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Symmetry of the charge density wave in cuprates
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We derive and analyze an effective Ginzburg-Landau (GL) functional for a charge density wave for a model of
electrons on a tight-binding square lattice with density-density interactions. We show, using realistic electronic
dispersions for the cuprates, that for the simplest GL theory, the preferred symmetry is typically unidirectional
(stripe) type, but inclusion of third-order terms tends to destabilize this in favor of a checkerboard pattern
depending on the strength and range of the interaction. This is of interest given the recent observation of such
charge order in underdoped YBa2Cu3O6+x .
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I. INTRODUCTION

Modulations of the local density of states in cuprates,
which were observed by scanning tunneling microscopy in
Bi2Sr2CaCu2O8+δ (Bi2212) [1–6] and Ca2−xNaxCuO2Cl2
[7,8], have attracted significant attention. Although a num-
ber of theories for these observations have been proposed
[9–19], the nature of the modulated state is still debated.
The modulations are strongest in the underdoped region of
the phase diagram, a faithful description of which could be
a difficult task. Fluctuations of the superconducting order
parameter, intrinsic disorder, and competing/coexisting order
all potentially play a role in underdoped samples.

Nevertheless, short of knowing the exact Hamiltonian
governing the low-energy phenomenology of the cuprates, it
is instructive to isolate the role of separate contributions by
focusing on one of them at a time. The goal of this article is to
study the influence of the electronic dispersion in determining
the nature of potential charge density waves (CDWs) in
cuprates. This is realized by deriving a Ginzburg-Landau
(GL) free energy and analyzing the symmetry of the possible
charge modulations, with the coefficients of the free energy
determined from dispersions extracted from angle-resolved
photoemission data.

II. GINZBURG-LANDAU FREE ENERGY FOR A CDW

Our starting point is the generalized extended Hubbard
model of interacting electrons on a tight-binding square lattice.
In terms of electron creation operators ψ

†
k,σ , the Hamiltonian

of the model is

H =
∑
k,σ

(ξk − μ)ψ†
kσψkσ + 1

2

∑
r,r′

g(r − r′)n(r)n(r′), (1)

where ξk denotes the energy dispersion (with μ the chemical
potential), r and r′ are the sites of the lattice, and n(r)
is the charge density. The model reduces to the Hubbard
model when g(r − r′) = g0δr,r′ , and to the so-called U -V
(extended Hubbard) model when g(r − r′) is also nonzero for
the nearest neighbor sites r′ = r ± ax̂,r ± aŷ. As a function of
the charge-density-wave order parameter �(Q), the effective
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GL free energy (per lattice site) to quartic order can be
written as

F (�) − F (0) =
∑
q,�

|�q,�|2
(

− 1

2gq
− χ (q,�)

)

− 2

3

∑
q1,q2,q3

�q1�q2�q3δ

⎛
⎝ 3∑

n=1

qn

⎞
⎠S3(q1,q2,q3)

+ 1

2

∑
q1,q2,q3,q4

�q1�q2�q3�q4δ

⎛
⎝ 4∑

n=1

qn

⎞
⎠

× S4(q1,q2,q3,q4), (2)

where the summations are performed over the momenta qn and
the bosonic Matsubara frequencies �n = 2πn/β, F (0) is the
free energy of the normal state (�q = 0), and the notation qn =
(qn,�n) is used for brevity. The coefficients of the expansion
can be expressed through Green’s functions Gk,ωn

= (iωn −
ξk + μ)−1 as

χ (q,�) = − 1

Nβ

∑
k

GkGk+q, (3)

S3(qi ,�i) = 1

Nβ

∑
k

GkGk+q1Gk+q1+q2 , (4)

S4(qi ,�i) = 1

Nβ

∑
k

GkGk+q1Gk+q1+q2Gk+q1+q2+q3 , (5)

where k = (k,ωn). After summation over fermionic frequen-
cies ωn = π (2n + 1)/β, one obtains the usual result for the
(2D) charge susceptibility

χ (q,�) = −
∫

a2dk
(2π )2

f (ξk) − f (ξk+q)

ξk − ξk+q + i�
, (6)

with the integral over the first Brillouin zone. In our mean
field theory, we only need the cubic and quartic coefficient
functions S3 and S4 for �i = 0

S3(pi) =
∫

a2dk
(2π )2

[
f (ξk)

(ξk − ξk+p1 )(ξk − ξk+p1+p2 )
+ c.p.

