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A spin texture called skyrmion has been recently observed in certain chiral magnets without inversion symmetry.
The observed skyrmions are extended objects with typical linear sizes of 10 to 100 nm that contain 103 to 105

spins and can be deformed in response to external perturbations. Weak deformations are characterized by internal
modes, which are localized around the skyrmion center. Knowledge of internal modes is crucial to assess the
stability and rigidity of these topological textures. Here, we compute the internal modes of a skyrmion in a
ferromagnetic background state by numerical diagonalization of the dynamical matrix. We find several internal
modes below the magnon continuum, such as the mode corresponding to the translational motion and different
kinds of breathing modes. The number of internal modes is larger for lower magnetic fields. Indeed, several
modes become gapless in the low-field region indicating that the single skyrmion solution becomes unstable,
although a skyrmion lattice remains thermodynamically stable. On the other hand, only three internal modes
exist at high fields and the skyrmion texture remains locally stable even when the ferromagnetic state becomes
thermodynamically stable. We also show that the presence of out-of-plane easy-axis anisotropy stabilizes the
single skyrmion solution. Finally, we discuss the effects of damping and possible experimental observations of
these internal modes.
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I. INTRODUCTION

A skyrmion is a topological excitation which was first
proposed by Skyrme a half century ago [1], and later was
observed in many condensed matter systems, such as liquid
crystals, quantum Hall devices, and chiral magnets. For the
case of magnets, the spins wrap a sphere when moving from the
center to the outer region of the skyrmion, as it is schematically
shown in Fig. 1(a). The existence of a stable skyrmion
lattice in chiral magnets was predicted two decades ago [2,3].
Recently, the experimental observation of skyrmions in chiral
magnets without inversion symmetry (B20 compounds), such
as MnSi or Fe0.5Co0.5Si, has attracted enormous attention into
these emergent topological textures [4–7]. In bulk crystals,
skyrmions form a triangular lattice in a small portion of
the magnetic field-temperature phase diagram. However, the
skyrmion lattice phase is found to be much more stable in thin
films [8–11].

Spontaneous skyrmion crystals have been observed both
in metals and insulators. In metals, the skyrmion lattice
can be driven by a weak current and the detrimental Joule
heating can be significantly reduced [12–14]. In insulators, the
dominant dissipation mechanism is the weak Gilbert damping
for spin precession. Consequently, skyrmions in insulators
are very promising for applications that require low energy
dissipation. Furthermore, the magnetoelectric coupling that is
intrinsic to skyrmion spin textures points to a new way of
controlling these magnetic topological objects with external
electric fields [6,15]. Because of these unique characteristics,
skyrmions have huge potential for spintronics applications,
such as information storage [16].

Being topological textures, skyrmions cannot be created or
annihilated by continuous deformations of the spin configura-
tion. On the other hand, the skyrmions that have been observed
in the B20 compounds are extended objects with linear size
of 10–100 nm, meaning that they contain 103–105 spins.
These skyrmions can be deformed in response to external

perturbations and the actual deformation is determined by their
internal modes. The number of internal modes and their corre-
sponding frequencies determine the stability of the skyrmion
solution. In the continuum, the lowest frequency mode of
the skyrmion is the gapless Goldstone mode associated with
invariance under the group of continuous translations. In recent
derivations of the equation of motion [17–23] based on Thiele’s
collective coordinate approach [24], only the translational
mode was taken into account by assuming that the skyrmion
is rigid. Knowledge of the internal modes can test the validity
of this assumption. The internal modes also determine the
scattering of magnons by skyrmions.

The eigenmodes of the skyrmion lattice have been cal-
culated [25,26] and measured [27,28]. Three different modes
with frequencies of several gigahertz have been identified. The
first mode corresponds to a clockwise rotation of the skyrmion
core, while the second mode corresponds to the anticlockwise
rotation. The third one is a uniform breathing of all skyrmions.
Excitation of these modes by strong microwave radiation leads
to melting of the skyrmion lattice [26]. However, little is known
about the internal modes of a single skyrmion. The present
work is devoted to filling this gap.

