lower:
substrate, from Eq. (22), included. Masses in all cases are given
by Eq. (26) and e0π = 0.05 eV. The Debye energy is tuned so that
in all cases, T bulk

c ≈ 38.0 K. As the coupling constant decreases,
finite-size effects are clearly stronger, though the suppression due
to the substrate is also stronger. The optimal setting results from a
delicate balance between these two factors.

the spectral density, i.e., the so-called shell effects, that are also
expected to have an important impact on the superconducting
properties of the material [11,38,39].

In Sec. III E, we discussed that shell effects can be analyt-
ically included by simply replacing the bulk two-dimensional
density of states in each band, g

(α)
2D = m

(α)
2DL2/π�

2 by g̃
(α)
2D �

g
(α)
2D[1 + g(α) + g

(α)
l ]. The latter only depends on the lateral

size, in-plane coherence lengths ξ (α) = ξ (α)
yz , and the in-plane

Fermi momentum k(α)
yz . Therefore, g̃2D is constant in energy

for all films with the same lateral size. As a consequence, we
can replace g

(α)
2D by g̃

(α)
2D in Eq. (22).

In order to get explicit results, we use MgB2 parameters.
For the in-plane coherence lengths, we take ξ (σ )

yz = 13 nm,
ξ (π)
yz = 51 nm (at T = 0) [40], while a simple calculation of the

in-plane Fermi momenta yields k(α)
yz = √

m2αm3αv(α)
yz /�. These

are the components corresponding to the crystallographic ab

plane of the MgB2 cell, which is the yz plane in our coordinate
system. The effective masses are given in Eq. (26) and the
in-plane components of the Fermi velocities v(α)

yz are taken from
Ref. [41], v(σ )

yz = 4.40 × 105 m/s and v(π)
yz = 5.35 × 105 m/s,

k(σ )
yz = 1.0710 nm−1, k(π)

yz = 4.6311 nm−1. (28)

As was mentioned in Sec. III F, a mean-field approach is only
valid for sizes in which fluctuations are not important which,
for thermal fluctuations, depends on the ratio between the
mean level spacing and Tc. For conventional superconductors,
a lateral size and thickness of at least ∼10 and ∼5 nm, respec-
tively, are typical requirements for a mean-field formalism
to be applicable. For MgB2, first-principles calculations [34]
suggest that the density of states at EF in each band is
Nσ (EF ) = 0.150 states/(eV spin cell) and Nπ (EF ) = 0.205
states/(eV spin cell). Using the unit cell parameters [16]
a = 3.086 Å (not to be confused with the film thickness)
and c = 3.524 Å, the mean level spacing for each band is
δσ = 0.097

V eV, δπ = 0.070
V eV, where V is the film volume in

nm3. For an isolated film of thickness a = 6 nm and lateral
size L = 12 × 12 nm2 at Tc = 38 K, the magnitude of thermal
fluctuations is controlled by the parameter,√

δσ

kBTc

� 0.19,

√
δπ

kBTc

� 0.16.

For free-standing films, this is the typical minimum size
for which thermal fluctuations are negligible and a mean-
field approach is applicable. We expect that the presence of
the substrate reduces fluctuations induced by size effects.
However, we take a conservative stance and restrict our study
to volumes �6 × 12 × 12 nm3.

Results depicted in Fig. 8 show that for a finite lateral size
∼12 nm, shell effects induce corrections in Tc which are much

FIG. 8. (Color online) Tc in units of T bulk
c = 38.0 K as a function

of the lateral size for a thickness equal to 6.16 nm. As in the previous
figures, the band parameters are those of MgB2. We employ Eq. (22)
but replace g

(α)
2D by g̃

(α)
2D , given by Eqs. (23)–(25), to study shell effects

for different in-plane coherence lengths in the σ band. In the other
band, ξπ = 51 nm and masses can be found in Eq. (26). For the
range of thicknesses in which thermal fluctuations are not important,
and including the coupling to the substrate, shell effects enhance
superconductivity only for coherence lengths considerably larger (by
a factor of two) than the film lateral size. In the free-standing film limit
(yellow line), a moderate enhancement is observed for L ∼ 12 nm.
For a substantial enhancement of superconductivity, the coherence
length of the material must be much larger than that of MgB2.
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stronger than those of a thin film with a finite thickness of the
same order and infinite lateral size as seen in Fig. 5. For MgB2

(in black), no enhancement of superconductivity with respect
to the bulk limit is observed. This is due to the small coherence
length in the σ band of MgB2, compared to the lateral size.
In this situation, the oscillating terms g

(α)
l are suppressed by

the modified Bessel functions K0, given by Eq. (25). As a
result, the leading correction is g

(α)
2D , given by Eq. (24), which

is negative. Therefore, gσ
2D ≈ gσ

2D[1 + g
(α)
2D] < gσ

2D , given by
Eq. (23), and superconductivity is suppressed by a finite lateral
size. In the limit L → ∞, we recover the infinite lateral size
result Tc(L → ∞).

In the case of a superconducting coherence length (blue
line) much larger than the lateral size, we observe a substantial
enhancement of the critical temperature. This is a consequence
of shell effects in the two-dimensional spectral density that are
not smoothed out by a small coherence length.

