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Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
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We use a combination of analytical and numerical techniques to study the phase diagram of the frustrated
Heisenberg model on the bilayer honeycomb lattice. Using the Schwinger-boson description of the spin operators
followed by a mean-field decoupling, the magnetic phase diagram is studied as a function of the frustration
coupling J2 and the interlayer coupling J⊥. The presence of both magnetically ordered and disordered phases
is investigated by means of the evaluation of ground-state energy, spin gap, local magnetization, and spin-spin
correlations. We observe a phase with a spin gap and short-range Néel correlations that survives for nonzero
next-nearest-neighbor interaction and interlayer coupling. Furthermore, we detect signatures of a reentrant
behavior in the melting of the Néel phase and symmetry restoring when the system undergoes a transition from
an on-layer nematic valence-bond crystal phase to an interlayer valence-bond crystal phase. We complement our
work with exact diagonalization on small clusters and dimer-series expansion calculations, together with a linear
spin-wave approach to study the phase diagram as a function of the spin S, the frustration, and the interlayer
couplings.
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I. INTRODUCTION

The study of the possible disordered ground states on the
honeycomb lattice has received great interest in the last years.
The interest is focused mainly on the existence of quantum
spin liquids in quantum antiferromagnets [1–5].

Recently, possible quantum disordered phases have been
reported in the phase diagram corresponding to the single-layer
honeycomb Heisenberg model [6–23]. From the theoretical
point of view, it is interesting to study the influence of an
interlayer coupling in the stabilization of these disordered
phases. In particular in the bilayer models, the ground state
corresponding to very large values of the interlayer couplings
should be a dimer product state. For unfrustrated models a
transition between the Néel phase and the dimer phase is
expected to occur as the interlayer coupling is increased. This
“melting” of Néel order can be studied as a function of the
frustration in each layer. By contrast, in the frustrated case,
the system might go from a nonmagnetic nematic phase to a
dimer product state as the interlayer coupling is increased.

From the experimental side, very exciting progress on
the bismuth oxynitrate, Bi3Mn4O12(NO3), was obtained by
Smirnova et al. [24]. The magnetic susceptibility data indicate
two-dimensional magnetism. Despite the large antiferromag-
netic (AF) Weiss constant of −257 K, no long-range ordering
was observed down to 0.4 K, which suggests a nonmagnetic
ground state [24–27]. In this compound the Mn4+ ions form
a honeycomb lattice without any distortion. Two layers of
such honeycomb lattices are separated by bismuth atoms,
forming a bilayer structure with these bilayers separated by
a large distance. Thus, the appropriate geometry to describe
its magnetic properties is the bilayer honeycomb lattice.

The magnetic exchange coupling constants have been
calculated using a density functional theory, which shows that

*zhanghao@issp.u-tokyo.ac.jp
†lamas@fisica.unlp.edu.ar

the dominant interactions are the intralayer nearest-neighbor
interaction J1 and the effective interlayer interaction J⊥ [28].

In Ref. [26], Matsuda et al. found experimental evidence
that J1, J2, and J⊥ are the dominant couplings and there is
competition between them. As a result of this competition,
a disordered ground state was found. This observation has
raised the interest in the study of magnetically disordered
phases in honeycomb-lattice antiferromagnets. Most of the
advances have been reached in the single-layer honeycomb
lattice [6–22,29,30], whereas less attention has been given to
the unfrustrated bilayer case [30–32]. Therefore, there are still
many open issues, especially for the frustrated bilayer case.

The aim of this paper is to study the zero-temperature phase
diagram of the frustrated Heisenberg model on the bilayer
honeycomb lattice. The dependence on the interlayer coupling
J⊥ is investigated for different values of the frustration J2.
We focus on the S = 1/2 case, where quantum fluctuations
become more important. The present study has several moti-
vations. On the one hand, the phase diagram corresponding
to S = 1/2 is a natural extension of the recently presented
phase diagram for the single-layer honeycomb lattice [9]. On
the other hand, the substitution of Mn4+ in Bi3Mn4O12(NO3)
by V4+ may lead to the realization of the S = 1/2 Heisenberg
model on the honeycomb lattice.

