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We study the orbital-selective superconducting pairing in a five-orbital t-J1-J2 model for iron pnictides.
Depending on the orbital selectivity of electron correlations and the orbital characters along the Fermi surface,
the superconducting gap in an A1g pairing state may exhibit anisotropy. This anisotropy varies with the degree
of J1-J2 magnetic frustration. In the superconducting state, the frequency dependence of the dynamical spin
susceptibility at the antiferromagnetic wave vector (π,0) shows a resonance, whose width is enhanced by the
orbital selectivity of the superconducting gap. When the degree of the orbital selectivity is sufficiently strong,
the resonance peak may be split in two. We discuss the implications of our results on the recent angle-resolved
photoemission and neutron-scattering measurements in several superconducting iron pnictides.
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I. INTRODUCTION

One of the central questions in the field of unconventional
superconductivity is whether a single mechanism operates
across a variety of superconducting (SC) materials, such
as iron pnictides, cuprates, heavy fermions, and organic
superconductors. In many cases, including for the iron-based
superconductors [1–3], superconductivity arises at the border
of antiferromagnetic order and electron correlations make
the normal state a bad metal. As such, it is desirable to
provide an affirmative answer to this question. At the same
time, there are some important apparently distinct features in
the different material classes. For example, for many heavy
fermions, quantum criticality is clearly important, raising
the question of whether it is also relevant for the other
materials families. In the same vein, there is rapidly growing
evidence that multiorbital physics plays an important role in the
properties of the iron-based materials, raising the possibility
that this physics in general, and orbital selectivity in particular,
is not only important to the iron-based materials, but it
also represents a mechanism that boosts the SC pairing in
general.

Orbital selectivity in the normal state of the iron pnictides
and chalcogenides has recently been studied extensively [4–9].
Nondegenerate Fe 3d orbitals, particularly the xz/yz and
xy orbitals, yield different mass renormalization and, in the
extreme case, an orbitally selective Mott phase. Evidence
for such orbital selectivity has come from angle-resolved
photoemission spectroscopy (ARPES) measurements [10,11].
To ascertain how orbital-selective correlations may contribute
to superconductivity, it is imperative to address how the
orbital selectivity affects the nature and properties of the SC
state.

Here we ask how orbital selectivity affects spin resonance
excitation, which has been studied for over 20 years in cuprates
[12] and has also been studied in iron-based superconductors
since the field’s inception [13–16]. The specific approach we
will take is motivated by two considerations. First, neutron
resonance is generally considered to be a spin-triplet excitonic
excitation formed out of the electronic and hole quasiparticles

of an unconventional superconductor. Second, in iron pnic-
tides, the orbital weight varies on both the hole Fermi pockets
near the center of the Brillouin zone (BZ) and the electron
Fermi pockets near the edge of the (one-Fe-unit-cell) BZ. The
orbital-weight variation on the hole Fermi pocket is primarily
among the degenerate 3d xz and yz orbitals. On the other hand,
the orbital-weight variation on the electron pockets involves
both the 3d xz/yz and xy orbitals. We can therefore expect
that orbital selectivity will be most clearly seen in the variation
of the SC gap on the electron pockets.

Despite the isotropic SC gap observed in a number of
iron-based superconductors [17–21], recent experiments have
also identified an anisotropic gap along the Fermi pockets in
several iron pnictides [22–25]. In particular, high-resolution
ARPES [22] has revealed an anisotropic SC gap along the
electron Fermi pockets in the underdoped Na(Fe1−x ,Cox)As;
it becomes isotropic when the system reaches the overdoped
regime. Our discussions earlier then suggest that the under-
doped Na(Fe1−x ,Cox)As is an ideal system for the study of the
influence of orbital selectivity on SC pairing in general and on
neutron resonance in particular.

In this paper, we study SC pairing in a five-orbital t-J1-J2

model for iron pnictides. We show that the orbital-selective
effects of electron correlations generally give rise to orbital-
selective SC gaps. In particular, we emphasize two gaps that are
associated with the xz/yz and xy orbitals, respectively, which
have the same A1g symmetry but different pairing amplitudes.
We show how this orbital-selective pairing naturally leads
to a gap anisotropy and double spin resonance excitations,
defined as having two peaks in the frequency dependence
of the dynamical spin susceptibility at a given wave vector.
Finally, we discuss the implication of the results for the
ARPES and neutron scattering spectra of several SC iron
pnictides.