]
, (7)

where “c.p.” denotes the two other terms obtained by cyclic
permutation of the momenta (k,k + p1,k + p1 + p2). Simi-

1098-0121/2014/89(2)/024507(7) 024507-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.024507


ASHOT MELIKYAN AND M. R. NORMAN PHYSICAL REVIEW B 89, 024507 (2014)

Q Q

−Q

−Q

SA

Q

Q

−Q

−Q

SB

Q

−Q

Q

−Q

SC

Q

Q

−Q

−Q

SD

FIG. 1. Diagrams corresponding to the GL coefficients SA, SB ,
SC , and SD .

larly, for S4 one finds

S4(pi) =
∫

a2dk
(2π )2

(
f (ξk)(ξk − ξk+p1 )−1(ξk − ξk+p1+p2 )−1

× (ξk − ξk+p1+p2+p3 )−1 + c.p.
)
, (8)

where “c.p.” denotes the three other terms obtained by cyclic
permutation of the momenta (k,k + p1,k + p1 + p2,k + p1 +
p2 + p3). As the temperature or the effective interaction
g(r − r′) varies, for a specific set of equivalent momenta Qi ,
the quadratic coefficient of the GL expansion may change
sign, and a phase transition takes place. In the vicinity of such
a transition, it is sufficient to consider only the coefficients
of the GL free energy evaluated at momenta Qi and their
harmonics. We will be specifically interested in situations
where these equivalent momenta lie along the symmetry lines
of the Brillouin zone, and thus the total number of them is
restricted to four for the square lattice (typically, the maxima
of χ will lie along such lines). Consider first a simplified
expansion where only the fundamental harmonics at Qi are
retained. In such a case, the GL expansion reduces to

F (�) − F (0) = rQ(|�Q|2 + |�Q|2) + 1
2 (2SA + 4SB)

×(
2γ |�Q|2|�Q|2 + |�Q|4 + |�Q|4), (9)

where Q ⊥ Q,

rQ = −g−1
Q − 2χ (Q), (10)

�i = 0 is implied, and the coefficients SA,B,C,D , which are
described by the diagrams in Fig. 1, are defined as

SA = S4(Q, − Q,Q, − Q), SB = S4(Q,Q, − Q, − Q),

SC = S4(Q, − Q,Q, − Q), SD = S4(Q,Q, − Q, − Q),

(11)

with γ = 8SC+4SD

2SA+4SB
. Formally identical GL expansions have

been studied in the past, and for a momentum-independent
interaction have been recently employed by Yao et al. in
connection with CDWs that occur in the rare-earth tri-
tellurides (Ref. [20]). The stability requirement dictates that
2SA + 4SB > 0 and γ > −1. Provided these are satisfied, the
symmetry of the CDW in the ordered phase is determined [18]
by γ : when γ > 1, the free energy is minimized by choosing
either �Q = 0 or �Q = 0 resulting in one-dimensional stripes.
For γ < 1, the minimum of the GL free energy is achieved by
choosing |�Q| = |�Q|, and the CDW has a two-dimensional
“checkerboard” pattern.

III. CHARGE SUSCEPTIBILITY AND INSTABILITY WAVE
VECTORS IN CUPRATES

The calculations were performed for three sets of six-
parameter tight-binding fits to the dispersion, based on angle-
resolved photoemission data, that were previously used to
model the spin susceptibility [21]. The coefficients of these
dispersions (tb1, tb2, and tb4) can be found in that work. tb1
is based on earlier photoemission data for Bi2212 [22] and is
characterized by a Van Hove singularity at (π,0) that is 34 meV
below the Fermi energy, resulting in a sizable anisotropy of the
Fermi velocity around the Fermi surface. tb2 is based on more
recent photoemission data for Bi2212 [23] which indicates an
isotropic Fermi velocity. tb4 is based on photoemission data
for underdoped La2−xSrxCuO4 (LSCO) [24].