In this paper, using the Schwinger-boson representation
followed by a mean-field decoupling, the presence of both
magnetically ordered and disordered phases is investigated.
We observe signatures of a reentrant behavior in the melting
of the Néel phase. The behavior of the local magnetization
as a function of the interlayer coupling J⊥ gives a physical
explanation of this effect, since small J⊥ makes the system
more magnetically ordered. Another key finding of our work
is that the interlayer coupling may restore the lattice rotational
symmetry within layers. Furthermore, the linear spin-wave
theory (LSWT) is used to describe the general behavior
as a function of the spin S. To support the mean-field
results the Lanczos technique in small systems is used,
complemented with series expansion based on the continuous
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FIG. 1. (Color online) Schematic representation of the relevant
coupling interactions in Bi3Mn4O12(NO3). Colored areas correspond
to the unit cells. The sites in each unit cell are labeled from 1 to 4.

unitary transformation method to estimate the ground-state
energy and the triplet gap. Last but not least, a comparison with
previous Schwinger-boson mean-field results for the S = 1/2
Heisenberg model [9] on the single-layer case is discussed.

The outline of the paper is as follows: In Sec. II we introduce
the model. In Sec. III we apply the Schwinger boson mean-
field approach for the S = 1/2 case, complemented with the
Lanczos technique. In Sec. IV we apply LSWT for general
spin S. A comparison of the ground-state energy and the triplet
gap obtained by means of series expansion and the Lanczos
technique is presented in Sec. V. We close with a discussion
and conclusions in Sec. VI.

II. FRUSTRATED BILAYER HEISENBERG MODEL

The Heisenberg model on the bilayer honeycomb lattice is
described by

H =
∑

�r,�r ′,α,β

Jα,β (�r,�r ′)�Sα(�r ) · �Sβ(�r ′), (1)

where �Sα(�r ) is the spin operator on site α corresponding to
the unit cell �r . α takes the values α = 1,2,3,4 corresponding
to the four sites on each unit cell, as depicted in Fig. 1. The
coupling constants Jα,β (�r,�r ′) on the bonds of the bilayer lattice
are depicted in Fig. 1.

The classical model displays Néel order for J2/J1 < 1/6.
The interlayer coupling J⊥ does not introduce frustration in
the system and then, at the classical level and T = 0, does
not affect the classical Néel phase. In the quantum case the
situation is much more subtle; Néel order is likely to melt,
giving rise to a nonmagnetic phase. In the following, except
when explicitly specified, we fix the energy scale by taking
J1 = 1 to simplify the notation. For large values of J⊥ we
expect the ground state to be an interlayer valence-bond
crystal (IVBC) with corresponding spins from both layers
forming dimers. There are two different ways to destroy the
Néel order: by increasing the frustration on each layer or
by increasing the coupling between layers. The destruction
of the Néel order in a single-layer honeycomb lattice due
to the frustration introduced by means of the next-nearest-
neighbor interactions has been studied by various approaches,
including spin-wave theory [10,30,33,34], a nonlinear σ -
model approach [35], Schwinger-boson mean-field theory
(SBMFT) [6,9,36], bond operator mean-field theory [10],
exact diagonalization (ED) [11,12,34], a variational Monte
Carlo (VMC) method [18,19], series expansion (SE) [37],
the pseudofermion functional renormalization group (PF-
FRG) [13], the coupled cluster method (CCM) [15–17], and

the density-matrix renormalization-group (DMRG) method
[20–22].

For the single-layer case, the most accepted scenario is
that at a critical value of the frustrating coupling J2 the Néel
order is destroyed giving rise to a magnetically disordered
phase. The different techniques listed above have yielded
strong evidence supporting the existence of an intermediate
magnetically disordered region where a spin gap opens and
spin-spin correlations decay exponentially [9,12,15,16,19].
This disordered region comprises two kinds of magnetically
disordered phases distinguished by a rotational-symmetry
breaking [9]. In the range 0.2075 � J2/J1 � 0.3732 there
is a gaped spin liquid (GSL) phase, where the ground
state is magnetically disordered and preserves all the lattice
symmetries [9].

