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We show that the magnetism of double perovskite AFe1/2M1/2O3 systems may be described by the Heisenberg
model on the simple cubic lattice, where only half of sites are occupied by localized magnetic moments. The
nearest-neighbor interaction J1 is more than 20 times the next-nearest-neighbor interaction J2, the third-nearest
interaction along the space diagonal of the cube being negligible. We argue that the variety of magnetic properties
observed in different systems is connected with the variety of chemical ordering in them. We analyze six possible
types of the chemical ordering in a 2 × 2 × 2 supercell, and argue that the probability to find them in a real
compound does not correspond to a random occupation of lattice sites by magnetic ions. The exchange J2

rather than J1 define the magnetic energy scale of most double perovskite compounds that means the enhanced
probability of 1:1 short-range ordering. Two multiferroic compounds PbFe1/2M1/2O3 (M = Nb, Ta) are exceptions.
We show that the relatively high temperature of the antiferromagnetic transition is compatible with a layered
short-range chemical order, which was recently shown to be most stable for these two compounds [I. P. Raevski
et al., Phys. Rev. B 85, 224412 (2012)]. We show also that one of the types of ordering has a ferrimagnetic
ground state. The clusters with a short-range order of this type may be responsible for a room-temperature
superparamagnetism, and may form the cluster glass at low temperatures.
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I. INTRODUCTION

The compound PbFe1/2Nb1/2O3 (PFN) is one of the first
multiferroics reported [1,2]. It remains to be in focus of the
attention of the multiferroic community [3–9]. Despite the
long story of studies, the magnetic properties of PFN are not
fully understood. It belongs to the family of double perovskites
AFe1/2M1/2O3 = A2FeMO6 with a nonmagnetic cation in the
A site (A = Pb,Ca,Sr,Ba) of the perovskite structure ABO3

and a distribution of the magnetic Fe3+ and nonmagnetic M5+
cations (M = Nb,Ta,Sb) in the six-coordinated B site of the
structure (see Fig. 1).

The magnetic properties of these compounds are defined
by Fe3+, S = 5/2 ions that occupy half of the sites of simple
cubic lattice (sublattice B of perovskite structure), and interact
via various superexchange paths.

It is natural to compare the magnetism of AFe1/2M1/2O3

compounds with ortoferrites RFeO3 (R = Y or a rare earth)
and bismuth ferrite BiFeO3, with a similar perovskite structure
where Fe occupy every B site. All these compounds exhibit
essentially antiferromagnetic ordering (with a small canting of
predominantly antiferromagnetic spins) below the transition
temperature, which varies in the range 620 < TN (1) < 740
K [10–12]. The nearest-neighbor Fe-Fe interaction (via the
Fe-O-Fe path) was estimated as J1 ∼ 50 K [11,13–18], the
next-nearest neighbor being much smaller α = J2/J1 � 0.05
[13–15].

If one assumes (i) a random occupation of the site B by
Fe and M ions (the x-ray diffraction and Mössbauer spectra
support this assumption for most of the M ions), and (ii)
a similar value of Fe-O-Fe superexchange, we may expect
the Néel temperature TN (0.5) ∼ 0.5TN (1) > 300 K. This
estimate comes from an analogy with TN (x) behavior in the

disodered perovskite system KMnxMg1−xF3 [19,20], which
agree with theoretical considerations of dilute Heisenberg
magnets [21,22]. Contrary to these expectations, most of
the AFe1/2M1/2O3 compounds exhibit a magnetic anomaly
at T ∼ 25 K [23,24]. One observes TN ∼ 150 K only for
PbFe1/2M1/2O3 (M = Nb,Ta) [1]. It seems that at least one
of the above assumptions (i) and (ii) is false.

Evidences for partial chemical ordering in the B sublattice
comes from experiment [6,23–25] and theory [7,26]. The
disorder in the distribution of Fe and M ions was modeled
in Refs. [7,27] by a set of six periodic lattices PFB0 . . . PFB5
with the supercell containing 8 = 2 × 2 × 2 perovskite cells
with different versions of chemical order (ion distributions)
within the cells (see Fig. 2). It was shown that the total energy
is different for different configurations [27], and the hierarchy
of the energies depends on the type of M ion.

Recent reports on room-temperature multiferroicity
of PFN/PbZrxTi1−xO3 [28], and of related solid solu-
tion systems PbFe1/2Ta1/2O3/PbZrxTi1−xO3 [29,30] and
Pb(Fe2/3W1/3)O3/PbZrxTi1−xO3 [31] evidences in favor of
the presence in these systems of magnetic interactions J

with the energy scale S(S + 1)J/kB = 8.75J/kB ∼ 300 K. In
Ref. [32], the nearest-, second-, and fourth-nearest-neighbor
exchange interactions between Fe3+ ions were found from
LSDA+U calculations for PbFe1/2Ta1/2O3. The nearest-
neighbor exchange occurs [in our notations, see Eq. (1)] to
be J1/kB ≈ 42 K; it gives S(S + 1)J/kB = 366 K.