In Fig. 2, we show χ (q,� = 0). There are two sets of
maxima. One set forms a box-like structure around the zone
center, and it is this set which will be assumed to dominate the
charge response since we anticipate that gq will be maximal
at q = 0. The second set is concentrated around the (π,π )
point, and is thought to dominate the spin response since the
superexchange interaction is maximal at this point. For the
first set, the absolute maximum of χ typically occurs along the
zone diagonal (qx = qy). This can be qualitatively understood
by employing an argument due to Schulz [25]. Although a
bond-aligned vector does a better job of nesting the antinodal
sections of the Fermi surface near (π,0), a diagonal vector con-
nects twice as many Fermi surface faces. Therefore, were it not
for the momentum dependence of the interaction, one would
conclude that the CDW typically cannot be directed along the
bond directions, at least within the model considered here.

In two dimensions, the susceptibility does not diverge, even
at T = 0, unless the faces of the Fermi surfaces are perfectly
nested. This is never the case for a realistic dispersion, although
the Fermi surface does contain approximately nested sections
that are responsible for the sharp peaks in χ . This is illustrated
in Fig. 3 for the peak lying along -X. The discontinuities of
the slope at momenta q1 and q2 (which define the plateau in
the insets) are due to the points of the Fermi surface k and k′
separated by qi such that the tangents to the Fermi surface at k
and k′ are parallel. The lack of divergence in the susceptibility
implies that the charge density wave can develop only if the
interaction strength exceeds a critical value.

The ordering vector in cuprates observed by scanning
tunneling microscopy lies along the Cu-O bonds, in contrast
with our results for χ . On the other hand, the true ordering
vector is determined by the product of χ and g. We anticipate
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FIG. 2. (Color online) χ (q) calculated from the tight-binding dispersions tb1, tb2, and tb4 (left to right) [21]. Top row: Two-dimensional
map of χ (q) for T = 0.001t , where t is the near neighbor hopping parameter of the tight-binding fit for ξk. Since χ (q) is fourfold symmetric,
only one quarter of the Brillouin zone is shown. Bottom row: χ (q) calculated for T = 1 meV, 5 meV, and 10 meV along the various symmetry
lines of the zone, with  = (0,0), X = (1,0), and M = (1,1) in π/a units.

that gq has a maximum at q = 0 and falls off smoothly
with increasing q. If this fall-off is relatively isotropic and
steep enough, then, as demonstrated in Fig. 4, this can lead
to ordering along the bond direction instead, since q along
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FIG. 3. (Color online) Susceptibility for T = 0 along -X for
dispersions tb1 (top left), tb2 (bottom left), and tb4 (bottom right). In
all cases, χ is finite due to imperfect nesting. The Fermi surface for
tb1 is shown in the top right panel. For dispersions tb1 and tb4, the
susceptibility has two cusps, corresponding to momenta connecting
points in a quadrant of the zone (shown for tb1 by the dots) with
their partners in the adjacent quadrant. The characteristic bending
of the Fermi surface near the antinodal direction, which is similar
for the tb1 and tb4 fits, is absent for the tb2 dispersion where the
susceptibility has a single cusp. In all cases, on one side of each
cusp at Qx0, the slope of χ (Qx,0) is finite, while on the other side,
χ (Qx0,0) − χ (Qx,0) ∝ |Qx − Qx0|1/2 and the slope is infinite.

the diagonal of the box structure shown in Fig. 2 is
√

2
times larger than q along the bond direction. In general,
the momentum q = Q at which the charge density instability
occurs is determined by the highest temperature such that the
condition

− 1

2gq
= χ (q,Tc) (12)
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FIG. 4. (Color online) Depending on the momentum dependence
of the interaction gq, a CDW with modulations along the Cu-O
bonds (-X) can be stabilized despite the fact that the maximum
of the susceptibility along this direction is smaller than the peak
value along -M . Thin solid lines describe the momentum depen-
dence of susceptibility for the tb1 dispersion along the contour
M--X, for temperatures from T = 0.001 eV to T = 0.055 eV,
with increments of T = 0.002 eV. The inverse interaction strength
−1/2gq = α + β(aq)2 for two different sets of parameters (α,β) is
shown by solid green (α = 2.38 eV−1, β = 0.40 eV−1) and dashed
blue (α = 2.75 eV−1, β = 0.15 eV−1) parabolas.
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FIG. 5. (Color online) Instability diagram for the tb1 dispersion.
The region marked by gray “+” symbols corresponds to interactions
so weak that even at T = 0, no CDW ordering occurs. For (α,β) in
the parts of the diagram marked by green circles (blue diamonds),
the instability happens at a momentum lying along -X (-M). Even
for moderately localized interactions (β small) the instability first
appears at q = 0, provided that the interaction is sufficiently strong
(α � 2 eV−1).

