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Single-molecule-mediated heat current between an electronic and a bosonic bath
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In molecular devices, electronic degrees of freedom are coupled to vibrational modes of the molecule, offering
an opportunity to study fundamental aspects of this coupling at the nanoscale. To this end, we consider the
nonequilibrium heat exchange between a conduction band and a bosonic bath mediated by a single molecule.
For molecules large enough so that onsite Coulomb repulsion can be dropped, we carry out an asymptotically
exact calculation of the heat current, governed by the smallness of the electron-phonon coupling, and obtain the
steady-state heat current driven by a finite-temperature drop. At low temperatures, the heat current is found to
have a power-law behavior with respect to the temperature difference with the power depending on the nature
of the bosonic bath. At high temperatures, on the other hand, the current is linear in the temperature difference
for all types of bosonic baths. The crossover between these behaviors is described. Some of the results are given
a physical explanation by comparing to a perturbative master-equation calculation (the limitation of which we
examine).
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I. INTRODUCTION

Recent developments in the fabrication and control of
nanostructures and molecular devices have stimulated a
growing interest in the study and research of heat conductance
in such devices [1–4]. As efforts are being made to better
utilize and control these devices, the understandings of the
mechanisms for accumulation and dissipation of heat are of
importance. The literature on the topic considers different
physical setups, differing in the process by which heat is
mediated, the devices under investigation, and the nature of
the heat baths involved in the heat-transfer process [5–11].

We consider heat transfer between two baths held at
different temperatures through a steady-state current of energy.
The linear-response regime, which relies on the equilibrium
properties of the system, arises in the limit of small gradient
of temperatures. A linear-response study of a system similar
to the one that is presented in this paper was done recently by
Entin-Wohlman and others and the thermopower properties
were calculated [6,7]. In the general case, however, the
system is far from equilibrium, as the temperature gradient
is finite. The description of such systems is a challenging
problem of great interest in current research, as many of
the concepts and techniques used to describe equilibrium
setups are inadequate. Exact solutions of systems far from
equilibrium are particularly desirable as they may offer both a
benchmark and an unbiased understanding of the underlying
physics.

In this paper, we present an asymptotically exact calculation
of the heat current through a molecular junction, under explicit
nonequilibrium conditions manifested by a finite-temperature
gradient between the two baths to which the molecule is
coupled: the electrons in a conduction band and a bosonic bath.
In a typical molecular bridge, molecular orbitals are coupled
simultaneously to the lead electrons and to the vibrational
modes of the molecule, with the former degrees of freedom
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reduced to a single effective band in the absence of a bias
voltage [12]. This coupling to the vibrational modes of the
molecule is believed to have an essential role in heat-transfer
processes [4–7,13,14]. In the continuum limit, a minimal
model for an unbiased molecular bridge therefore consists
of a vibrational mode that is coupled by displacement to
the conduction electrons at the origin, and is also coupled
to a bosonic bath of vibrational modes, as described by
the Hamiltonian of Eq. (1). The solution is asymptotically
exact in the sense that it is governed by the smallness of the
electron-phonon coupling g with respect to the effective energy
band of the conductance electrons.

The thermal properties of the bosonic Hamiltonian of
Eq. (16), and similar Hamiltonians describing heat current
between harmonic baths, were studied before in different
physical setups than presented here [15–19]. The results we
derive in this paper corroborate those studies, and adjust them
to describe the electronic systems which we shall present.

The paper is organized as follows. We begin in Sec. II
by presenting the model and the physical systems which it
may represent, under suitable mappings. In Sec. III, we then
introduce the nonequilibrium condition and map the model
onto a form quadratic in bosons. This quadratic nature of the
Hamiltonian is then exploited, in Sec. IV, in order to calculate
exactly the heat current in the system. In Sec. V, we then turn
to a master-equation approach, which is perturbative in nature,
in order to calculate again the heat current. This approach
allows us to gain some useful physical understanding of the
processes involved. Section VI addresses the case where the
localized fermionic level is taken off resonance, which breaks
the particle-hole symmetry of the problem and adds a linear
term to our quadratic Hamiltonian. We then turn to Sec. VII to
present our conclusions.