In this work, using first-principle calculations, we find
the values of exchange interaction between nearest-, second-,
and third-nearest-neighbor Fe3+ ions in PFN, and confirm
the validity of the assumption (ii), i.e., we show that the
nearest-neighbor interaction dominates, and its value is close
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FIG. 1. (Color online) A fragment of disordered PbFe1/2Nb1/2O3

structure. The supercell containing 8 = 2 × 2 × 2 perovskite cells is
shown. Black circles denote Pb ions; green (brown) circles inside
oxygen octahedra depict Nb (Fe) ions. Oxygen ions are located in
the corners of the octahedra. The distribution of Fe and Nb ions
corresponds to PFB4 chemical order (see text).

to that found for RFeO3 and PbFe1/2Ta1/2O3 compounds.
So, the peculiarities of magnetic properties of AFe1/2M1/2O3

compounds are related with chemical ordering in the B
sublattice.

II. METHOD

The density functional theory calculations were performed
using the full-potential local-orbital (FPLO) code [33]. We have
used the default FPLO basis, which is claimed to be technically
complete, i.e., the FPLO code developers have checked the
convergence of the electronic density with respect to the
number of basis functions for a huge number of compounds,
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FIG. 2. (Color online) Magnetic ground states for different
chemical configurations of Fe3+ (open circles) in a 2 × 2 × 2 supercell
of AFe1/2Nb1/2O3 (A = Pb,Ba; only B-sublattice sites are shown).
Green filled circles denote nonmagnetic Nb5+ ions. PFB0a is the
I-type order of the fcc lattice.

including 3d-metal oxides. The FPLO basis consists of localized
atomiclike functions defined by angular nl-quantum numbers
and the number of numerical radial functions per orbital.
Each valence state can come as single, double or triple state,
which means that there are one, two or three radial basis
functions for this nl-quantum number. The default basis for
Fe is single 3s3p4p, and double 4s3d; for O, single 1s3d,
double 2s2p; for Pb, single 5s5p5d6d, double 6s6p; for Nb,
single 4s4p5p and double 5s4d. The exchange and correlation
potential of Perdew and Wang [34] was employed as well
as the FPLO implementation of the LSDA +U method in the
atomic limit scheme [35,36], and parameters U ≡ F 0 = 4 and
6. The intra-atomic exchange parameters were fixed at the val-
ues F 2 = 49B + 7C = 10.3 eV, and F 4 = 63C/5 = 7.5 eV,
which corresponds to Racah parameters B = 1015 cm−1;
C = 4800 cm−1 for free Fe3+ ion [37].

The calculations were made for the 2 × 2 × 2 40 atom
supercell Pb8Fe4Nb4O24 (symmetry group P1, No. 1) shown
schematically in Fig. 1. The 4 × 4 × 4 k mesh was used for the
Brillouin zone integration. First, we have defined the magnetic
interaction for the cubic perovskite structure that corresponds
to the paraelectric phase of PFN with the experimental lattice
parameter a = 4.01 Å, and PFB4 chemical order (Fig. 3). Then
we have checked that the interaction values are essentially
the same for all kinds of chemical orders and for actual
distorted perovskite structure of PFN. The ion coordinates
for all possible types of the chemical ordering shown in Fig.
2 were taken from the results of full relaxation [38] that has
been performed in Ref. [7].

The total energies for different structural and magnetic
configurations were obtained, and the results were mapped
onto an effective Hamiltonian,

Ĥ = En + 1

2

∑
R,g

JgŜRŜR+g, (1)

where En is a nonmagnetic, spin-independent part of the
energy, which depends on chemical configuration [7]. The

PFB4b PFB4c PFB4fm

PFB1a PFB2a

FIG. 3. (Color online) (Upper panel) The excited magnetic states
of PFB4 chemical order that were used for the calculations of the
interactions. (Lower panel) Additional magnetic structures, which
were used for the check of the mapping of LSDA + U on the
Heisenberg model (1).
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spin-dependent part of the interaction has the form of a
Heisenberg term. The sum goes over the lattice sites R
occupied by magnetic Fe3+ ions, vectors g join interacting
spins. The 2 × 2 × 2 supercell allows one to determine the
values of nearest-, second-nearest-, and third-nearest-neighbor
interactions J1,J2,J3, which corresponds to sites separated
by the edge, face diagonal, and space diagonal of perovskite
unit cell. For a given spin configuration, the total energy per
supercell is

Ec = 〈Ĥ 〉 = En + 1

2

∑
s,g

Jg〈ŜsŜs+g〉, (2)

where s is the magnetic ion position within the cell, 〈ŜsŜs+g〉 =
cS2, c = +1(−1) for parallel (antiparallel) spin arrangement.

III. RESULTS

The details concerning the calculated electronic structure
of PFN are given in Appendix A. Here we concentrate on
the magnetic interactions. The results for the total energy
calculations for different spin arrangement in PFB4 chemical
order (Figs. 1–3) of ideal cubic perovskite structure are given
in Table I. The expressions for the magnetic energy for the
considered supercells are given in the second column of
Table II. The third column of the table gives the energies
that we obtained in LSDA + U calculations for fully relaxed
supercells [7,38].