II. MODEL AND METHOD

We consider a five-orbital t-J1-J2 model, which is obtained
via a strong-coupling perturbative w expansion about the Mott
transition (for a recent review, see Ref. [26]). The Hamiltonian
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FIG. 1. (Color online) Band structure of the five-orbital tight-
binding model along high-symmetry directions of the one-Fe Bril-
louin zone. The chemical potential is chosen such that the electron
filling is at n = 6.02.

[27–29] reads

H = −
∑

i<j,α,β,s

(
t
αβ

ij c
†
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) +
∑
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+
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J
αβ

1

(
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4
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)

+
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J
αβ

2

(
Siα · Sjβ − 1

4
niαnjβ

)
, (1)

with the constraint of prohibiting double occupancy of the
holes for each orbital. Here, c†iαs creates an electron at site i, in
orbital α and spin projection s; μ is the chemical potential to fix
the total electron number n. The orbital index α = 1,2,3,4,5
corresponds, respectively, to the five Fe 3d orbitals xz, yz,
x2-y2, xy, and 3z2-r2. The parameters t

αβ

ij refer to the tight-
binding hopping matrix, and εα denotes the onsite potential
that reflects the crystal level splitting. For definiteness, we
consider the case of NaFeAs, and we obtain the tight-binding
parameters by fitting its local-density approximation (LDA)
band structure. The details of the parametrization are discussed
in Appendix A. The band structure of the five-orbital tight-
binding model is shown in Fig. 1. The nearest-neighbor
(n.n., 〈ij 〉) and next-nearest-neighbor (n.n.n., 〈〈ij 〉〉) exchange
couplings are denoted by J

αβ

1 and J
αβ

2 , respectively. The spin
operator is Siα = 1

2

∑
s,s

′ c
†
iαsσ ss

′ ciαs
′ and the density operator

niα = ∑
s c

†
iαsciαs , where σ represents the Pauli matrices. The

double-occupancy prohibiting constraint from the fermion is
implicitly incorporated by the renormalization of the band
structure [29,30], as was explained in some detail in the
supplementary methods of Ref. [30].

In addition to the J1 and J2 exchange interactions, a
biquadratic interaction also arises from a perturbative w expan-
sion. This term is important in understanding the anisotropic
spin excitations in the parent pnictides [31,32]. However, for
superconductivity, it only provides higher-order corrections to
the pairing amplitudes. Hence, in this paper we will focus on
the SC pairing in the above t-J1-J2 model by decomposing
the exchange interactions in the spin-singlet pairing channels.
In principle, the exchange couplings J

αβ

1(2) will be a matrix in

orbital space [27,33,34]. However, for the purpose of studying
possible new characteristics of the spin resonance in the regime
where the SC gap is anisotropic through an orbital-selective
pairing, we simplify the problem by taking J

αβ

1(2) = J1(2)δαβ

(and take J2 to be the energy unit). Correspondingly, we
consider intraorbital pairing. For this model, there are then
20 different pairing channels, each with an amplitude and a
phase, which are self-consistently determined.

We also calculate the dynamical spin susceptibility in the
SC state. At wave vector q and Matsubara frequency ωn, the
spin susceptibility

χ (q,iωn) =
∑
αβ

χα,β(q,iωn), (2)

where

χα,β (q,iωn) =
∑

γ

[I + J (q)χ0(q,iωn)]−1
αγ χ0

γ,β(q,iωn) (3)

and

χ0
α,β (q,iωn) =

∫ 1/T

0
dτ eiωnτ 〈Tτ [S−

qα(τ )S+
−qβ(0)]〉. (4)

Here

J (q) = J1

2
(cos qx + cos qy) + J2 cos qx cos qy, (5)

S±
qα = 1√

N

∑
i e

iq·ri S±
iα , and 〈· · · 〉 refers to the expectation

value with respect to the effective Hamiltonian. The suscep-
tibility at real frequency ω is then obtained by an analytical
continuation iωn → ω + i0+.