II. MODEL

The model we consider consists of a single molecule
coupled simultaneously to a conduction band and to a bosonic
bath, which may represent, depending on the context, either
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FIG. 1. (Color online) A schematic description of the three elec-
tronic systems we consider, and which can be mapped onto the
Hamiltonian of Eq. (1). Top to bottom: (a) a molecule adsorbed on
a surface, with the bulk phonons serving as a bosonic thermal bath;
(b) a single-molecule transistor, where the phonons of the substrate
are coupled to local vibrational mode; (c) an Aharonov-Bohm
interferometer with a molecular device embedded in one of its arms.

the substrate phonons or any other continuum of bosonic
degrees of freedom. A finite-temperature gradient is applied
between the electronic and bosonic baths, generating a nonzero
heat flow from the hotter bath to the colder one. Physically,
this model can describe any of a number of systems, three
of which are portrayed schematically in Fig. 1: a single
molecule adsorbed on a metallic surface (upper panel),
a molecular bridge (middle panel), and a single-molecule
transistor embedded in one of the arms of an Aharonov-Bohm
interferometer (lower panel). Under suitable conditions, to
be specified in the following, each of these setups can
be described by the generic continuum-limit Hamiltonian
[20]

H = −ivF

∫ ∞

−∞
ψ†(x)∂xψ(x)dx + �0b

†b +
∑

n

ωnγ
†
n γn

+ (b† + b)
∑

n

λn(γ †
n + γn) + ga(b† + b) : ψ†(0)ψ(0) :

+ εda : ψ†(0)ψ(0) :, (1)

which is the focus of this work. In the above Hamilto-
nian, the one-dimensional fermionic field ψ†(x) represents
the conduction-electron degrees of freedom, b† denotes the
molecular vibrational mode, and γ

†
n are the modes of the

bosonic bath. The fermionic field obeys canonical anticom-
mutation relations {ψ(x),ψ†(y)} = δ(x − y) subject to the
regularization δ(0) = 1/a, where a is a suitable short-distance
cutoff. In the above model, we have restricted ourselves to

the case where the Coulomb repulsion between the lead
and the localized fermionic level is negligible, and omitted
that term. The bosonic bath is characterized by the coupling
function


(ω) =
∑

n

λ2
nδ(ω − ωn), (2)

which is assumed to have the standard power-law form


(ω) = 2παωc

(
ω

ωc

)s

θ (ω)θ (ωc − ω). (3)

Here, ωc is a high-energy cutoff and α is a dimensionless
coupling constant parametrizing the coupling strength to the
bosonic bath. The power s = 1 is of particular interest as
it corresponds to an Ohmic bath [21]. The parameter g

describes the displacement coupling between the electrons and
the vibrational mode, while εd represents ordinary potential
scattering.

The generic model described by the Hamiltonian of Eq. (1)
is found in discussions of different physical systems consisting
of a single molecule which is coupled to large environments.
It has a long history that dates back to the 1970s, when it
was proposed as a model for the electron-phonon coupling
in mixed-valence compounds [22]. In the modern context of
nanostructures it is expected to properly describe the physics of
single-molecule devices away from Coulomb-blockade valleys
where a single unpaired spin resides on the molecule. We shall
now turn to present several of these setups.

A. Molecule adsorbed on a metallic surface

The most direct realization of the model given by Eq. (1)
is that of a single molecule adsorbed on a metallic surface.
Adsorbed molecules on surfaces have been intensely studied
over the years, both theoretically and experimentally (for a
brief review, see Ref. [23]).

In such molecules, the vibrational modes of adsorbed
molecules relax by interaction with the surface conductance
electrons as well as by coupling to the bulk phonons, and the
interaction between the electrons and the vibrational mode
plays an important role [13]. One of the common models used
to describe such interactions [24] is the Hamiltonian of Eq. (1),
prior to the reduction of the relevant conductance electrons
degrees of freedom to one-dimensional fields. Adopting that
description, the bosonic bath described by the operators γn

and γ
†
n in our Hamiltonian represents the bulk phonons. The

molecule is then brought into contact with an STM tip or other
electronic lead, and the conductance electrons couple to the
electronic level on the molecule. Focusing on the electronic
mode that couples to the molecule, we can map them onto the
one-dimensional field that is represented by the electronic field
operators ψ(x) and ψ†(x) in the Hamiltonian. A detail of the
process can be found in Ref. [25]. In such a system, generally
one would take εd = 0, as the conduction electrons are held in
resonance with the electronic level on the molecule.