For larger values of J2 the system presents a ground state
that breaks the lattice rotational symmetry but preserves lattice
translational symmetry. This staggered dimer valence-bond
crystal (VBC), which is also called lattice nematic [10],
was found by using a variety of techniques [9–12,18,20,21].
Finally for J2/J1 � 0.398, the system enters into a spiral phase
[9,10]. These phases (except the spiral one) are depicted in
Fig. 3(b).

Since the nematic phase present in the single-layer case
breaks the discrete rotational symmetry of the lattice, it
is expected that, in the bilayer case, by increasing the
interlayer coupling the system should undergo a transition
from the nematic VBC to the IVBC phase, restoring the Z3

symmetry.
As shown in the following sections, we study the Hamil-

tonian (1) using a rotationally invariant decomposition for the
mean-field parameters corresponding to a Schwinger-boson
representation of the spin operators, which has proven to be
successful in incorporating quantum fluctuations [7–9,38–45].
We complement this approach with ED, LSWT, and SE.

III. SCHWINGER-BOSON MEAN-FIELD APPROACH AND
EXACT DIAGONALIZATION

In the Schwinger-boson representation, the Heisenberg
interaction can be written in a biquadratic form. The spin
operators are replaced by two species of bosons via the relation
[46–48]

�Sα(�r ) = 1
2
�b†

α(�r ) · �σ · �bα(�r ), (2)

where �bα(�r )† = (b†
α,↑(�r ),b†

α,↓(�r )) is a bosonic spinor corre-
sponding to the site α in the unit cell sitting at �r . �σ is the vector
of Pauli matrices, and there is a boson-number restriction∑

σ b†
α,σ (�r )bα,σ (�r ) = 2S on each site.

In terms of boson operators we define the SU(2) invariants

Aαβ(�x,�y ) = 1

2

∑
σ

σbα,σ (�x )bβ,−σ (�y ), (3)

Bαβ(�x,�y ) = 1

2

∑
σ

b†
α,σ (�x )bβ,σ (�y ). (4)

The operator Aαβ(�x,�y ) creates a spin-singlet pair between
sites α and β corresponding to unit cells located at �x and �y,
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respectively. The operator Bαβ(�x,�y ) creates a ferromagnetic
bond, which implies the intersite coherent hopping of the
Schwinger bosons.

In this representation, the rotational invariant spin-spin
interaction can be written as

�Sα(�x ) · �Sβ(�y ) =: B†
αβ(�x,�y )Bαβ(�x,�y ) : −A†

αβ(�x,�y )Aαβ(�x,�y ),

where : O : indicates the normal ordering of operator O.
One of the advantages of this rotational invariant decom-
position is that it enables us to treat ferromagnetism and
antiferromagnetism on equal footing. This decomposition
has been successfully used to describe quantum disordered
phases in two-dimensional frustrated antiferromagnets [7–
9,38,40,42,44,45].

In order to generate a mean-field theory, we perform the
Hartree-Fock decoupling

(�Sα(�x ) · �Sβ(�y ))MF = [B∗
αβ(�x − �y )Bαβ(�x,�y )

−A∗
αβ (�x − �y )Aαβ(�x,�y )]

−〈(�Sα(�x ) · �Sβ(�y ))MF 〉, (5)

where the mean-field parameters are given by

A∗
αβ(�x − �y ) = 〈A†

αβ (�x,�y )〉, (6)

B∗
αβ(�x − �y ) = 〈B†

αβ(�x,�y )〉, (7)

and the exchange at the mean-field level is

〈(�Sα(�x ) · �Sβ(�y ))MF 〉 = |Bαβ(�x − �y )|2 − |Aαβ(�x − �y )|2. (8)

The mean-field equations (6) and (7) must be solved in a
self-consistent way together with the following constraint for
the number of bosons in the system:

Bαα( �R = �0) = 4NcS, (9)

where Nc is the total number of unit cells and S is the spin
strength. We use a self-consistent procedure to find mean-field
solutions that distinguish the Néel phase from magnetically
disordered phases and, in particular, possible phases without
translational- and rotational-symmetry breaking. Following
the lines of Ref. [9], we work with two sites per unit cell,
which is the smallest unit cell compatible with these kind of
solutions.