III. RESULTS

A. Multiorbital nature of the Fermi surface
and orbital-selective pairing

The band structure and the corresponding Fermi surface in
the 1-Fe BZ for the tight-binding model at electron doping
x = 0.02 (x = n − 6) are shown, respectively, in Figs. 1
and 2(a). The Fermi surface contains multiple sheets with
different orbital characters. The two hole pockets near (0,0) are
dominated by the degenerate xz/yz orbitals; the hole pocket
near (π,π ) has almost completely xy orbital character. The
electron pocket near (π,0) [or (0,π )] displays a hybridized
xy and yz (xz) orbital character [Fig. 2(b)]. The pairing
amplitudes are also orbital-dependent. For J1/J2 � 1, the
dominant pairing channel is sx2y2A1g [Fig. 2(c)]. The amplitude
of this pairing channel in the xy orbital is larger than that in the
xz/yz orbital. The double degeneracy of the xz and yz orbitals
gives rise to a subdominant dx2-y2 pairing channel with the
same A1g symmetry. Its amplitude increases with J1/J2. The
existence of orbital-selective multiple energy scales in pairing
is a consequence of the orbital-selective electron correlation
effects in the multiorbital model, with the xy orbital typically
exhibiting strong correlation effects [4–6]. Correspondingly,
the xy orbital has a sizable ratio of J to the renormalized
bandwidth, which in turn yields a sizable pairing amplitude
[30]. For J1/J2 � 1, the dominant pairing changes to dx2-y2

B1g , but a similar behavior of the orbital-selective pairing
is also found. In the following, we limit our discussion to
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FIG. 2. (Color online) (a) Fermi surface in the one-Fe Brillouin
zone of the five-orbital tight-binding model at electron doping
x = 0.02. Angle θ parametrizes the Fermi surface pockets in mo-
mentum space. The arrows indicate the dominant scattering processes
contributing to the spin resonance peaks shown in Fig. 4(a). (b) The
orbital characters along the electron pocket near (π,0). Here O.W.
denotes orbital weight. (c) Evolution of the leading pairing channels
in the t-J1-J2 model with J1/J2. They all have A1g symmetry. Here
P.A. denotes pairing amplitude.

J1/J2 < 1, where the dominant pairing sx2y2 A1g is consistent
with the nodeless sign changing pairing observed in experi-
ments.

B. Anisotropic superconducting gap

We now turn to how the orbital-selective pairing amplitudes
and the orbital character of the Fermi surface affect the momen-
tum distribution of the SC gaps by inducing gap anisotropy, and
how the gap amplitudes and the corresponding anisotropy can
be tuned by the degree of magnetic frustration of the system.
We discuss and compare the results in the five-orbital t-J1-J2

model by taking J1/J2 = 0.1 and 0.8 for illustrative purpose.
For J1/J2 = 0.1, the SC gaps are dominated by the sx2y2 A1g

pairing channel. The amplitudes of this pairing channel in the
xy and xz/yz orbitals are significantly different, resulting in
two characteristic gaps �xy �= �xz/yz. The excitation gap of
the quasiparticles along each hole pocket is only associated
with one of them [see Appendix B, Figs. 5(a) and 5(b)], and
is isotropic [Fig. 3(a)] since the dominant orbital character
of a hole pocket is uniform in momentum space: xy for the
pocket near (π,π ) and xz/yz for the pocket near (0,0). On the
other hand, the gaps along the electron pockets are strongly
anisotropic [Fig. 3(c)]. This is because the electron pocket has
a hybridized xy and xz/yz orbital character, and the size of
the gap at a particular wave vector depends on the dominant
orbital character at that point. The gap anisotropy reflects
these two characteristic SC gaps �xy �= �xz/yz: as shown in
Fig. 3(c), the gap cannot be fitted by a single gap function
�0 cos kx cos ky , although the dominant pairing channel is sx2y2