B. Molecular bridge

Another system that can be described by the model of
Eq. (1) is that of a molecular bridge, a single molecule
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sandwiched between two electronic leads. In such single-
molecule devices, the electron-phonon interaction plays an
important role, as the molecular orbitals are coupled simulta-
neously to the lead electrons and to the vibrational modes
of the molecule itself. The molecular bridge is typically
placed on an insulating substrate which provides an additional
phononic bath that couples to the molecular vibrational modes
[26,27].

Focusing on a molecular junction held between leads with
no bias voltage, one can choose a symmetric and antisymmetric
basis for the lead electrons, thus the molecule interacts with
an effective single electronic band. The molecule itself is
modeled by a single spinless electronic level d† with energy
εd which is coupled by displacement to a local vibrational
mode b† with frequency �0. This vibrational mode is further
coupled by displacement to a bath of phonons γ

†
n . The

level is then coupled to the single band of electrons via
a hopping matrix element t . The resulting Hamiltonian is
given by

H = H0 + Hb + εd n̂d + �0b
†b + g(b† + b)

(
n̂d − 1

2

)

+ (b† + b)
∑

n

λn(γ †
n + γn) (4)

with n̂d = d†d and

H0 =
∑

k

εkc
†
kck + t

∑
k

(d†ck + c
†
kd),

Hb =
∑

n

ωnγ
†
n γn. (5)

Typically, the Hamiltonian is treated either in the weak-
coupling limit using perturbation theory in g or using the Lang-
Firsov transformation [28] and the polaronic approximation in
the limit where t is small. In the limit of a broad level close to
resonance, however, this Hamiltonian can be reduced [25,29]
to the continuum-limit Hamiltonian of Eq. (1) as described
in detail in Ref. [25]. This mapping process gives rise to
an effective high-energy cutoff which is determined by the
hybridization width of the level � = πρ0t

2. The effective
bandwidth Deff of the continuous field ψ(x) is related to the
hybridization width by Deff = π�/2.

C. Aharonov-Bohm interferometer with a molecular device

The final system considered is an Aharonov-Bohm interfer-
ometer with a molecular device embedded in one of its arms.
This setup is a more complicated variant of the molecular
bridge described above, as there is an additional transmission
channel between the two leads, and a magnetic flux ϕ threading
the ring. Lately, this system has attracted a considerable
interest, following the work of Entin-Wohlman and others
[6,7] who computed the transport coefficients relating the
linear-response electric and heat currents to the voltage bias
and temperature gradient.

Restricting our attention to the case where the two electronic
leads are held in identical temperature and chemical potential,
the Hamiltonian describing such a device is given [30] by

H = H0 + HL,R + Hdot, with

H0 =
∑

k,a=L,R

εkc
†
k,ack,a,

HL,R = W
∑
k,q

(e−iϕc
†
k,Lcq,R + H.c.),

Hdot =
∑

k

(VLc
†
k,Ld + VRc

†
q,Rd + H.c.)

+ εdd
†d + Hint. (6)

Here, H0 describes the left (L) and right (R) lead electrons,
HL,R describes the arm of the interferometer without the de-
vice, andHdot describes the device itself and its coupling to the
leads. The general termHint may contain any local interactions
at the dot that do not involve the lead electrons. In our case,
it will include the local vibrational mode, the electron-phonon
coupling, and the bosonic bath. However, for the purpose of
the mapping shown here, no further assumptions are needed
on the form of Hint beyond it not involving the lead electrons.