Self-consistent solutions in the bilayer honeycomb lattice
involve finding the roots of coupled nonlinear equations for
the mean-field parameters and solving the constraints to
determine the values of the Lagrange multipliers λ(α) which
fix the number of bosons in the system. We perform the
calculations for large systems and extrapolate the results to the
thermodynamic limit. Details of the self-consistent calculation
can be consulted in the bibliography [7,9].

Using SBMFT we study some features of the phase diagram
in the J2 − J⊥ plane. The line J⊥ = 0 corresponds to the phase
diagram for the single-layer honeycomb lattice. A description
of the phases presented in the single-layer phase diagram was
obtained recently using the same rotational-invariant mean-
field decoupling [9]. One of the advantages of SBMFT is that it
allows us to study large systems and perform the extrapolation
to the thermodynamic limit. In particular, this is useful to
determine whether the system remains gapless or not. To obtain
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FIG. 2. (Color online) The spin-gap (blue circles) and sublattice
magnetization (red squares) obtained by SBMFT extrapolated to the
thermodynamic limit, corresponding to the dashed line in Fig. 3
(J2 = 0.1). For J⊥ > 4 the gap is proportional to J⊥. Sublattice
magnetization shows that Néel order is enhanced by small interlayer
coupling, reaching a maximum at J⊥ ∼ 1/2; after that it decreases
until disappearing at J⊥ ∼ 2.9. The brown shaded region corresponds
to the Néel phase. In the green and light-blue regions, there is no
evidence of any kind of magnetic order, and the light-blue region
presents a gap that depends linearly on J⊥.

the phase boundary between the magnetically ordered and
disordered phases we use the extrapolation of the gap in the
boson spectrum. In the gapless region the excitation spectrum
is zero at �k = �0, where the boson condensation occurs; this is
characteristic of the Néel ordered phase. On the other hand, in
the gapped region, the absence of Bose condensation indicates
that the ground state is magnetically disordered. In Fig. 2
the extrapolation of the spin gap corresponding to J2 = 0.1
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FIG. 3. (Color online) (a) Phase diagram for S = 1/2 in the J2 −
J⊥ plane obtained by means of SBMFT. The gray region correspond
to the Néel phase whereas the light-blue region corresponds to
magnetically disordered phases. Vertical dotted lines are used as
a reference showing the phases corresponding to the single-layer
case and the end of the Néel phase reentrance in the J2 − J⊥ plane.
(b) Phase diagram of the single-layer case corresponding to Ref. [9].
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FIG. 4. (Color online) Spin-spin correlation between spins belonging to the same layer in the zig-zag direction obtained by SBMFT for
a 10 000-site system. The labels a, b, c, d correspond to the points showed in Fig. 3 (J⊥ = 0.5, 2.5, 3.5, 5). In the insets we show the same
correlations obtained by Lanczos diagonalization of a 24-site system.

(dashed line in Fig. 3) is presented as a function of the
interlayer coupling J⊥. For small values of the interlayer
coupling the system remains gapless. As we increase J⊥
the gap opens at a given value J ∗

⊥(J2). Increasing more the
interlayer coupling, the gap becomes a linear function of J⊥.
At the value J ∗

⊥(J2) the Néel order is destroyed leading to
the IVBC ground state. As is known, mean-field techniques
are not the most convenient methods to study the properties
of a system near a phase transition, so it may be difficult
to determine quantitatively the transition between Néel and
disordered phases using only SBMFT. For this reason, in our
case, we would tend to conclude that the abrupt change of
behavior in the gap � at J⊥ = 4, Fig. 2 does not indicate a
phase transition, but could be an indication of the breakdown
of the mean-field calculation. Actual physical quantities, such
as magnetization and correlations, calculated in green and
light-blue shadowed regions of Fig. 2 do not show qualitative
differences.

In Fig. 3 we show the phase diagram in the J2 − J⊥ plane
corresponding to S = 1/2. For J⊥ � J2 one can expect an
IVBC ground state adiabatically connected with the limit of
decoupled dimers, i.e., two singlets per unit cell, between spins
1 (2) and 3 (4) (see Fig. 1). In this limit the ground-state energy
per dimer is EIVBC = − 3

4J⊥, with an energy gap � = J⊥ to
triplet magnetic excitations.