is satisfied. For concreteness, we assume that the interaction
has the following simplified form:

− 1

2gq
≈ α + β|aq|2. (13)

As this small q expansion is most sensitive to the longer range
part of g, our simple approximation cannot be directly mapped
onto the extended Hubbard model mentioned in Sec. II.

Given this form of the interaction, the first task is to
identify the momentum Q and the temperature Tc at which
the CDW first develops. As shown in Fig. 5, the solutions
generally fall in four different classes. For a fixed curvature
β, there are no solutions provided that α is large enough.
This was to be expected, as the logarithmic divergence of
the susceptibility is cut off due to imperfect nesting. Thus,
for sufficiently weak interactions, no ordering occurs even at
T = 0. In the opposite limit of strong interactions and medium-
to long-range interactions, the instability is at q = 0. This is
due to the strong reduction in the momentum dependence of
χ as the temperature is raised, as can be appreciated from
Fig. 4. In this high-T limit, the susceptibility maxima are
confined to the region near the M point of the zone, which
leads to solutions for these wave vectors for small values of
the curvature β � 0.1. This is not shown in Fig. 5. The reason
is that the parabolic approximation we apply for 1/gq is only
valid near q = 0. We anticipate that for larger values of q, the
charge interaction is suppressed, and the magnetic interactions
become dominant instead.

We therefore focus on the more pertinent cases of the
two regions that are shown in Fig. 5 by the green circles
and blue diamonds. In these cases, the instability occurs
either at a momentum along -X (green circles) or -M
(blue diamonds); two representative examples are shown in
Fig. 4 (solid green and dashed blue parabolas). In either case,
the ordering momentum lies in the immediate vicinity of
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FIG. 6. (Color online) Temperature dependence of the quartic
coefficients SA, SB , SC , and SD for Q ≈ (0.357π/a, 0) (tb1 dis-
persion). The inset shows the linear combinations of the quartic
coefficients that determine the symmetry of the charge density wave.
The condition γ = (8SC + 4SD)/(2SA + 4SB ) > 1, which is fulfilled
for all temperatures in this case, corresponds to one-dimensional
stripes.

the “box” structure that surrounds the  point (Fig. 2). It
is straightforward to show that the boundary separating the
regions shown by the green circles and the gray “+” signs in
the parameter space must be a straight line. This boundary
corresponds to the limit Tc → 0; in Fig. 4 it represents
a family of parabolas with different α and β, all passing
through the maximum of the zero-temperature susceptibility
at a momentum Q0 ≈ 0.355π/a (Fig. 3, tb1). The boundary
is thus described by a straight line:

α + βa2Q2
0 = χ (T = 0,Q0). (14)

The other main features of the instability diagram can be
understood in a similar fashion.

IV. QUARTIC TERMS AND THE SYMMETRY OF
THE CDW IN CUPRATES

Once the ordering momentum Q is known, the coef-
ficients of the Ginzburg-Landau free energy, evaluated at
the transition temperature T = Tc, can be computed rather
easily. Figure 6 illustrates the temperature dependence of the
quartic coefficients calculated for the momentum Q = Q0x̂,
where Q0 ≈ 0.357π/a is the instability momentum for a
representative case of α = 2.4 eV−1 and β = 0.38 eV−1. At
high temperatures (T � t), the leading-order result for all
coefficients Si (i = A,B,C,D) has the same functional form
48T −3 + · · ·, as can be shown by a straightforward expansion
of the integrand in Eq. (8) in powers of ξk/T . In the opposite
limit of low temperatures, the coefficients SA, SD , and SC

diverge as T −3/2, while SB appears to remain finite. At high
temperatures, γ → 2, independent of any particular form of
the dispersion. As can be seen from Fig. 6, γ > 1 is satisfied at
all temperatures. Therefore, in the simplified description where
the additional harmonics are neglected, one would conclude
that 1D stripe ordering at a momentum Q0 is the preferred
state. The effect of the harmonics will be discussed next.