We begin by transferring to the symmetric and antisymmet-
ric basis, defining the new symmetric field

ψ(x) = 1√
V 2

L + V 2
R

[VLψL(x) + VRψR(x)] , (7)

where ψL/R(x) = ∑
k eiεkx/vF ck,L/R . The Green’s function

Gψψ†(z) pertaining to this field at x = 0 can now be calculated
from the Green’s functions of the left and right fields at the
origin, given by matrix form as

G(z) =
(

GLL(z) GLR(z)
GRL(z) GRR(z)

)

=
(

[gL(z)]−1 −teiϕ

−te−iϕ [gR(z)]−1

)−1

. (8)

Using this, we write the dot’s Green’s function as

Gdd† (z) = [z − εd − V̄ 2Gψψ†(z) − �int(z)]−1, (9)

where �int(z) is the self-energy contribution of the Hint. Close
to resonance, the role of the symmetric electronic Green’s
function Gψψ† will be to renormalize εd and the level width.
Therefore, our effective Hamiltonian of Eq. (1) generates the
same correlation functions pertaining to the dot operators as the
original Hamiltonian, ensuring the validity of the calculations
of the heat current. To this end, we have to adjust the parameters
of our effective Hamiltonian such that the effective electronic
bandwidth is

Deff = π

4
�̄, (10)

with �̄ = (�L + �R)/(1 + x), where

�a = πρ0V
2
a ,

(11)
x = (πρ0W )2.

The renormalized level energy is effected by the flux threading
the ring

εd → εd − 1
2

√
αx�̄ cos(ϕ), (12)

where α = 4�L�R/(�L + �R)2.
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As the flux ϕ contributes only to the effective εd , which
will be shown to effect the heat current only at quartic orders
or through the renormalization of the coupling coefficient g,
one concludes that the magnetic flux effects the heat current
similarly. Moreover, its effect is an even function of the flux.

III. SYSTEM SETUP AND MAPPING

The nonequilibrium conditions that will give rise to the
heat current will be manifested by assuming to hold the
electronic and bosonic baths at different temperatures Te and
Tb, respectively. This temperature gradient may be intentional
and well controlled or can be the by-product of some other
dynamics that inevitably causes an imbalance between the
two heat baths. In either case, we assume that all other energy
relaxation mechanisms between the electronic and the bosonic
bath are sufficiently inefficient such that all local relaxation can
be regarded as mediated by the molecule. In the Keldysh spirit
[31], we account for the temperature difference by taking the
initial density operator in the distant past to have the form

ρ̂0 = e−(βeH0
e+βbH0

b)

Tr{e−(βeH0
e−βbH0

b)} , (13)

where βe = 1/Te and βb = 1/Tb are the reciprocal tempera-
tures and

H0
e = −ivF

∫ ∞

−∞
ψ†(x)∂xψ(x)dx, (14)

H0
b =

∑
n

ωnγ
†
n γn (15)

represent the two decoupled baths. The system is then evolved
in time according to the full Hamiltonian H until steady state
is reached.

The electronic Hamiltonian H0
e contains a natural high-

energy cutoff or bandwidth Deff = πvF /a, which, depending
on the context, may represent either the actual conduction-
electron bandwidth or the hybridization width of a certain
molecular orbital. Our subsequent solution of the nonequilib-
rium state is confined to the weak-coupling regime Deff �
max{g,g2/ω0,|εd |}, which serves as a prerequisite for some of
the realizations of Hamiltonian of Eq. (1) depicted in Fig. 1. In
this limit, one can apply Abelian bosonization [32] to convert
the Hamiltonian and the initial density operator to a form
quadratic in bosonic operators. Specifically, the Hamiltonian
of Eq. (1) takes the form

H =
∑
k>0

εka
†
kak +

∑
n

ωnγ
†
n γn + �0b

†b

+ [g̃(b† + b) + ε̃d ]
∑
k>0

ξk(a†
k + ak)

+ (b† + b)
∑

n

λn(γ †
n + γn), (16)

where the first two terms on the right-hand side correspond to
the free Hamiltonian terms H0

e and H0
b that appear in ρ̂0; a

†
k

and ak with k = 2πm/L (L being the size of the system)
are canonical bosonic creation and annihilation operators
corresponding to the Fourier modes of the fermionic density; εk

equals vF k; and the coefficients ξk , which have the dimension
of one over length, are given by

ξk =
√

k

2πL
e−ak/2π . (17)

Note that we have omitted in Eq. (16) the contribution of the
k = 0 mode of the fermionic density as it has no effect on our
problem of interest. As for the coupling constants g̃ and ε̃d ,
these have the dimension of energy times length, and are given
to linear order in g and εd by [20]

g̃ = ga = πvF

g

Deff
, (18)

ε̃d = εda = πvF

εd

Deff
. (19)

As we shall argue in the following, one must include higher
orders in εd to account for its effect on the heat current.