In the region between the skyrmion lattice and fully
polarized ferromagnetic phases, the skyrmion density is low
and the interaction between skyrmions is weak. Therefore
we can treat the skyrmions as quasifree objects. Single
skyrmions can also be created in small samples where only one
skyrmion can be accommodated [29]. Furthermore, a single
skyrmion becomes a metastable solution in the ferromagnetic
background of fully polarized spins that is stabilized at high
magnetic fields. Consequently, the controlled manipulation of
a single skyrmion in a ferromagnetic background is possible
and directly relevant for applications [30]. Here we focus on
this case. The magnon spectrum of the ferromagnetic state
gets modified in the presence of the skyrmion. In analogy with
other topological objects, such as kinks in 1D systems [31,32]
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FIG. 1. (Color online) (a) Schematic view of the spin profile of a
skyrmion. (b) Sketch of the effective magnon potential produced by
the skyrmion. The potential is drawn along the radial direction of the
skyrmion.

and vortices in 2D systems [33], the presence of a skyrmion
introduces a local potential for magnons, as it is schematically
shown in Fig. 1(b). The confining potential supports localized
modes (internal modes of the skyrmion) with energy smaller
than the gap of the magnon continuum. Because the wave-
length of the low-energy magnon continuum is much larger
than the skyrmion size, the presence of the skyrmion has a
negligible effect on the extended magnon modes.

In the present work, we study the internal modes of a single
skyrmion in the ferromagnetic background of a chiral magnet
like the B20 compounds. We find several modes in the low
magnetic field region that become gapless at a critical magnetic
field. The existence of these gapless modes renders the single
skyrmion unstable, although the skyrmion crystal remains
thermodynamically stable in the low-field region. Only three
different internal modes exist at high magnetic fields. The
mode with the lowest energy is the translational mode. On
a lattice, the translational mode remains gapped because the
translational symmetry group is not continuous. The second
mode is the nonuniform breathing in the azimuthal direction
of the skyrmion. The third one is the uniform breathing mode.
We show that a single skyrmion remains metastable (or locally
stable) for arbitrarily high fields. We also investigate the effect
of out-of-plane easy-axis anisotropy. The skyrmion becomes
more stable in the presence of easy-axis anisotropy, which
could explain why the skyrmion lattice phase is more stable
in thin films. The effect of damping on the internal modes
is also clarified. Finally, we discuss possible experimental
observations of the internal modes.

II. MODEL AND METHODS

We consider a thin film of a chiral magnet described by the
following Hamiltonian [2,3,34–36] defined on a square lattice

with lattice constant a:

Hs = −d

a

∑
〈i,j〉

[Jexni · nj + Dij · (ni × nj )]

− d

a

∑
i

Ha · ni − Azd

2a

∑
i

n2
i,z, (1)

where the spins are represented by a unit vector n and the
summation is over the nearest neighbors 〈i,j 〉. Here, Dij =
Dêij is the in-plane Dzyaloshinskii-Moriya vector with êij

being the unit vector from the site i to the site j and Az

is the out-of-plane easy axis anisotropy. Jex is the exchange
coupling and Ha is the external magnetic field. We assume
the system is uniform along the thickness direction so the
Hamiltonian is proportional to the thickness d. The magnetic
field is perpendicular to the film. At zero temperature (T = 0),
the skyrmion lattice phase becomes thermodynamically stable
in the field region 0.2D2/Jex < Ha < 0.8D2/Jex [35,36]. The
magnetic spiral phase is stabilized for weak magnetic fields
Ha < 0.2D2/Jex, while the fully polarized ferromagnetic state
becomes the ground state for Ha > 0.8D2/Jex. For typical
chiral magnets, we have Jex ≈ 3 meV and D ≈ 0.3 meV [17].

The spin dynamics is governed by the Landau-Lifshitz-
Gilbert equation [37]

∂tn = −γ n × Heff + αn × ∂tn, (2)

where the effective magnetic field is Heff ≡ −δH/δn and
γ = 1/(�s) with s being the magnitude of the local spins.
The Gilbert damping coefficient α is weak for real materials,
α � 1.