Notice that while the coefficients of the quartic term in
Eq. (9) are nominally determined only by the dispersion
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ξk (Eqs. (8) and (11)), they also indirectly depend on the
interaction, gq, since this enters into the determination of the
ordering vector as discussed above. However, the functional
form of the interaction affects quartic coefficients in another
fashion, which turns out to be rather pronounced. When
deriving F (�), we left out of the final expression Eq. (9)
all momenta but those where the instability first develops.
It happens that the inclusion of the third-order terms in
the effective action involves harmonics of the form �2Q
and �±Q±Q. These terms lead to a renormalization of the
fourth-order coefficient and, for a wide range of parameters,
this can affect the preferred symmetry of the CDW, as shown
in Ref. [20] for the case of the rare-earth tri-tellurides. That is,
inclusion of these harmonics leads to an additional contribution
to F (�Q,�Q) of the form

δF3(�Q,Q) = r2Q
(|�2Q|2 + |�2Q|2)

+ rQ+Q

(|�Q+Q|2 + |�Q−Q|2)
+ bQ(�2

Q�−2Q + �2
Q
�−2Q + c.c.)

+ cQ(�−Q−Q�Q�Q + �Q−Q�Q�−Q + c.c.),

(15)

where

bQ = −2S3(Q,Q, − 2Q), (16)

cQ = −4S3(Q,Q, − Q − Q). (17)

In the expression for δF3 above, we omitted all terms higher
than cubic order. These harmonics can be integrated out, as was
shown by Yao et al. [20], and the resulting correction reads

δF3 = − b2
Q

r2Q

(|�Q|4 + |�Q|4) − 2
c2

Q

rQ+Q
|�Q|2|�Q|2. (18)

These terms depend on the specific form of the interaction gq,
which affects the coefficients rQ and the choice of momentum
Q. The coefficients S3 are shown in Fig. 7.

One can estimate the effect of the corrections by noticing
that the GL coefficients are modified as follows:

2SA + 4SB → 2SA + 4SB + 4S3(Q,Q,−2Q)2

1
2g2Q

+χ2Q
, (19)

8SC + 4SD → 8SC + 4SD + 16S3(Q,Q,−Q−Q)2

1
2gQ+Q

+χQ+Q
. (20)

In the situation shown in Fig. 4, the additional term in Eq. (19)
can be neglected (i.e., the response at 2Q is typically small).
On the other hand, the one in Eq. (20) can be significant,
given the box-like structure of χ about the zone center (i.e.,
the response at Q + Q can be large). As a result, the net
effect of the cubic corrections on the GL free energy is a
reduction of the coefficient γ describing the relative magnitude
of the mixed term |�Q|2|�Q|2. Consequently, the range of
parameters for which the checkerboard symmetry is realized
could be generally increased. Evaluation of the renormalized
quartic coefficients from Eqs. (19) and (20) leads to a refined
version of the instability diagram shown in Fig. 8.

Dispersion tb1. In the region of the diagram that cor-
responds to low transition temperatures, the contribution
from the quartic coefficients dominates over the third-order
terms, and the preferable state is one-dimensional. For smaller
curvature β, as one approaches the part of the diagram where
the instability occurs along a diagonal wave vector, the contri-
bution of the third-order terms becomes more pronounced and
results in a transition to a two-dimensional state, as described
above. Both the one-dimensional and the two-dimensional
cases are characterized by the dominant order parameter
�Q ∝ (Tc − T )1/2. In all cases, there are subdominant higher
harmonics of the order parameter at wave vectors 2Q, Q + Q,
etc., that in the vicinity of Tc behave as integer powers of �Q.
For example, the most pronounced subdominant order param-
eter for the “checkerboard” state is �Q+Q ∝ |�Q|2/rQ+Q ∝
(Tc − T )/rQ+Q. Note that as β is reduced, rQ+Q also decreases
(Fig. 4). Thus for fixed Tc − T , the subdominant order �Q+Q
will be growing, and one expects that the simple GL scenario
considered so far will break down at some point.