Our interest is in the steady-state heat current flowing
between the two baths. Formally, there are several heat-current
operators one can define, e.g., the heat current flowing into
the bosonic bath or the heat current flowing out of the
electronic bath, all of which must coincide in steady state.
For convenience, we shall focus on the heat current flowing
into the bosonic bath, whose corresponding operator

ĴQ = dH0
b(t)

dt

∣∣∣∣
t=0

= −i
[
H0

b,H
]

(20)

reads as

ĴQ = i(b† + b)
∑

n

λnωn(γn − γ †
n ). (21)

Our goal is to evaluate the steady-state expectation value JQ =
〈ĴQ〉.

IV. RESONANCE CONDITION

First, we consider the case where ε̃d = 0, which cor-
responds for a molecular bridge to electronic resonance
conditions. Technically, this limit is somewhat easier to
address as the bosonic Hamiltonian is purely quadratic. A
nonzero ε̃d introduces a term linear in bosonic operators to the
Hamiltonian of Eq. (16), whose treatment requires some care.
We defer discussion of the off-resonance case to Sec. VI.

A. Derivation of the heat current

To compute the heat current, we begin by writing it in the
form

JQ = −2
∑

n

λnωnIm{G>
b,n(t,t), (22)

where

G>
b,n(t,t ′) = 〈b(t)(γn − γ †

n )(t ′)〉. (23)

In steady state, all two-time correlation functions reduce to a
function of the time difference only. This allows one to convert
to the energy domain by Fourier transforming with respect to
the time difference. We apply this procedure to G>

b,n(t,t ′), and
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aiming at evaluating

G>
b,n(t,t) =

∫
dε

2π
G>

b,n(ε), (24)

we resort to ordinary diagrammatic perturbation expansion to
write an expression for G>

b,n(ε). To this end, it is useful to
define the free (i.e., λn = 0) Green’s functions of the bath
bosons in matrix form as

gr,a
γ,n(ε) =

⎡
⎣(ε − ωn ± iη)−1 0

0 −(ε + ωn ± iη)−1

⎤
⎦ (25)

for the retarded and advanced functions, and

g<,>
γ,n (ε) = ±2πnb(±ε)

⎡
⎣δ(ε − ωn) 0

0 −δ(ε + ωn)

⎤
⎦ (26)

for the lesser and greater functions, where nb(ε) = 1/(eβbε −
1) is the Bose-Einstein distribution function corresponding to
the temperature Tb. Similarly, we shall denote the fully dressed
Green’s functions of the molecular vibrational mode b† by
Gr,a(ε) and G<,>(ε), for which the 2 × 2 matrix notation

Gν(ε) =
[

Gν
bb†

(ε) Gν
bb(ε)

Gν
b†b†

(ε) Gν
b†b

(ε)

]
(27)

is used. [The same 2 × 2 matrix notation applies to gν
γ,n(ε)

above.]
Having laid out the building blocks for the perturbation

expansion, we rely on Langreth theorem [33] to have the
identity, at steady state

lim
t→∞G>

b,n(t,t)

=
∫ ∞

−∞

dε

2π
λn

∑
p=1,2

[
[G>(ε)]1p

{[
ga

γ,n(ε)
]

22 − [
ga

γ,n(ε)
]

11

}
+ [Gr (ε)]1p{[g>

γ,n(ε)]22 − [g>
γ,n(ε)]11}

]
, (28)

which we shall now turn to evaluate.
Focusing initially on the retarded and advanced Green’s

functions Gr,a(ε), these acquire the form

Gr,a(ε) =
⎡
⎣ε − �0 − �r,a(ε) −�r,a(ε)

−�r,a(ε) −ε − �0 − �r,a(ε)

⎤
⎦

−1

,

(29)

where

�r,a(ε) = g̃2
∑
k>0

ξ 2
k

[
1

ε − εk ± iη
− 1

ε + εk ± iη

]