Using the formulas from Table II, we find the expressions
for the magnetic interactions in the PFB4 chemical configura-
tion:

J3 = (E4,c − E4,b)/16S2, (3)

J1 = (E4,b − E4,a)/4S2 + 4J3, (4)

J2 = (E4,f m − E4,a)/16S2 − J1/2. (5)

Substituting the values of energy differences from Tables I and
II into these equations, we obtain the values of the interactions
given in Table III. The last row of the table shows the results
for the fully relaxed lattice [7,27]. Our calculations of the total
energies confirm the results of Ref. [7] [27]. But we find that
the lowest energy for the second configuration corresponds to
the ferrimagnetic type of ordering PFB2fe [39].

Table IV shows the results of the check of the quality of our
mapping of LSDA + U on the Heisenberg model (1).

TABLE I. Total energy differences E(a,U ) (meV) for various
spin structures, lattice parameters a, and Coulomb repulsion values
U . The LSDA + U calculations were performed for ideal cubic
perovskite structure and PFB4 chemical order (see Figs. 1–3).

Spin structure E(4.01,4) E(3.95,4) E(4.01,6)

PFB4a 0 0 0
PFB4b 200 213 163
PFB4c 199 211 162
PFB4,FM 435 464 341

TABLE II. The energies of chemical and magnetic configurations
for the Pb8Fe4Nb4O24 supercell, which allow one to find all exchange
interactions. The calculated LSDA + U values are given for U = 4
eV for ion coordinates from Refs. [7,38].

Conf.
〈
Ĥ

〉
Ecalc, meV

PFB0,FM E0,f m = 24J2S
2 69

PFB0a E0,a = −8J2S
2 0

PFB1, FM E1,f m = (4J1 + 8J2 + 16J3)S2 936
PFB1a E1,a = (4J1 − 8J2 − 16J3)S2 903
PFB1b E1,b = (−4J1 − 8J2 + 16J3)S2 437
PFB2, FM E2,f m = (6J1 + 12J2)S2 271
PFB2a E2,a = (−2J1 − 4J2)S2 −209
PFB2fe E2,f e = (−6J1 + 12J2)S2 −406
PFB3fm E3,f m = (6J1 + 8J2 + 8J3)S2 674
PFB3a E3,a = (−6J1 + 8J2 + 8J3)S2 −35
PFB4, FM E4,f m = (4J1 + 12J2 + 8J3)S2 611
PFB4a E4,a = (−4J1 − 4J2 + 8J3)S2 101
PFB4b E4,b = (−4J2 − 8J3)S2 346
PFB4c E4,c = (−4J2 + 8J3)S2 346
PFB5, FM E5,f m = 8(J1 + J2)S2 386
PFB5a E5,a = 8(−J1 + J2)S2 −530

IV. DISCUSSION

A. Superexchange interaction

Our calculations strongly suggest that the magnetism of
AFe1/2M1/2O3 systems may be described by the Heisenberg
model on the lattice which is obtained from the simple cubic
lattice by removing half of its sites, the nearest-neighbor
interaction J1 being dominant.

The dominance of J1 is an expected result. The magnetic
interactions between Fe3+ ions are due to the superexchange
mechanism [40], which has a local nature for 3d-metal
compounds [41,42]. The ion Fe3+ has d5 electronic config-
uration. For this configuration, the fourth-order many-body
perturbation theory expression for the superexchange via a
single intervening oxygen ion (Fig. 4) may be written [43,44]
in a simple form (see Appendix B for the derivation):

Jα ≈ KV 2
pdσ,1V

2
pdσ,2(0.475 + 0.617 cos2 α) (6)

= J180(0.475 + 0.617 cos2 α)/1.092 (7)

= J180 cos2 α + J90 sin2 α, (8)

where α is the Fe-O-Fe bond angle; K is given by Eq. (B7), it
does not depend on the bond geometry, Vpdσ,i are the Slater-
Koster [45] parameters for the electron hopping integrals

TABLE III. Values of exchange parameters in the PFB4 chemical
configuration.

U (eV) a (Å) J1/kB (K) J2/kB (K) J3/kB (K) J2/J1

4 4.01 92 4.3 <0.1 0.046
6 4.01 75 2.0 −0.1 0.026
4 3.95 98 5.0 −0.3 0.051
4 ∼3.95a 113 2.4 <0.1 0.021

aFully relaxed lattice from the calculations in Ref. [7].
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KUZIAN, KONDAKOVA, DARÉ, AND LAGUTA PHYSICAL REVIEW B 89, 024402 (2014)

TABLE IV. Check of the mapping. DFT energy differences (U =
4 eV) are compared with the results for the model, Eq. (1), which
assumes Ji to be independent on the chemical configuration.

�E/S2, meV DFT Model Value

(E5,f m − E5,a)/S2 146.6 16J1 156.5
(E3,f m − E3,a)/S2 113.4 12J1 117.3
(E2,f m − E2,f e)/S2 108.3 12J1 117.3
(E2,f m − E2,a)/S2 76.7 8J1 + 16J2 81.6
(E2,a − E2,f e)/S2 31.6 4J1 − 16J2 35.8
(E1,f m − E1,a)/S2 5.3 16J2 + 32J3 3.3
(E1,f m − E1,b)/S2 79.9 8J1 + 16J2 81.6
(E0,f m − E0,a)/S2 11.1 32J2 6.7

between Fe and O ions, which depend only on the Fe-O bond
lengths.