A1g . Interestingly, the gap anisotropy reduces with increasing
J1/J2, and an essentially isotropic gap along the electron
pocket is recovered at J1/J2 = 0.8 [Fig. 3(d)]. To understand
this, note that the pairing amplitude of the subdominant dx2−y2

A1g channel in the xz/yz orbital increases with J1/J2. With
the contribution from this subdominant channel, the overall

FIG. 3. (Color online) Angular dependence of the excitation gaps
of BCS quasiparticles along the Fermi pockets in the t-J1-J2 model
at J1/J2 = 0.1 [in (a) and (c)] and J1/J2 = 0.8 [in (b) and (d)],
respectively. In (a) and (b), green diamonds and black squares refer
to the gaps along the inner and outer hole pockets near (0,0); brown
triangles refer to the gap along the hole pockets near (π,π ). In
(c) and (d), red circles refer to the gap along the electron pocket
near (π,0). The blue dashed line is a fit to the single parameter
gap function �0 cos kx cos ky . The deviation from this fit implies a
multigap structure of the multiorbital model (see the text).

gap in the xz/yz orbital �xz/yz ≈ �xy . This then leads to an
essentially isotropic gap along the electron pockets.

C. Spin resonance excitation

The spin excitations in the SC state are also affected by the
orbital-selective pairing. We have calculated the dynamical
spin susceptibility in the SC state for the J1/J2 = 0.1 and 0.8
cases discussed above. The imaginary part of the susceptibility
χ ′′(q,ω) at the antiferromagnetic wave vector q = (π,0)
exhibits two resonance peaks in the frequency dependence
for J1/J2 = 0.1 [Fig. 4(a)]. Our detailed analysis finds that
the double-peak structure of χ ′′(q,ω) arises from the different
scattering processes that connect two regimes near the electron
and hole pockets, as indicated by the arrows in Fig. 2(a). By
appearing in the coherence factor of the expression of χ ′′(q,ω),
the different orbital characters of the quasiparticle dispersion
put a strong constraint on the scattering processes such that the
spin response is enhanced only in certain regimes of the BZ,
where the orbital characters of the associated hole and electron
bands are compatible. For example, the dominant contribution
to the lower-frequency resonance peak at ωL [see Fig. 4(c)]
is from scattering between the yz orbital in regime A and the
xy orbital in regime A′, as indicated by the dashed arrow in
Fig. 2(a). The higher-frequency resonance peak at ωH , on the
other hand, is mainly associated with scattering within the xy

orbital between regimes B and B ′ [see Figs. 4(c) and 2(a)].
As a rough estimate, the resonance frequency ω � Eh + Ee,
where Eh and Ee are, respectively, the excitation gaps of
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FIG. 4. (Color online) Calculated imaginary part of the dynami-
cal spin susceptibility χ ′′(q,ω) at wave vector q = (π,0) in the t-J1-J2

model for J1/J2 = 0.1 [in (a) and (c)] and J1/J2 = 0.8 [in (b) and
(d)], respectively. Also shown in (c) and (d): the orbital-resolved
dominant components of the susceptibility.

the corresponding hole- and electron-like quasiparticles, i.e.,
h = A,B and e = A′,B ′. Given the similar orbital character
and the proximity to the equivalent points along the Fermi
surface, EA′ ≈ EB ′ . But the different orbital characters make
EA �= EB for J1/J2 = 0.1. (See Appendix B for more details.)

Therefore, ωL �= ωH ; when this difference is sufficiently
large, two resonances appear in the frequency-dependent
spectrum. As J1/J2 increases, both EA and EB increase. But
due to the subdominant dx2-y2 channel in the xz/yz orbital,
EA increases faster, and EA ≈ EB for J1/J2 = 0.8. We thus
obtain a single resonance peak at ωL ≈ ωH , as shown in Figs.
4(b) and 4(d); the multiorbital effect is then reflected in the
broadening of the peak.