Indeed, for even lower values of β, the renormalized value
of γ falls into the γ < −1 range. In other words, the third-order
terms destabilize our reduced GL free energy expression
that included only terms up to the fourth order in �Q. This
instability implies the necessity to include higher order terms
in the GL free energy expression for that part of the parameter
space. These terms would generally restore the stability of
the GL free energy, but would result in a first-order transition
that cannot be described in any quantitative way using our
approach. At the transition temperature Tc, a finite amplitude of
�Q develops, and unless a weakly first order transition occurs,
one in principle has to include an infinite number of terms
in the GL free energy to describe it. The coupling of the
order parameter �Q to the modes at 2Q, Q + Q, and higher
harmonics in this case implies that �2Q, �Q+Q, etc., also
acquire finite values just below Tc. Since none of the higher
harmonics have been observed in experiment, a detailed
analysis of this phase is left for future study.

Dispersion tb2. The phase diagram for tb2 has significant
differences from the tb1 case. The region of stability for
diagonal ordering is enhanced at the expense of the 1D state,
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FIG. 8. (Color online) A refined version of the instability diagram of Fig. 5. The top (bottom) row corresponds to the instability diagrams
without (with) cubic corrections. Instability at momenta lying along the Cu-O bonds can result in a 1D stripe phase (green crosses) or a 2D
“checkerboard” phase (red squares). In the region marked by magenta circles, the cubic corrections that involve modes with momenta Q + Q
destabilize the GL free energy (at the quartic level) by violating the stability condition γ > −1, corresponding to a first-order transition to a
state with finite �Q, �Q, �Q+Q, and higher harmonics. The yellow shaded region (lower left corner) of each diagram indicates a regime where
the transition temperature—formally obtained as a solution of Eq. (12)—is so high, the susceptibility peaks are smeared, and our simple GL
approach should not be applied.

and in addition the 2D checkerboard state now appears. But
the cubic corrections in this case are rather large, and with
their inclusion, over the entire range of parameters where 1D
and 2D second-order transitions would be expected, first-order
transitions occur instead.

Dispersion tb4. The tb4 case looks more similar to the tb1
case than the tb2 one, except that 2D order is now present over a
region of parameter space where order first appears. Inclusion
of the cubic corrections leads to a complete suppression of the
1D state in favor of a first-order transition, but the checkerboard
order remains stable.

V. CONCLUSIONS

One faces two difficulties when attempting to reconcile the
atomic-scale modulations observed in real space by scanning
tunneling microscopy (STM) with the energy dispersions
obtained from photoemission. First, one must account for the
fact that the modulation wave vector observed by STM is
directed along the Cu-O bonds, while the charge susceptibility
extracted from the photoemission dispersions is largest along
the diagonal of the zone. At the level of a weak-coupling theory
with an effective electron-electron interaction, this apparent
contradiction implies that the interaction must be momentum
dependent. Moreover, one obtains rather stringent constraints
on the range and strength of this effective interaction.

While both LSCO and Bi2212 have similar dispersions,
the differing ordering tendencies observed in these materials
should not come as a surprise, since small differences in
the dispersions and the interaction coefficients α and β

are sufficient to move one from the 1D to 2D regions of

the phase diagram. In all cases, one obtains a qualitatively
similar instability diagram at the level of the susceptibility
analysis, i.e., diagrams that determine whether the instability
momentum lies along the Cu-O bonds or diagonally.

Even when the interaction is such that the instability
momentum is oriented correctly, there remains the question
of a single-Q (stripe) versus a double-Q (checkerboard) state.
This is where the results diverge sharply, even for materials
with seemingly similar charge susceptibilities. As the quartic
terms are sharply peaked functions of momentum near the
“box” where the susceptibility is peaked, the detailed phase
diagram that determines the energetically preferred state is a
sensitive function of the dispersion.

Interestingly, the well known difficulty of differentiating
whether the observed modulation patterns are unidirectional
or checkerboard-like implies that although unidirectional
behavior is the most likely, the real materials are near the
1D-2D phase boundary [18] in Fig. 8. It is also interesting to
note that the cubic corrections tend to destabilize 1D order
in favor of 2D order. In that context, recent observations in
underdoped YBa2Cu3O6+x have seen 2D order [26,27] and
thus our work should be of interest in this regard.
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