The dependence of the Fe-O-Fe superexchange on the
square of the bond angle cosine cos2 α was established for
the orthoferrites RFeO3 in Ref. [46] in the form given by
Eq. (8). For the RFeO3 family, the bond angle varies between
157◦ in LaFeO3 to 142◦ in LuFeO3, the Fe-O bond length
being approximately constant d ≈ 2.01 Å. Substituting the
LuFeO3 parameters cos2 α ≈ 0.618 and J/kB ≈ 48.4 ± 2 K
into Eq. (7) we find for J180/kB ≈ 62 K, which is comparable
with our J1 value calculated for U = 6. The assumption (ii)
from the introduction is thus confirmed.

Our formula (6) shows also that the Fe-O-Fe superexchange
depends on the Fe-O bond lengths Ri . The hopping integrals
Vpdσ,i(Ri) decrease with the increase of the bond length [47].
This means that the superexchange should decrease with the
increase of the lattice parameter if the bond angle remains
constant. The results shown in Table III follows this tendency.

We may compare our results also with Ref. [32], where
the values for J1, J2, and fourth-neighbor J4 exchanges were
found for PFB0[= 1

2 (111)] and PFB5[= 1
2 (100)] configurations

(Fig. 2). If we express the results from Table III of Ref. [32]
in our notations, we obtain −2J s

1 /kB = J2/kB ≈ 0.9 K,
and −2J s

2 /kB = J4/kB ≈ 2.8 K for PFB0, and −2J s
1 /kB =

J1/kB ≈ 42 K, −2Jd/kB = J2/kB ≈ 0.5 K, −2J s
2 /kB =

J4/kB ≈ 2.8 K for PFB5. The results of Ref. [32] confirm
the dominance of J1 nearest-neighbor Fe-O-Fe interaction.
The absolute value of the interaction is smaller, but we should
take into account that the authors of Ref. [32] have used the
U = 9 eV value in those calculations. Note that they obtained
J1/kB ≈ 50 K for LaFeO3, which is slightly smaller than the

Fe2

O

α

Fe1

FIG. 4. (Color online) The geometry of the Fe1-O-Fe2 superex-
change path.

experimental value [11] 59 K derived from TN = 740 K using
high-temperature expansion.

B. Collective magnetic properties

The way half of the sites of the simple cubic lattice are
occupied by the interacting Fe spins determines the magnetic
properties of the system. In this work, we model the disorderd
system by the 2 × 2 × 2 supercell periodic lattice. If we
take into account only nearest-neighbor interaction J1, then
magnetic ions form three-dimensional lattice only in PFB2 and
PFB3 configurations (Fig. 2). Thus, only these configurations
may possess a magnetic long-range order at nonzero temper-
ature. Other configurations have lower dimensionalities and
thus have no ordering at finite temperatures. Actually, small
next-nearest-neighbor interactions (like J2, J3) will ensure the
ordering, but the temperature will be substantially lower (see
below the consideration of the PFB5 structure in Section IV C).

The simplest molecular field approach gives for the ferri-
magnetic ordering temperature (see Appendix C for the details)
of the PFB2fe configuration,

T2f e = J12
√

3
S(S + 1)

3kB

≈ 10.1J1, (9)

and for the antiferromagnetic ordering temperature of PFB3a
configuration,

T3a = J12
S(S + 1)

3kB

√
3 + √

5

2
≈ 9.44J1. (10)

Substitution of the calculated J1 value gives T2f e ≈
933(758) K, T3a ≈ 872(708) K for U= 4(6) eV. We should
have in mind that the molecular field theory overestimates the
transition temperature by the factor ∼1.5 for cubic lattices and
this factor may increase for the structures with the number of
neighbors less than 6. Indeed, a more accurate estimate may be
derived from the high-temperature expansion of the magnetic
susceptibility χ . In Ref. [39], we have applied the method and
the program package for the eighth-order high-temperature
expansion for a general Heisenberg model with up to four
different exchange parameters J1,J2,J3,J4 presented recently
in Refs. [48,49]. The temperature for the transition into the
ferrimagnetically ordered phase Tf e,HTE is defined as the point
where χ−1(Tf e) = 0. We have obtained Tf e,HTE ≈ 5.6J1 ≈
517(420) for U = 4(6) eV (see the details in Ref. [39]).

The ferrimagnetism in PFB2 chemical order has rather
unusual nature. In many cases, the ferrimagnetism is due to
different spin values of ions occupying different antiferromag-
netically coupled magnetic sublattices. Another possibility is
realized, e.g., in the yttrium iron garnet Y3Fe5O12 and related
compounds. There, all Fe ions have equal spins S = 5/2, but
the lattice has two kinds of Fe positions, and the number of
Fe sites in antiparallel sublattices is different [50,51]. So, the
ferrimagnetism may have a purely geometrical origin [52].
This is the case for the magnetic ground state of the PFB2
chemically ordered lattice [39].