IV. DISCUSSIONS

Our results elucidate how the orbital selectivity of electron
correlations influences superconductivity. We show that the
orbital-selective pairing gives rise to gap anisotropy along a
Fermi surface with hybridized orbital characters. The magnetic
frustration may compete with the orbital selectivity and tune
the gap anisotropy. Although we used J1/J2 = 0.1 to illustrate
the simultaneous existence of gap anisotropy and double
resonance, this effect persists to J1/J2 ≈ 0.5. This parameter
regime is relevant to experiments: we have estimated via a
J1-J2-K model that 0.5 � J1/J2 � 1.5 for BaFe2As2 [32] and
0.4 � J1/J2 � 1.2 for NaFeAs [35]. The range may be further
widened with the interorbital exchange couplings. Our results
are particularly pertinent to the anisotropic SC gap along
the electron pockets in the underdoped Na(Fe1−x ,Cox)As
observed in recent ARPES measurements [22]. We are also
able to understand the evolution from the anisotropic to the
isotropic gap with increasing electron doping: Since the orbital
selectivity decreases with electron doping concentration, we

expect that the gap will become less anisotropic in the
overdoped regime [36].

In previous theoretical works, the anisotropic SC gaps are
discussed within the Fermi surface nesting picture [37,38].
Particularly in the underdoped regime, the coexistence of
antiferromagnetism and superconductivity may also lead to
an anisotropic gap along the reconstructed Fermi surface [39].
In this scenario, the Fermi surface is reconstructed for both
the electron and hole pockets. But experimentally, the gap
anisotropy was only observed along electron pockets, and
the Fermi surface reconstruction for the gap anisotropy was
not observed [22]. It is therefore unlikely that the observed
anisotropic gap is primarily driven by the coexistence of
superconductivity with antiferromagnetic order.

The anisotropic gap along the electron pocket has also
been observed in LiFeAs via ARPES [23], and in hole-doped
BaFe2As2 via Raman scattering [25]. Given the very different
Fermi surface geometry but similar orbital weights along the
electron pocket in these materials, it is likely that the gap
anisotropy is associated with orbital selectivity. Particularly for
hole-doped BaFe2As2, because hole doping tends to increase
the orbital selectivity of electron correlations [40], it is natural
to propose that the mechanism advanced here underlies this
experimental observation as well.

We have also shown that the frequency dependence of the
dynamical spin susceptibility at (π,0) displays a resonance
whose width is enhanced by the orbital-selective SC gap.
When the degree of orbital selectivity is sufficiently strong, the
resonance peak may be split into two. Recently, experimental
evidence for this has come from neutron-scattering observation
of double spin resonances in the electron underdoped NaFeAs
system [41]. We stress that the double-resonance feature we
have discussed refers to two peaks in the frequency dependence
of the dynamical spin susceptibility at one single wave vector.
This is very different from weak-coupling calculations. For
instance, the calculations of Ref. [42] show only one peak
in the frequency dependence at any given wave vector, either
at the commensurate q = (π,0) or at an incommensurate q.
In our case, the peaks in the frequency dependence appear
at the same commensurate wave vector q = (π,0); this wave
vector is determined by the q dependence of J (q). As the
wave vector moves away from q = (π,0), the two resonances
disperse individually; there are still two peaks in the frequency
dependence.

Furthermore, we have become aware of another recent
theoretical work [43] which considered the effect of twinning
on the spin neutron resonances. In that work, the two
resonances at the same wave vector (π,0) come from two
twinned domains, and in each domain there is still a single
resonance at each wave vector.

Finally, the degree of electron correlations remains a central
issue in the iron-based superconductors [27,33,44–56]. This
issue is typically probed in the normal state, through the
bad-metal phenomenology in the optical spectrum [57] or
the orbital selectivity in the ARPES spectrum [10,11]. Our
theoretical results here suggest that this issue can also be
fairly directly probed through the orbital selectivity of the gap
function in the SC state. ARPES studies along this direction
are already quite realistic [58,59], and we anticipate that a
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considerable amount of new insights will be derived through
further studies.