We find a stationary (metastable) solution of a single
skyrmion in the ferromagnetic background. On a lattice, the
energy minimized when the center of the skyrmion is located
at a high-symmetry point, i.e., one lattice site or the center
of a square plaquette. We find that the stationary solution
corresponds to the case in which the skyrmion is centered at
a lattice site. The unperturbed skyrmion is circular and can be
parametrized by ns = (sin θs cos φs, sin θs sin φs, cos θs) with
φs = atan[(y − y0)/(x − x0)] + π/2. We use the relaxation
method to find the solution for θs . In the continuum limit
(a → 0), θs is determined by

∂θs

∂t
= −

[
cos(2θs) + sin(2θs)

2r
+ β

2
r sin θs

− ∂θs

∂r
− 1 − r∂2

r θs

]
, (3)

where β = 2HaJex/D
2 and length is in units of Jexa/D. Here,

θs = π at the center of the skyrmion (x0, y0) and decays to
θs = 0 far away from the skyrmion.

To calculate the internal modes, we add a small perturbation
to the stationary solution: n = ns + ñ with ñ � 1. Because
|n| is conserved, to the lowest order ñ is perpendicular to ns .
We use a local coordinate approach [33] in which the local
z̃ axis is parallel to the ns direction, while ñ lies in the local
x̃-ỹ plane. We then substitute ns into Eq. (2) and keep the
contributions of first order in ñ. Equation (2) can be expressed
as a matrix equation in the frequency domain and we obtain the
lowest 30 eigenfrequencies and eigenmodes by diagonalizing
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FIG. 2. (Color online) Magnetic field dependence of the eigen-
frequencies of different modes in the absence of easy-axis anisotropy
(Az = 0). The modes are assigned to the lth order breathing mode
and the translational mode. We show only several eigenfrequencies
of the magnon continuum (shaded region) because only the lowest 30
eigenmodes have been obtained with the Lanczos method.

the matrix with the Lanczos method. Details of this calculation
are included in Appendix.

III. RESULTS

The magnetic field dependence of the low eigenfrequencies
is shown in Fig. 2 for Az = 0 and D/Jex = 0.1. To trace
the continuous evolution of the modes as a function of
Ha , the eigenfrequencies are calculated at field intervals as
small as δHa = 0.00125. The applied magnetic field opens
a gap, ωg = γHa , in the magnon spectrum. If we adopt the
boundary condition ñ(r) = 0 for r on the boundary, the lowest
wave number is k = π/L (where L is the linear size of the
lattice).1 Correspondingly, the lowest frequency of the magnon
continuum is slightly higher than ωg . To assign the internal
modes, we calculate the profile of the spin configuration
n = ns + F ñv sin(ωt), where ñv is the eigenvector, F is an
arbitrary amplitude, and ω is the eigenfrequency. Snapshots
for t = 0, π/(2ω), and 3π/(2ω) are shown in Fig. 3 for several
typical modes. The translational mode exists in the whole
magnetic field region. The skyrmion gets deformed into lth
order polygons. For instance, for l = 2, it deforms into an
ellipse with its major axis along the y direction in the first half
period and along the x direction in the next half period. We
will refer to these modes as lth order breathing modes with the
uniform breathing mode corresponding to l = 0.

The skyrmion size depends on the magnetic field value.
Because the skyrmion is bigger for weak fields, it supports
more internal modes. As shown in Fig. 2, some levels cross
as a function of field indicating that these modes become

1The minimal wave number is k = 0 for open boundary conditions
(∂rn = 0 at the boundary) in the continuum limit a → 0 and the
magnon continuum begins at ωg . Here n is a unit vector normal to
the boundary.

FIG. 3. (Color online) Deformation of the skyrmion associated
with different internal modes. The spin configuration is obtained
from the eigenvector ñv by using n = ns + F ñv sin(ωt) with F = 10.
The spin configuration is plotted at t = 0 (left column), t = π/(2ω)
(middle column), and t = 3π/(2ω) (right column). The white arrows
in the first row denote the direction of the translational motion and in
the second row represent the direction of the uniform breathing. The
vectors in the plots denote the nx and ny components, and the contour
plot denotes the nz component with red representing nz = 1 and blue
representing nz = −1. Here, D/Jex = 0.1 and Az = 0.