We understand that 2 × 2 × 2 supercell periodic lattice
is a rather poor approximation to the disordered system.
Nevertheless, it is instructive to estimate the probabilities to
find different chemical configurations PFBn (see Figs. 2 and
3 of Ref. [7]). If the system is totally disordered, i.e., if Fe
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TABLE V. The Curie-Weiss �CW,0 and calculated transition TI =
−�CW,0/5.76 temperatures for 1:1 ordered systems. DFT calculations
and experimental results. The temperature of observed susceptibility
anomaly Tmax is shown for two compounds.

U , eV �CW,0, K TI , K Tmax, K

4 −151 26
6 −70 12
Sr(Fe1/2Sb1/2)O3

a −221 38 36
Ca(Fe1/2Sb1/2)O3

b −89 15 17

aReference [24].
bReference [23].

and M ions randomly occupy B sites of the perovskite lattice
[assumption (i) of the introduction], we have C4

8 = 70 ways
to distribute Fe ions over eight vertices of the cube, every
configuration being equivalent to the one of that depicted in
Fig. 2. We will meet 2 times the configuration PFB0, 6 times
PFB1 and PFB5 configurations, 8 times PFB2, and 24 times
PFB3 and PFB4 configurations 2 + 2 × 6 + 8 + 2 × 24 = 70.
So, in the case of random distribution, the probability to
meet the PFB2 configuration is P2 = 8/70 ≈ 0.11, and to
meet the PFB3 configuration is P3 = 24/70 ≈ 0.34. Thus the
magnetic properties of an AFe1/2M1/2O3 compound will be
dominated by the PFB3 configuration. So, within our simple
model of disorder the transition temperature would be several
hundred K. As we have mentioned in the introduction, more
sophisticated treatment of the disorder results in TN ∼ 300 K
[21,22]. Evidently, the assumption (i) is in contradiction
with the observed values of the transition and Curi-Weiss
temperatures.

The distribution of Fe and M ions over B sites depends on
the ratio of ionic radii of Fe and M metal ions, the growth
condition of the sample, etc. When the radius of M5+ ion
is larger than that of Fe3+, the ordered PFB0 configuration
becomes most probable [7]. This is often the case for M = Sb
[23,53]. For such 1:1 ordered systems, magnetic Fe3+ ions
form a regular face-centered cubic sublattice with interac-
tion J2 between nearest spins in the sublattice. The Curie-
Weiss temperature is �CW,0 = 4S(S + 1)J2/kB . The magnetic
ground state of such Heisenberg lattice is the so-called I-type
order, which is denoted as PFB0a in Fig. 2. The transition
temperature was studied in Ref. [54] using high-temperature
series expansion. It occurs as spin independent and equals
TI ≈ −�CW,0/5.76. Table V compares the calculated values
of TI with the temperature Tmax of the magnetic susceptibility
anomaly observed in 1:1 ordered AFe1/2M1/2O3 compounds.

C. Magnetism of the PbFe1/2M1/2O3 compounds

The total energies of various chemical configurations (see
Fig. 2) of Fe in a 2 × 2 × 2 supercell of PbFe1/2M1/2O3

(M = Nb, Ta, Sb) were calculated in Ref. [7] using the
LSDA + U functional. For the PFN and PbFe1/2Ta1/2O3

(M = Nb, Ta) compounds, the layered PFB5a configuration
has the lowest energy, in contrast to PbFe1/2Sb1/2O3, where
the PFB0 1:1 chemically ordered configuration is most
favorable [27] (see also Table II). The PFN and PbFe1/2Ta1/2O3

compounds are especially interesting because they are multi-

ferroics and exhibit ferroelectric transition (TC ≈ 380, 270 K
for M = Nb, Ta) in addition to antiferromagnetic transition.
As we have mentioned in the introduction, the peculiarity of
magnetic properties of these two compounds is that those Néel
temperature TN ∼ 150 K is much higher than the transition
temperature for other double perovskites. A layered Heisen-
berg model with the nearest-neighbor interaction J1 within
the layer and an interlayer interaction J⊥ was thoroughly
studied in the past (see Ref. [55] and references therein). It
was established that the transition temperature has logarithmic
dependence on the J⊥/J1 ratio,

TN

TN,sc

≈ 1

1 − k ln(J⊥/J1)
, (11)

where TN,sc is the transition temperature for the G-type
antiferromagnetic ordering of the simple cubic lattice (J⊥ =
J1), and k ≈ 1/3. Equation (11) was found to work in the
wide range of values 0.001 � J⊥/J1 � 1 [55,56], it gives
TN/TN,sc ≈ 0.30, 0.39, 0.57 for J⊥/J1 = 0.001, 0.01, 0.1,
respectively. Taking TN,sc ∼ 600 K, we obtain reasonable
values for TN ≈ 180, 234, 342, respectively, if we assume
that PFN and PbFe1/2Ta1/2O3 have the totally ordered layered
structure.

In reality, both compounds are disordered and the results
of the supercell calculations indicate only what kind of short-
range chemical order is more favorable. Below TN , the neutron
diffraction studies [4,57,58] reveal a G-type antiferromagnetic
order with magnetic moments μ ≈ 2.8μB sitting at every site
of the simple cubic lattice. It is clear that this is an averaged
picture with “half of Fe3+ ion” in every site of the B sublattice
of the structure. The value of μ is about half of the value
expected for the Fe3+ ion μFe = 5μB .