V. CONCLUSIONS

Our calculation on the superconducting pairing in a five-
orbital t-J1-J2 model for iron pnictides reveals an orbital-
selective gap structure due to the strong electron correlation
effects. While both gaps have sx2y2 A1g symmetry, the different
orbital character gives rise to gap anisotropy along the electron
pockets. The orbital-selective pairing leads to a broadened
neutron resonance at the antiferromagnetic ordering wave
vector q = (π,0) in the superconducting state. This resonance
may even be split into two peaks if the gap is sufficiently
anisotropic. Our results have important implications for the
ARPES and neutron measurements on the electron underdoped
NaFeAs, as well as the Raman scattering results on the
hole-doped BaFe2As2. More generally, our results point to
ways of probing electron correlation effects of the iron
pnictides through the single-particle and spin responses in their
superconducting state.
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APPENDIX A: TIGHT-BINDING PARAMETRIZATION

To obtain the tight-binding parameters, we perform local-
density approximation (LDA) calculations for NaFeAs, and we
fit the LDA band structure to the tight-binding Hamiltonian.

FIG. 5. (Color online) Orbital weights along the Fermi surface
of the five-orbital tight-binding model at n = 6.02. (a) and (b) Inner
and outer hole pockets near (0,0); (c) hole pockets near (π,π );
(d) electron pocket near (0,π ).

We use the form of the five-orbital tight-binding Hamiltonian
given in Ref. [47]. The tight-binding parameters so derived are
listed in Table I.

Figure 1 shows the band structure of the five-orbital tight-
binding model for electron density n = 6.02, corresponding to
x = 0.02 electron doping. The corresponding Fermi surface is
shown in Fig. 2(a). The Fermi surface consists of three hole
pockets and two electron pockets. They have very different
orbital compositions. We show the orbital weights of the hole
and electron pockets in Figs. 2(b), 5, and 6(a).

APPENDIX B: MOMENTUM DISTRIBUTION OF THE
EXCITATION GAP OF THE QUASIPARTICLES

In the conventional BCS theory for a single-band model
with s-wave pairing symmetry, the superconducting gap � is
momentum-independent, and the excitation gap for the BCS
quasiparticles is E(k) =

√
(ξk − μ)2 + �2, where ξk and μ

are, respectively, the dispersion and chemical potential of

TABLE I. Tight-binding parameters of the five-orbital model for NaFeAs.

α = 1 α = 2 α = 3 α = 4 α = 5

εα −0.10818 −0.10818 −0.40863 0.14158 −0.40471
tαα
μ μ = x μ = y μ = xy μ = xx μ = xxy μ = xyy μ = xxyy

α = 1 0.01398 −0.42534 0.24665 −0.02238 −0.00638 −0.06954 0.07281
α = 3 0.34046 −0.08566 0.01052
α = 4 0.16907 0.12337 0.00955 −0.02595 −0.03576
α = 5 −0.04400 −0.04958 0.01441 −0.05132
tαβ
μ μ = x μ = xy μ = xxy μ = xxyy

αβ = 12 0.22625 −0.06712 0.05439
αβ = 13 −0.32770 0.04340 0.03380
αβ = 14 0.00011 −0.10269 0.00780
αβ = 15 −0.04573 −0.14882 −0.00124
αβ = 34 −0.04511
αβ = 35 −0.25003 0.01931
αβ = 45 −0.13024 0.01023
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FIG. 6. (Color online) (a) Fermi surface of the five-orbital tight-binding model at n = 6.02. Different symbols represent the dominant
orbital characters of the pockets. (b) Momentum distribution of the excitation gap of the quasiparticles in the five-orbital t-J1-J2 model for
n = 6.02 and J1/J2 = 0.1. The black circles show the Fermi surface of the tight-binding model at the same filling. The arrows illustrate the
scattering processes that contribute the most to the spin susceptibility in the superconducting state.

the tight-binding model. For the five-orbital t-J1-J2 model,
considering the multiorbital nature of the model and the
complicated structure of the superconducting pairing function,
the excitation gap has a complicated momentum distribution,
which can only be obtained numerically. We show the

momentum distribution of the excitation gap for J1/J2 = 0.1
in Fig. 6. Note that due to the momentum-dependent pairing
function and the nonzero interorbital hopping, the excitation
gap at regime B (EB) is smaller than that along the hole pocket
centered at (π,π ). But still EB > EA at J1/J2 = 0.1.
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