degenerate at the crossing magnetic field values. Each lth
order breathing mode becomes gapless at a specific magnetic
field Hl , indicating an instability towards the deformation
associated with such mode. Below the threshold magnetic field
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Hl , the eigenfrequency of the l-th order breathing mode be-
comes negative. The effective damping, which is proportional
to the gap, also becomes negative [see Eq. (4) below]. Thus
the amplitude of the mode increases exponentially with time
indicating that the skyrmion configuration is no longer stable.
It is important to note that the skyrmion solution becomes
unstable at a single critical field for which the first mode
becomes gapless. Because the first mode that becomes soft is
the elliptic (l = 2) mode, the skyrmion solution is locally stable
only for Ha > H2. The softening of l = 2 mode indicates that
the skyrmion becomes unstable against elliptical distortions.
Therefore the spectrum of eigenfrequencies shown in Fig. 2 is
not physically accessible for Ha < H2 unless the skyrmion is
confined in a geometry that makes it stable against elliptical
distortions. The same reasoning applies to the successive
modes that become soft at fields lower than H2 (see Fig. 2).
To verify the stability of the skyrmion solution at low fields,
we performed additional simulations with one skyrmion at the
center of the ferromagnetic state as the initial state. By solving
Eqs. (1) and (2) numerically, we found that the skyrmion
solution becomes unstable relative to weak perturbations for
fields Ha � 0.55D2/Jex in agreement with our estimation of
H2 based on the softening of the l = 2 mode.

Three different internal modes appear below the magnon
continuum at high fields Ha � 0.55D2/Jex.2 The lowest
frequency mode corresponds to a uniform translation of the
skyrmion. This translational mode has a nonzero frequency
because of the intrinsic pinning caused by the discrete lattice.
The frequency depends on the ratio of the skyrmion size to
the lattice constant and it becomes bigger for higher fields
because the skyrmion becomes smaller. We also computed
the dependence of this frequency on D and verified that it is
proportional to D2 because the skyrmion size shrinks for a
larger D. The mode with the second lowest frequency is the
l = 2 breathing mode. Its frequency increases rapidly with the
magnetic field and finally approaches the magnon continuum.
The frequency of the uniform breathing mode (l = 0) is above
the magnon gap for high fields implying that this mode gets
buried inside the magnon continuum.

We next discuss the effect of the easy-axis anisotropy Az on
the internal modes. The results for Az = 0.5D2/Jex and Az =
1.0D2/Jex are depicted in Figs. 4(a) and 4(b). The presence
of anisotropy lifts the magnon gap to the frequency ωg =
γ (Ha + Az) and the uniform breathing mode is now below
and well separated from the magnon continuum for low fields.
The number of internal modes that lie inside the gap is reduced
at low fields. The skyrmion size shrinks for a large anisotropy
and the effective potential for magnons becomes narrower,
which lifts the eigenfrequencies of the internal modes towards
the magnon continuum. The skyrmion becomes stable over
a wider region of magnetic fields. The effect of out-of-plane
easy-axis anisotropy is similar to the effect of the external
magnetic field, which stabilizes the skyrmion texture.

2Without anisotropy (Az = 0), the uniform breathing mode is
slightly above the magnon gap ωg and its frequency increases rapidly
for higher fields. With anisotropy (Az > 0), the uniform breathing
mode appears below the magnon gap and it extends into the magnon
continuum for higher fields (see Fig. 4).

FIG. 4. (Color online) Same as Fig. 2 but with Az = 0.5D2/Jex in
(a) and Az = 1.0D2/Jex in (b). The eigenfrequencies for D/Jex = 0.1
and 0.2 are almost identical in normalized units.

Finally, we study the effect of the damping α on the
internal modes. With damping, the eigenfrequencies acquire an
imaginary part meaning that the lifetime of the modes becomes
finite: τ = 2π/Im(ω). The dependence of the real, Re(ω), and
imaginary part, Im(ω), of the eigenfrequencies on α is shown
in Fig. 5. For α � 1, this dependence is well described by

ω(α) = 1 + αi

1 + α2
ω(α = 0), (4)

which is the dependence that is obtained for the ferromagnetic
state.

IV. DISCUSSION

In the low-field region where the skyrmion lattice is
thermodynamically stable, the single skyrmion solution in a
ferromagnetic background is, however, unstable. One possible
reason is that in the skyrmion lattice, the mutual repulsion
between skyrmions suppresses the internal modes associ-
ated with skyrmion distortion and stabilizes the skyrmion
lattice. A single skyrmion is only stable at relatively high
fields. The single skyrmion solution becomes a metastable
state at higher fields, when the ferromagnetic state becomes
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FIG. 5. (Color online) Dependence of the eigenfrequencies ω on
the damping coefficient α. Symbols are from numerical diagonal-
ization and lines are given by Eq. (4). For clarity, not all lines are
shown.

thermodynamically stable. The creation of a single skyrmion
requires to overcome a large energy barrier deep inside
the ferromagnetic phase. Thus single skyrmion manipulation
becomes easier near the boundary between the ferromagnetic
and skyrmion crystal phases [30]. It has been demonstrated that
an out-of-plane easy axis is helpful to stabilize the skyrmion
state. Because this anisotropy is inversely proportional to the
film thickness [38], Az ∝ 1/d, skyrmions are more stable in
thin films [8–11].