In contrast to neutron diffraction, local probe methods such
as nuclear magnetic resonance (NMR) and Mossbauer spec-
troscopy provide local structure information. In this respect,
we can mention 17O NMR data [25] which may confirm our
theoretical prediction that the PFB5 configuration gives major
contribution to the antiferromagnetic ground state of PFN or
PbFe1/2Ta1/2O3. Indeed, the 17O NMR spectrum consists of
two distinct components: narrow and very broad lines. One
can see from Fig. 1 that each O ion connects only two cations
forming three different pathways along 〈100〉 cubic directions:
Fe-O-Fe, Fe-O-Nb, and Nb-O-Nb. The first two configurations
are responsible for the broad component in the 17O NMR
spectrum as the O nucleus is closely adjacent to the magnetic
Fe3+ ion. The last configuration does not contain magnetic ions
therefore is responsible for the narrow component in the NMR
spectrum. Among all chemical configurations shown in Fig. 2,
the PFB5 configuration has the largest number of nonmagnetic
Nb-O-Nb chains. Assuming, for example, random distribution
of Fe and Nb ions we have relative weight of the Nb-O-Nb
pathways only 0.19, while the NMR data predicts 2–2.5 times
larger value. This suggests that the layered PFB5 chemical
configuration can dominate among other chemical ordering.
The nonrandom distribution of magnetic and nonmagnetic
cations in PFN is also supported by 93Nb NMR measurements
[6]. The NMR data have been interpreted in a model which
assumes existence of Fe rich, Nb poor and Fe poor, Nb rich
regions in PFN.
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Table II shows that the PFB2fe configuration has the total
energy, which is close to the lowest PFB5 configuration.
This is the case also for PbFe1/2Ta1/2O3 and PbFe1/2Sb1/2O3

[27]. A sample of a disordered double perovskite compound
may contain some regions with PFB2 chemical order. In
the ground state, such a region possesses the moment
μg = Ncμc, where Nc is the number of supercells in the
region; μc = 10μB is the moment of the supercell. Large
moment of the region will persist for T < T2f e. Therefore,
it cannot be excluded that such regions exist in the systems
PbFe1/2Ta1/2O3/PbZrxTi1−xO3 [29,30], PFN/PbZrxTi1−xO3

[28], and PbFe2/3W1/3O3/PbZrxTi1−xO3 [31] and are re-
sponsible for large room-temperature magnetic response and
magnetoelectric coupling despite that the long-range magnetic
order establishes far below the room temperatures.

V. CONCLUSION

Based on LSDA + U calculations, we have found that
AFe1/2M1/2O3 double perovskite compounds may be de-
scribed by the antiferromagnetic J1 − J2 Heisenberg model on
the lattice, which is obtained from the simple cubic lattice by
removing half of its sites. The dominant magnetic interaction
is the Fe-O-Fe superexchange J1 between Fe3+ (S = 5/2) ions
occupying nearest-neighbor positions within the B sublattice
of the ABO3 perovskite structure. The next-nearest-neighbor
interaction J2 which corresponds to sites separated by the
face diagonal of the perovskite unit cell is much smaller.
The estimated values of the exchange parameters are close
to the values reported for Fe-based perovskites RFeO3, where
all octahedral sites are occupied by Fe ions. The distribution
of Fe3+ and M5+ ions over B sites of the perovskite lattice
determine the magnetic properties of the double perovskites.
Our results suggest that the distribution is not random.
The typical value of the magnetic transition temperature
TN ∼ 25 K in most of the paraelectric double perovskite
compounds allows one to conclude that the probability to find
there a nearest-neighbor pair of Fe (interacting with the J1

exchange value) is suppressed compared to the probability to
find the next-nearest pair, and the magnetic energy scale is
determined by J2. In accord with Ref. [7], we argue that two
multiferroic compounds PbFe1/2Nb1/2O3 and PbFe1/2Ta1/2O3

(TN ∼ 150 K) have predominantly layered PFB5 (see Fig. 2)
short-range ordering where the B sublattice is formed by
alternating Fe and M(=Nb or Ta) planes.

We have also found that Fe ion in double perovskites may
form a subnanosized superstructure (PFB2 chemical order in
Fig. 2) having the room-temperature ferrimagnetic order. Such
ferrimagnetism of geometrical origin [52] may represent an in-
teresting alternative to the room-temperature ferromagnetism
in wide-gap semiconductors, which is in the focus of recent
studies. Formation of the PFB2 superstructure in ferroelectric
double perovskites will lead to the room-temperature multi-
ferroism where ferroelectric- and ferrimagnetic-type order can
coexist, at least at a nanoscale level. Recent observations of
the room-temperature multiferroism in complex systems on the
base of the double perovskites [28–31] are possibly provided
by nanoregions of the ferrimagnetic PFB2 superstructure
rather than by simple local clustering of Fe ions as this will
lead only to an increase of Neel temperature.
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APPENDIX A: DETAIL OF THE LSDA + U
CALCULATIONS