In order to support the analytical results of the mean-field
approach, we also performed Lanczos ED calculations on finite
systems with 24 spins and periodic boundary conditions for
S = 1/2. The bilayer structure of the lattice makes particularly
difficult to study small systems because there are four sites per
unit cell. In particular, correlation functions between spins
belonging to the same layer can be studied only for a few
neighbors.

Figure 4 shows the spin-spin correlation between spins
belonging to the same layer in the zig-zag direction obtained
by SBMFT corresponding to the points a, b, c, and d of Fig. 3
for a 10 000-site system. The insets correspond to the results
obtained for the same points with the Lanczos technique on a
24-site system.

Although correlations are calculated only for a few sites
with the Lanczos technique, the absence of antiferromagnetic
order in the insets of Figs. 4(c) and 4(d) is clear. This is
consistent with the SBMFT results corresponding to the main
Figs. 4(c) and 4(d).

In Fig. 5 we show the energy per dimer in units of J⊥
calculated with SBMFT (blue circles) and Lanczos for a
system with 24 sites (red squares) for J2 = 0.18. As can be
observed the energy per dimer gets very close to the value
corresponding to a dimer product state E/(2NJ⊥) = −3/4,
as J⊥ is increased.

As shown in Fig. 3, in the region 0.2075 � J2 � 0.289 there
is a reentrant effect. In this range, the Néel phase separates
from the J2 axis, leaving a tiny space for a magnetically
disordered phase. In this way, the Néel phase is here not
only limited by some value J ∗

⊥(J2) from above, but also by
a second value J ∗∗

⊥ (J2) (see Fig. 3) from below. In Fig. 2,
we show the sublattice magnetization [9,38,39] along the line
J2 = 0.1. It is clear that a small bilayer coupling enhances the
antiferromagnetic long-range order, which is the reason for the
reentrant effect.

On the other hand, in the range 0.3732 � J2 � 0.398
(J⊥ = 0), there is evidence of the existence of an on-layer
nematic VBC phase [9] [see Fig. 3(b)]. In this VBC phase
SU(2) spin rotational and lattice translational symmetries are
preserved. But Z3 symmetry, corresponding to 2π/3 rotations
around an axis perpendicular to the plane and passing through
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FIG. 5. (Color online) Ground-state energy per dimer (in units of
J⊥) as a function of J⊥ for J2 = 0.18 obtained by means of SBMFT
extrapolated to the thermodynamic limit (blue circles) and Lanczos
for a 24-site system (red squares). Horizontal dashed red line indicates
E/(2NJ⊥) = −3/4, corresponding to the decoupled dimer product
state. Inset: Z3 directional symmetry-breaking order parameter ρ as
a function of J⊥ corresponding to the line J2 = 0.38.

a site, is broken. By increasing the interlayer coupling J⊥
the system moves to the IVBC where the Z3 symmetry is
recovered. In order to observe this symmetry restoring we in-
troduce the Z3 directional symmetry-breaking order parameter
ρ [10,29]:

ρ = 4
3 |(〈�S1(�r ) · �S2(�r )〉 + ei2π/3〈�S1(�r ) · �S2(�r + �e1)〉
+ ei4π/3〈�S1(�r ) · �S2(�r − �e2)〉)|. (10)

This order parameter is zero when the bond energies κi =
〈�S1(�r ) · �S2(�r + �ei)〉 are equal, being i = 0,1,2 where �e0 =
�0, �e1 = 1

2 (
√

3,3), and �e2 = 1
2 (

√
3, − 3). The parameter is

chosen to be ρ = 1 when only one of the bond energies is
nonzero. In the case J⊥ = 0, this parameter is nonzero in the
region 0.3732 � J2 � 0.398. For small interlayer coupling,
the bond energies satisfy κi = κj = κk . Therefore, the system
is still in the nematic VBC phase. But increasing further
the interlayer coupling, the order parameter tends to zero
continuously as shown in the inset of Fig. 5 and for large
J⊥ the system enters in the IVBC. Finally, in the region
0.289 � J2/J1 � 0.3732 the ground state preserves SU(2),
lattice translational and Z3 symmetries, and the spin-spin
correlations are short ranged. This agrees with the evidence
of a spin liquid phase in the phase diagram corresponding to
J⊥ = 0 [9,18,19].