The equation of motion for a rigid skyrmion has been
derived by several authors based on Thiele’s collective coor-
dinate approach, where only the translational mode is taken
into account. According to Fig. 2, the translational mode
has the lowest energy for a stable skyrmion and it is well
separated from the other modes. Thus the equation of motion
for a rigid skyrmion is quite accurate, as it was confirmed
by different numerical simulations. Higher-order corrections,
which lead to the generation of a finite skyrmion mass caused
by deformations, are expected to be small.

The mass of a magnetic bubble domain, which has the
same skyrmion topological number as the spin configuration
considered here, has been calculated in Ref. [39]. The result
is that a magnetic bubble domain has a sizable mass. We
would like to point out that the magnetic bubble considered
in Ref. [39] is different from the spin texture that we have
considered here. In Ref. [39], the spins point down inside
the bubble and up outside the bubble. In our case, the spins
gradually change from up to down and they simultaneously
rotate along a direction determined by the Dzyaloshinskii-
Moriya interaction when moving away from the center of the
skyrmion. Because the mass arises from distortions induced
by the skyrmion motion, the masses for these two different
spin configurations can differ drastically because their internal
modes can have very different frequencies. By comparing our
results with those in Ref. [39], we can infer that skyrmions of
chiral magnets are much more rigid than bubble domains.

In addition, the authors of Ref. [39] have only considered
distortions of the domain wall, which can be described by two

waves moving around the wall in the opposite directions. To
certain extent, the skyrmion distortion shown in Fig. 3 can
also be described by two waves moving around the core in
opposite directions. However, the distortion extends over the
whole region of the skyrmion as it is shown in Fig. 3. Moreover,
we have shown explicitly that the elliptic distortion (l = 2) has
the lowest eigenfrequency implying that this mode provides the
dominant contribution to the skyrmion mass in chiral magnets.

We next discuss possible experimental observations of
the internal modes. The internal modes have frequencies of
several gigahertz. Thus they can be excited and observed with
microwave absorption measurements. Because the wavelength
of microwaves in the gigahertz region is much larger than the
linear skyrmion size, only the uniform breathing mode can
be significantly excited. The other modes with l > 0 can be
measured with a local probe, such as spin polarized scanning
tunneling microscope.

V. CONCLUSION

To summarize, we have calculated the internal modes of a
single skyrmion in the ferromagnetic state of chiral magnets.
A translational mode and different types of breathing modes
appear below the magnon continuum. Several modes become
gapless in the low field region and the single skyrmion
becomes unstable in spite of the fact that the skyrmion
lattice is thermodynamically stable in this field region. The
single skyrmion (excited) state is locally stable for high
fields including the field region for which the fully saturated
ferromagnetic state is thermodynamically stable. Out-of-plane
easy-axis anisotropy increases the local stability of the single
skyrmion state. The translational mode is gapped for spins on a
lattice and the gap decreases rapidly as a function of increasing
ratio between the linear skyrmion size and the lattice constant.
We find that the translational mode has the lowest energy and it
is well separated from the other modes. This result justifies the
rigid skyrmion approximation in derivation of the particlelike
equation of motion. We have also discussed the effects of
damping on the eigenfrequencies and possible experimental
probes for measuring the internal modes of a single skyrmion.
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APPENDIX: EQUATION OF MOTION FOR
PERTURBATIONS ñ

The internal modes of a skyrmion cannot be obtained by
expanding in variations of the azimuthal and polar angles,
θ = θs + θ̃ and φ = φs + φ̃, because the expansion is ill
defined at the poles θs = 0 or π . The resulting equation of
motion includes a term ∂t φ̃ sin θs and φ̃ is not necessarily
small when the spin is close to any of the two poles. This
singular behavior arises from the topological nature of SU(2)
[SU(2) is a closed manifold] and it cannot be avoided by using
fixed Cartesian coordinates, because the spins of a skyrmion
point in all possible directions. To overcome this problem,
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FIG. 6. (Color online) Definition of the local coordinate system.
The local z̃ axis is along the spin direction of the unperturbed
skyrmion. The local x̃ axis is in the x-y plane of the original
coordinates.