Total and projected densities of states are shown in Fig. 5.
As expected, the largest spin splitting occurs for Fe 3d states.
Table VI shows the values of magnetic moments localized on
the Fe ions. They are close to the isolated Fe3+ ion value 5μB .
In the ground-state PFB4a configuration, the polarization does
not exceed 0.03μB for oxygen ions, and 0.04μB for Nb ions. In
the ferromagnetic state, the polarization of some oxygens and
Nb ions reaches 0.14μB and 0.12μB , respectively. We see that

-40

-20

0

20

40
Total

-1.5
-1

-0.5
0

0.5
1

1.5 Pb 6s

-6
-4
-2
0
2
4
6

Nb 4d

-4
-2
0
2
4 Fe 3d

-10 -5 0
Energy, eV

-4
-2
0
2
4 O 2p

FIG. 5. (Color online) Spin-resolved total density of states (up-
per panel) for the PFB4a structure, U = 6 eV. Other panels show
representative densities of states projected onto the basis functions
(one for every ion sort), which maximally contribute to the total
density of state near the Fermi level.
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TABLE VI. The magnetic moments (in the units of Bohr
magneton μB ) localized on different Fe ions of the PFB4 chemical
configuration in various magnetic states depicted in Figs. 2 and 3.

U (eV) a (Å) Fe1 Fe2 Fe3 Fe4

a 4 4.01 4.45 4.45 −4.39 −4.52
6 4.01 4.77 4.77 −4.71 −4.85
4 3.95 4.49 4.49 −4.42 −4.56
4 ∼3.95a 4.43 4.43 −4.35 −4.45

b 4 4.01 4.49 −4.45 4.43 −4.51
6 4.01 4.79 −4.77 4.73 −4.85
4 3.95 4.52 −4.49 4.45 −4.55
4 ∼3.95a 4.49 −4.43 4.41 −4.45

FM 4 4.01 4.50 4.50 4.48 4.50
6 4.01 4.80 4.80 4.75 4.85
4 3.95 4.53 4.53 4.49 4.54
4 ∼3.95a 4.50 4.49 4.47 4.45

aFully relaxed lattice from the calculations in Ref. [7].

the localized moment description of the magnetism in PFN by
the model Hamiltonian (1) is adequate.

APPENDIX B: THREE CENTER
CATION-ANION-CATION MODEL

Here we will calculate the superexchange for the case when
it is mediated by one anion where the CF splitting will be
neglected. Then we choose the coordinate system having the
anion in the origin, and the vector radii of the cations are

R1 = (0,0, − 1) R1,

R2 = (sin α,0, − cos α) R2,

where α is the angle between bonds (Fig. 4). A general
fourth-order many-body perturbation theory expression for the
superexchange between two ions in the d5 configuration reads
[cf. Eqs. (9) and (10) of Ref. [44]]

J = − 1

2S2�2
eff

(
r2

Ueff
+ 2

2�eff + Up

)
Eββ, (B1)

where

Eββ =
∑

m,m′,n,n′
t1,m,β,nt2,m′,β,nt1,m,β,n′ t2,m′,β,n′ , (B2)

Ueff = Ud + 4JH , (B3)

�eff = � + 28JH /9. (B4)

The d ions are assumed to be in the high-spin state (S = 5/2),
Ud (Up) is the Coulomb repulsion between two fermions on

the same d(p) orbital, JH ≡ 5
2B + C is the Hund exchange

in the d shell expressed in terms of Racah parameters, and �

is the charge transfer energy (see Ref. [44] for the discussion
of the approximations behind Eq. (B1), and the description of
the realistic many-body p − d Hamiltonian). According to the
Harrison model [47], the hopping tα,m,β,n between the mth d

function of metal ion α = 1,2 and the nth p function of ligand
β is expressed via direction cosines l,m,n of the vector Rβ −
Rα , and two Slater-Koster [45] parameters Vpdσ (R),Vpdπ (R),
which depend on sorts of metal ion and on the distance R =
|Rβ − Rα|; r ≈ 0.8 is a reduction factor that is caused by
dependence of the hoppings on the number of 3d electrons.

In the case of the single ligand, the index β may be dropped,
and it is convenient to write

E ≡
∑
n,n′

∑
m,m′

t1,m,nt2,m′,nt1,m,n′ t2,m′,n′

=
∑
n,n′

∑
m

t1,m,nt1,m,n′
∑
m′

t2,m′,nt2,m′,n′ .

The Slater-Koster table [45,47] gives for the first transition
metal-anion pair,

t1zx,x = t1zy,y = −Vpdπ,1,

t1z2,z = −Vpdσ,1,

other hoppings are zero. So∑
m

t1,m,nt1,m,n′ = δnn′
∑
m

t2
1,m,n ≡ δnn′T1n,

T1x = T1y = V 2
pdπ,1, T1z = V 2

pdσ,1,

then

E =
∑
n,n′

δnn′T1n

∑
m′

t2,m′,nt2,m′,n′ =
∑

n

T1nT2n,

T2n ≡
∑
m′

t2
2,m′,n.