IV. LINEAR SPIN-WAVE THEORY

In this section we use a linear spin-wave approach to study
the stability of Néel order as a function of the spin strength.
The classical spin state corresponding to the energy minimum
of the Hamiltonian (1) for J2 < 1

6J1 is given by an antiparallel
(Néel) configuration. Incorporating quantum fluctuations to
the classical ground state is likely to lead to the melting of
Néel order.

For the spin-wave implementation it is convenient to define
new spin operators by rotating by π the spins belonging to
sublattices 2 and 3 (see Fig. 1) about the x axis. After the
rotation we have

S̃x
α (�r ) = Sx

α (�r ), (11)

S̃y
α (�r ) = −Sy

α (�r ), (12)

S̃z
α(�r ) = −Sz

α(�r ), (13)

for spin operators belonging to sublattices 2 or 3, while
�̃Sα(�r ) = �Sα(�r ) for sublattices 1 and 4. Thereby, the clas-
sical ground state has all spins pointing towards the new
Sz axis.

In order to study spin-wave fluctuations, we write the
spin operators in terms of Holstein-Primakoff bosons as
follows:

S̃+
α (�r ) =

√
2Saα(�r ), (14)

S̃−
α (�r ) =

√
2Sa†

α(�r ), (15)

S̃z
α(�r ) = S − nα(�r ). (16)

The Hamiltonian can be written in terms of these boson
operators as

H = E0 + HSW, (17)

with

E0 = 2NS2(6J2 − 3J1 − J⊥), (18)

HSW = 2NS(6J2 − 3J1 − J⊥)

+
∫

d2�k �a†(�k)M(�k)�a(�k), (19)

where �a(�k) is a vector of bosonic operators,

M(�k) =
(


 �

� 


)
, (20)

with


 =

⎛
⎜⎜⎜⎜⎝

γ2(�k) 0 0 0

0 γ2(�k) 0 0

0 0 γ2(�k) 0

0 0 0 γ2(�k)

⎞
⎟⎟⎟⎟⎠ , (21)

� =

⎛
⎜⎜⎜⎜⎝

0 γ1(−�k) γ⊥ 0

γ1(�k) 0 0 γ⊥
γ⊥ 0 0 γ1(−�k)

0 γ⊥ γ1(�k) 0

⎞
⎟⎟⎟⎟⎠ , (22)
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FIG. 6. (Color online) Staggered magnetization vs J⊥ obtained
by means of linear spin-wave approximation. For small values of the
intralayer coupling, the Néel order is enhanced, in agreement with
SBMFT results.

being functions γ1, γ2, and γ⊥ given by

γ1(�k) = 1
2J1S(1 + ei�k·�e1 + e−i�k·�e2 ), (23)

γ2(�k) = J2S{cos[�k · �e1] + cos[�k · �e2] + cos[�k · (�e1 + �e2)]}
+ 3

2J1S − 3J2S + 1
2J⊥S, (24)

γ⊥ = 1
2J⊥S. (25)

Then we use a Bogoliubov transformation to diagonalize the
Hamiltonian HSW and obtain the following eigenvalues:

ε±
β (�k) =

√
[γ2(�k)]2 − [γ⊥ ± |γ1(�k)|]2, (26)

where β = 1,2 is the layer index. The staggered magnetization
can be calculated in the linear approximation as follows:

M = 1

4N

∑
�r,α

S̃z
α(�r) = S − 1

4N

∑
�r,α

a†α(�r )aα(�r ). (27)

On the one hand, fluctuations around the Néel state increase
with frustration J2 and can destroy the Néel order. On the
other hand, as the value of S is lowered, quantum fluctuations
become more important, and we can expect the Néel state to
melt for a given value of S. The correction to the classical
boundary for the Néel state can be estimated by finding the
frustration J2 at which the sublattice magnetization M given
by Eq. (27) vanishes. In Fig. 6 we present the sublattice
magnetization M as a function of the interlayer coupling (J⊥)
corresponding to J2 = 0.1 (dashed line in Fig. 3). Notice that,
for small values of the interlayer coupling, the magnetization
is an increasing function of J⊥, i.e, the antiferromagnetic order
is enhanced. But further increasing the value of J⊥ makes the
sublattice magnetization reduce and vanish for large values of
J⊥. This behavior is in agreement with the SBMFT results and
the reentrant effect observed in Fig. 3. In Fig. 7, we present
the melting curves in the 1/S-J2 plane for different values
of J⊥.