we use a local coordinate approach [33] in which the local z̃

axis is parallel to the local spin direction of the unperturbed
skyrmion. The local x̃ axis is in the x-y plane of the original
spin coordinates, as it shown in Fig. 6. To linear order, the
perturbation ñ lies in the x̃-ỹ plane. The original, n, and the
local spin coordinates, ñ, are connected by the rotation⎛
⎜⎝

nx

ny

nz

⎞
⎟⎠=

⎡
⎢⎣
− sin φs − cos φs cos θs sin θs cos φs

cos φs − sin φs cos θs sin θs sin φs

0 sin θs cos θs

⎤
⎥⎦

⎛
⎜⎝

ñx

ñy

ñz

⎞
⎟⎠ ,

(A1)

where φs and θs are the phases of a stationary skyrmion. ñz = 1
to linear order in ñx, ñy � 1. For convenience, we denote
θs(i ′,j ′) at the site (i ′, j ′) in the square lattice as θs,i, and
similarly for φs,i. We also introduce

si = sin θs,i, ci = cos θs,i. (A2)

Substituting Eq. (A1) into Eq. (1), we obtain the following
zeroth-order contribution to the Hamiltonian per unit of
thickness:

H(0) =
∑

i

∑
j=i+êx ,i+êy

Jex[−sisj cos(φi − φj) − cicj]

−
∑

i

(
Haci + Az

2
c2

i

)

+
∑

i,j=i+êx

D(cisj sin φj − sicj sin φi)

+
∑

i,j=i+êy

D(−cisj cos φj + sicj cos φi). (A3)

The second-order contribution, H(2) = H(2)
ex + H(2)

DM,x +
H(2)

DM,y + H(2)
A , is given by

H(2)
ex = −Jex

∑
i

∑
j=i+êx ,i+êy

(ñy,i{ñy,j[cicj cos(φi − φj) + sisj]

− ciñx,j sin(φi − φj)} + ñx,i[cos(φi − φj)ñx,j

+ cjñy,j sin(φi − φj)]), (A4)

H(2)
DM,x = −

∑
i,j=i+êx

D{− cos φjsiñy,iñx,j + ñy,j[cos φisjñx,i

+ ñy,i(−cisj sin φi + cjsi sin φj)]}, (A5)

H(2)
DM,y = −

∑
i,j=i+êy

D{sin φisjñy,jñx,i − ñy,i[sin φjsiñx,j

+ ñy,j(−cisj cos φi + cjsi cos φj)]}, (A6)

H(2)
A = −Az

2

∑
i

(siñy,i)
2. (A7)

Here, êx and êy are unit vectors along the x and y directions,
respectively. The first-order contribution does not enter into
the equation of motion for ñx and ñy . The effective field is
then given by H̃eff,x = −δH(2)/δñx , H̃eff,y = −δH(2)/δñy , and
Heff,z = −H(0). The equations for ñ in the frequency domain
ñ(t) ∼ ñ(ω) exp(iωt) are

iω

γ
(ñx + αñy) = H̃eff,y − ñyHeff,z, (A8)

iω

γ
(ñy − αñx) = −H̃eff,x + ñxHeff,z. (A9)

We now introduce the vector vx = (ñx,1, ñx,2, ñx,3, . . .)T and
similarly for vy in order to rewrite Eqs. (A8) and (A9) in a
matrix form:

iω

γ
(1 + α2)

(
vx

vy

)
= M

(
vx

vy

)
. (A10)

In the absence of damping (α = 0), this matrix is antisym-
metric, M = −MT , because ω is real. We obtain the thirty
lowest eigenfrequencies ω and corresponding eigenvectors of
M by using the Lanczos method. The lattice size that we use
for numerical diagonalization is much larger than the linear
skyrmion size to eliminate spurious size effects. However, the
extended modes still depend on the system size. Typically we
use 400 lattice constants along the x and y directions. The
corresponding size of the matrix M is 320 000 × 320 000.
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