For the second anion-TMI pair the hoppings are given in
Tables VII and VIII. This gives us

T2x = sin2 αV 2
pdσ,2 + cos2 αV 2

pdπ,2,

T2y = V 2
pdπ,2,

T2z = cos2 αV 2
pdσ,2 + sin2 αV 2

pdπ,2.

And we obtain

E = V 2
pdπ,1(T2x + T2y) + V 2

pdσ,1T2z

= V 2
pdπ,1

[
sin2 αV 2

pdσ,2 + (1 + cos2 α)V 2
pdπ,2

]
+V 2

pdσ,1

(
cos2 αV 2

pdσ,2 + sin2 αV 2
pdπ,2

)
(B5)

TABLE VII. Hoppings t2m′n′ between t2g orbitals and ligand p functions.

n\m xy yz zx

x 0 0 − cos α
[√

3 sin2 αVpdσ + (1 − 2 sin2 α)Vpdπ

]
y sin αVpdπ −cos αVpdπ 0
z 0 0 −sin α

[√
3 cos2 αVpdσ + (1 − 2 cos2 α)Vpdπ

]

024402-7
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TABLE VIII. Hoppings t2m′n′ between eg orbitals and ligand p functions.

n\m x2 − y2 z2

x
√

3
2 sin3 αVpdσ + sin α(1 − sin2 α)Vpdπ sin α

[(
cos2 α − sin2 α

2

)
Vpdσ − √

3 cos2 αVpdπ

]
y 0 0
z − cos α

[√
3

2 sin2 αVpdσ − sin2 αVpdπ

] − cos α
[(

cos2 α − sin2 α

2

)
Vpdσ + √

3 sin2 αVpdπ

]

= V 2
pdσ,1V

2
pdσ,2

1 + 2τ 2 + (τ 2 − 1)2 cos2 α

τ 4

≈ V 2
pdσ,1V

2
pdσ,2(0.475 + 0.617 cos2 α). (B6)

In the last equality we have introduced the ratio τ ≡
Vpdσ /Vpdπ ≈ −2.16 [47].

Finally, we obtain Eq. (6) of the main text with

K = r2

Ueff
+ 2

2�eff + Up

. (B7)

APPENDIX C: TRANSITION TEMPERATURE

Here we give the derivation of Eqs. (9) and (10) for tran-
sition temperatures within the molecular field approximation
(see, e.g., Ref. [59]).

In the PFB2fe configuration we have two sublattices: Fe1
with spin-up and Fe2 with spin-down. In a supercell, one of the
ions belongs to the sublattice Fe1 and three to the sublattice
Fe2. The molecular fields acting on the magnetic moments are

H2 = −λM1, (C1)

H1 = −λM2, (C2)

λ ≡ 2J1

Nμ2
, (C3)

where N is the number of supercells, μ = gμB , g is the g

factor of the Fe3+ ion, μB is the Bohr magneton, M1 (M2) is the
magnetization of the Fe1(Fe2) sublattice. The magnetization,
in its turn, is defined by the molecular field,

Ms = NnsμSBS

(
μS

kBT
Hs

)
(C4)

≈ Cs

T
Hs, (C5)

where s = 1,2, ns is the number of ions in the supercell that
belongs to the sublattice s, n2 = 3n1 = 3,

Cs = Nnsμ
2S(S + 1)

3kB

is the corresponding Curie constant, BL(x) ≡ [(2L +
1)/2L] coth[(2L + 1)x/2L] − (1/2L) coth x/2L is the
Brillouin function. The equality (C5) follows from the
expansion BL(x) ≈ (L + 1)x/3L, which is valid for small x.
Substituting the value of the molecular field from Eqs. (C1)
and (C2) into Eq. (C5), we obtain the system of equations for
the sublattice magnetizations in the absence of the external
field,

T M1 + C1λM2 = 0,
(C6)

C2λM1 + T M2 = 0,

which has trivial solution M1 = M2 = 0 above the transition
temperature T > T2f e. Nonzero values of the magnetizations
becomes possible if the determinant of the coefficients of M1

and M2 is zero. This condition yields

(Tf e)2 = C1C2

(
2J1

Nμ2

)2

, (C7)

and we obtain Eq. (9). At lower temperatures T < Tf e, the
system becomes nonlinear as the argument of the Brillouin
function grows.

The calculation for PFB3a magnetic ordering is more
involved. We have four sublattices shown in Fig. 2, Curie
constants are equal C = Nμ2S(S + 1)/3kB , and we have four
equations,

T MB,1 = CHB,1 = −Cλ(MA,1 + MA,2),

T MB,2 = CHB,2 = −CλMA,1,
(C8)

T MA,1 = CHA,1 = −Cλ(MB,1 + MB,2),

T MA,2 = CHA,2 = −CλMB,1.

Again, at the transition temperature, the determinant of the
coefficients should vanish. This gives a biquadratic equation,

T 4 − 3 (Cλ)2 T 2 + (Cλ)4 = 0. (C9)

The transition temperature is given by the largest positive root
of Eq. (C9), as it corresponds to the temperature where the
nontrivial solution appears when we approach the transition
from the paramagnetic side. We thus obtain Eq. (10).
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