The case corresponding to J⊥ = 0 agrees with LSWT
results presented in Ref. [36] (Fig. 5) for the single-layer
J1 − J2 Heisenberg model. For large values of J⊥ the stability

1
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FIG. 7. (Color online) Phase diagram in the 1/S-J2 plane for
different values of J⊥ obtained by means of LSWT.

region for the Néel state is reduced. Notice that in Refs. [7]
and [36] there is a discrepancy between LSWT and Schwinger-
boson mean-field determinations of the Néel-state boundary.
This difference could be reduced by means of higher order
1/S corrections to the LSWT, which are beyond the scope of
the present work. Finally, in Fig. 8 we show the dispersion of
magnon modes along the path depicted in the inset. It is clear
that as we increase the interlayer coupling, two of the four
magnon modes acquires a nonzero gap at the 
 point.

V. COMPARISON BETWEEN SERIES EXPANSION AND
EXACT DIAGONALIZATION

As a complement to our analysis, we performed series-
expansion (SE) calculations, starting from the limit of isolated
dimers connecting spins from both layers via J⊥. This allows
us to assess Lanczos results by comparison with other non-
mean-field techniques. To this end, we have decomposed
the Hamiltonian (1) into H = H0(J⊥) + V (J1,J2), where
H0(J⊥) represents decoupled dimers and V (J1,J2) is the
part of Hamiltonian that connects dimers by means of J1,J2

couplings.
Since each dimer has two energy levels (singlet and triplet),

the spectrum of H0(J⊥) is equidistant, allowing us to sort the
levels structure of H0 in a block-diagonal form, where each
block is labeled by an energy quantum number Q. The ground
state (vacuum) is in the Q = 0 sector, i.e., all dimers are in the
singlet state. The Q = 1 sector is composed of states obtained
by creating (from the vacuum state) a one-elementary-triplet
excitation (particle) on a given dimer, whereas that for Q � 2
is of multiparticle nature.

Perturbation V (J1,J2) does not conserve the block-diagonal
form of H0(J⊥), i.e., it mixes different Q sectors. However,
for this type of Hamiltonian, it can be shown [49] that it
is possible to recover the block-diagonal form by means of
continuous unitary transformations, using the flow equation
method of Wegner [50]. It essentially consists in transforming
H onto an effective Hamiltonian Heff which is block-diagonal
in the quantum number Q. This transformation can be achieved
order by order in a perturbative series in powers of J1
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FIG. 8. (Color online) Dispersion of magnon modes corresponding to J2/J1 = 0.1 along the path depicted in the inset, obtained by means
of LSWT.

and J2, leading to Heff = H0(J⊥) + ∑
n,0�m�n J n−m

1 Jm
2 Cn,m,

where Cn,m are weighted products of Q-conserving terms in
V (J1,J2), determined by recursive differential equations; see
Ref. [49] for details.

Q-number conservation allows the evaluation of several
observables directly from Heff in terms of a SE in J1 and J2. For
the present model we performed O(5) and O(4) SE in J1 and
J2 for ground-state energy (Q = 0) and for triplet dispersion
(Q = 1), respectively. Explicit expressions are too long to be
printed explicitly, in particular triplet dispersion. Upon request
they will be made available electronically. Regarding technical
details about the calculation we refer to Ref. [51].