F. Limitations and limits of applicability of the model

We briefly review the limits of applicability of the results
and the different approximations that we employ across the
paper.

The mean-field approach that we employ neglects quantum
and thermal fluctuations. As was mentioned previously, this
is a good approximation for sufficiently large lateral sizes,
though we note that even for an infinite lateral size, we
expect that the mean-field approach breaks down in the strictly
two-dimensional limit where a Kosterlitz-Thouless transition
occurs at a lower temperature. However, results from recent
experiments [1–3] in Pb ultrathin films that explore the two-
dimensional limit were, at least qualitatively, well described
by a mean-field formalism. A reason for that behavior is
that the substrate increases the effective dimensionality of the
system and consequently suppresses the Kosterlitz-Thouless
transition. Since this issue is not yet settled, here we have opted
to present results only for thicknesses of at least 2 nm where a
mean-field formalism should still be applicable.

The coupling to the substrate is modeled by a phenomeno-
logical quasiparticle lifetime to describe tunneling into the
substrate and a step potential to describe the substrate thin-film
interface. A more realistic model of the tunneling mechanism,
beyond the scope of this paper, requires a much more detailed
knowledge of the interface, which depends on the growth
techniques and the material substrate.

We have used the zero-temperature coherence length of
MgB2. However, estimations [42] of the coherence length in
Pb film show substantial changes in the coherence length for
different system sizes. This coherence length is an input in
our model so that once the coherence length in nanoscale
samples is known, the calculation of Tc could easily be updated
accordingly.

We do not consider the full band dispersion relation, but
rather we have expanded it up to second order around the
Fermi level. This approximation might neglect some nontrivial
influence of the bands, especially in observables such as the
conductivity, which involve energies substantially larger than
the gap. However, we expect this approximation to be fair in the
calculation of quantities such as Tc and the superconducting
gap that involves energies close to the Fermi energy.

We have considered crystalline films in the absence of
impurities or strain due to lattice mismatch with the substrate.
Current state-of-the-art experimental techniques are capable
of manufacturing samples with these properties.

V. CONCLUSIONS

We have investigated analytically the evolution of supercon-
ductivity, including the coupling to the substrate, in multiband
thin films as the thickness and lateral size enter the nanoscale
region.

Shape resonances in two-band thin films, neglecting the
substrate, are more irregular and lead to a more modest
enhancement of superconductivity than in one-band films. Size
effects are stronger as the effective electron-phonon coupling
is decreased. Qualitatively similar results are obtained for
different effective masses describing the band structure, though
smaller masses tend to induce stronger size effects. We have
observed that a finite lateral size ∼10 nm induces additional
size effects, i.e., the so-called shell effects, which can enhance
superconductivity in materials in which the coherence length
is much longer than the lateral size. For smaller lateral sizes,
thermal fluctuations, not included in our model, become
important and our results are not reliable.

Once the substrate is considered, the average enhancement
is strongly suppressed. As thickness is decreased, tunneling
is expected to be more important, smoothing the pattern of
shape resonances. However, in the range of parameters used,
this smoothing is rather weak. The critical temperature and the
amplitude of shape resonances decrease as well. The case of
MgB2, a two-band superconductor, is discussed in detail. In the
relatively broad range of parameters that we explore, we did
not observe a substantial enhancement of superconductivity
once the multiband structure and the substrate are considered
simultaneously. It is likely that even this modest enhancement
of Tc is not observable for materials in which the charge
neutrality condition applies.
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APPENDIX

1. Poisson summation formula

Given f as non-negative, decreasing, and continuous on
[0,∞) and that limb→∞

∫ b

0 f (x)dx exists, then

√
σ

[
1

2
f (0) +

∞∑
n=1

f (nσ )

]
=

√
λ

[
1

2
h(0) +

∞∑
l=1

h(lλ)

]
,

(A1)

where σλ = 2π and h(y) = √
2/π

∫ ∞
0 f (m) cos(my)dm [27].

Setting σ = 1, λ = 2π and defining f (n) = μ − ηα(n), where
ηα(n) = e0α + Eα

0 n2, we substitute Eq. (A1) into Eq. (12). To
simplify notation, we omit the band index α. f (n) satisfies the
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necessary conditions to use Eq. (A1) when η ∈ [e0,μ]. Thus, integrating in energy between e0 and μ and restricting the sum on
the left-hand side from n = 1 to ν, the Poisson summation formula leads to

μ − e0

2
+

ν∑
n=1

(μ − ηn) = 2

3
√

E0
(μ − e0)3/2 +

∞∑
l=1

[
−

√
E0(μ − e0)

π2l2
cos

(
2πl

√
μ − e0

E0

)
+ E0

2π3l3
sin

(
2πl

√
μ − e0

E0

)]
.

(A2)2. Factors Kαβ

Here we present factors from the interaction matrix elements. kmα
and κmα

are defined in Sec. III D.

Kαβ = 1
a
2 − sin(2kmα a)

4κmα
+ sin2(2kmα a)

2κmα

1

a
2 − sin(2kmβ

a)

4κmβ

+ sin2(2kmβ
a)

2κmβ

. (A3)
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