To illustrate the type of results obtained, in Fig. 9 we show
the ground-state energy per site as a function of J1 and J2 = 0,
obtained by O(5) SE (blue circles) and ED on a finite system
of 24 sites (red squares). As can be observed, both techniques
predict an energy decreasing with the coupling of interlayer-
dimers via J1. Furthermore, there is excellent quantitative
agreement between both methods, up to J1 � 0.25. Beyond
this value, the difference between the two approaches becomes
increasingly noticeable, being attributable to finite-size effects
of ED and the order achieved in the SE. When the frustration
J2 is incorporated, the agreement is not as good as in the
unfrustrated case. This might be due to the stronger effect that

the frustration induces on finite-size effects in the Lanczos
calculation.
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FIG. 9. (Color online) Ground-state energy per site as a function
of J1 obtained by Lanczos (ED) on a 24 -site system (red squares)
and O(5) series expansion (SE) (blue circles). Inset: triplet gap (same
set of parameters as main panel) ED (red squares) and O(4) SE (blue
circles).
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On the other hand, the triplet gap is shown in the inset
of Fig. 9 for the same set of parameters as the ground-state
energy. Here we also observe that both techniques predict a
tendency to a closure of the gap, when J1 is turned on. While
in this case we have achieved a O(4) SE, we see that the
range of agreement between ED and SE is practically the
same as before, being as well reduced when the frustration
is included. Overall, our calculations shows that ED and SE
share a range parameters where both predict the same behavior.
A more detailed analysis in search of transitions, involving gap
closure or level-crossings from SE point of view, is beyond the
scope of the present work.

VI. DISCUSSION AND CONCLUSIONS

We studied the phase diagram corresponding to a frustrated
Heisenberg model on the bilayer honeycomb lattice by means
of Schwinger-boson mean-field theory, complemented with
exact diagonalization, linear spin-wave theory, and series
expansion.

By analyzing the sublattice magnetization and the spin gap
by SBMFT, we described the behavior of the quantum phases
as the interlayer coupling is increased. The absence of Néel
order for large values of the interlayer coupling has also been
observed by spin-spin-correlation calculations, where SBMFT
and ED techniques predict the same qualitative behavior.

In particular, in the small-frustration region J2/J1 � 0.2075
the system is Néel ordered for J⊥ = 0, but upon increasing the
interlayer coupling up to a value J ∗

⊥, the Néel order is destroyed
and the system enters a nonmagnetic phase. The spin-spin
correlations are consistent with the destruction of Néel order,
given place, for large values of the interlayer coupling, to a
phase with short-range spin-spin correlations and a finite spin
gap.

In the region 0.2075 � J2/J1 � 0.289, the phase diagram
shows signatures of a reentrant behavior. At J⊥ = 0 the system
does not present magnetic order, but increasing the interlayer
coupling up to a finite (and small) value J ∗∗(J2), the system
becomes Néel ordered. Increasing even more the interlayer
coupling, the Néel order is destroyed at a given value J ∗(J2).

The behavior of the sublattice magnetization as a function of
J⊥ also supports the existence of the reentrant behavior.

For values of the interlayer coupling between 0.289 �
J2/J1 � 0.3732 the Néel order is absent at J⊥ = 0 and
the system presents a nonzero spin gap, whereas in the
region 0.3732 � J2/J1 � 0.398 each layer presents a nematic
disordered phase [9]. In both cases increasing the value of J⊥
the system goes to an interlayer valence-bond crystal with a
spin gap that is proportional to the interlayer coupling.

In all the range of values 0 < J2/J1 < 0.398, for J⊥/J1 > 4
the system presents signatures of an interlayer-valence-bond
crystal (IVBC) phase that evolves adiabatically from the limit
of decoupled interlayer-dimers. This is corroborated by series-
expansion calculations starting explicitly from the limit of
isolated interlayer dimers.

The precise determination of transitions lines between
different quantum phases present in the model is not a simple
task. Among these issues, the important question about how
the nematic VBC and IVBC phases connect still remains open.
The mean-field character of the SBMFT method does not allow
us to draw a definite conclusion about the real nature of the
transition. From the viewpoint of series expansion (SE), it
is possible to analyze the adiabatic evolution of the nematic
VBC phase, starting appropriately from isolated dimers on
each plane. Thus, the possibility and type of transitions
between nematic VBC and IVBC phases could be estimated by
analyzing level crossings and gap closures between this SE and
the dimer SE obtained in Sec. V for the IVBC phase. While
this analysis goes beyond the scope of this work, it clearly
deserves more investigation. We postpone the detailed study
of these transitions for future work, as we have focused on the
general characteristics of each region of the phase diagram.
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