+
∑

n

λ2
n

[
1

ε − ωn ± iη
− 1

ε + ωn ± iη

]
(30)

are the corresponding self-energy functions. There are two
contributions to �r,a(ε): one due to the coupling to the
electronic bath [the first term on the right-hand side of
Eq. (30)], and another due to the coupling to the bosonic bath
[the second term on the right-hand side of Eq. (30)]. Denoting
these two terms by �r,a

e (ε) and �
r,a
b (ε), respectively, the former

can be expressed in a closed analytical form [25] in terms of
the exponential integral function [34]

�r,a
e (ε) =(ρ0g̃)2Deff[ξeξE1(ξ ± iη)

− ξe−ξE1(−ξ ∓ iη) − 2]. (31)

Here, ρ0 = 1/(2πvF ) = 1/(2aDeff) is the density of states per
unit length, and ξ equals ε/Deff . As for the second contribution
�

r,a
b (ε), it can be conveniently expressed in terms of the

coupling function 
(ω):

�
r,a
b (ε) =

∫ ∞

0

(ε′)

[
1

ε − ε′ ± iη
− 1

ε + ε′ ± iη

]
dε′. (32)

For an Ohmic bath with s = 1, Eq. (32) can be evaluated in
closed analytic form to obtain

�
r,a
b (ε) = 2πα

[
ε ln

∣∣∣∣ε + ωc

ε − ωc

∣∣∣∣ − 2ωc ∓ iπε θ
(
ω2

c − ε2)] .

(33)

Proceeding to the lesser and greater Green’s functions
G<,>(ε), these read as

G<,>(ε) = Gr (ε)

[
1 1
1 1

]
�<,>(ε)Ga(ε), (34)

with the lesser and greater self-energy functions

�<,>(ε) = ± 2πne(±ε)(ρ0g̃)2ε e−|ε|/Deff

± 2πnb(±ε) [
(ε) − 
(−ε)] . (35)

Here, ne(ε) = 1/(eβeε − 1) is the Bose-Einstein distribution
function corresponding to the temperature Te. Note that
Eq. (35) can be conveniently related to the two components of
the retarded self-energy through

�<,>(ε) = ∓2ne(±ε)Im
{
�r

e (ε)
} ∓ 2nb(±ε)Im

{
�r

b(ε)
}
,

(36)

which generalizes the standard equilibrium relation �<,>(ε) =
∓2n(±ε)Im{�r

e (ε)}.
To evaluate G>

b,n(t,t) of Eq. (28), it is useful to utilize the
identities∑

p=1,2

[Gr (ε)]1p = |g(ε)|22�0(ε + �0)�>(ε),

∑
p=1,2

[Gr (ε)]1p = |g(ε)|2(ε + �0)
[
ε2 − �2

0 − 2�0�
a(ε)

]
,

(37)

which follow directly from Eqs. (29) and (34). Here, we have
introduced the auxiliary function

g(ε) = 1

ε2 − �2
0 − 2�0�r (ε)

, (38)

and made use of the fact that �a(ε) = [�r (ε)]∗. Inserting these
identities into Eq. (28) one obtains

−Im{ lim
t→∞ G>

b,n(t,t)}

= λn

∫ ∞

−∞
dε|g(ε)|2�0(ε + �0)[�>(ε) − 2 Im{�r (ε)}

× nb(−ε)][δ(ε − ωn) + δ(ε + ωn)], (39)
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which reduces by virtue of Eq. (36) to

−Im{ lim
t→∞ G>

b,n(t,t)}

= λn

∫ ∞

−∞
dε|g(ε)|2�0(ε + �0)2 Im{�r

e (ε)}[ne(−ε)

− nb(−ε)][δ(ε − ωn) + δ(ε + ωn)]. (40)

Plugging this result into Eq. (22), employing the relations
g(−ε) = g∗(ε) and [ne(−ε) − nb(−ε)] = −[ne(ε) − nb(ε)],
and exploiting the fact that 
(ε) is restricted to positive
energies, we finally arrive at

JQ = (4πρ0g̃�0)2
∫ ∞

0

dε

2π

ε2e−ε/Deff

|ε2 − �2
0 − 2�0�r (ε)|2 
(ε)

× [ne(ε) − nb(ε)], (41)

where we have explicitly written out the function |g(ε)|2 that
appears in the integrand [see Eq. (38)].

Equation (41) is the central result of this paper. It provides
an exact expression for the heat current corresponding to
the bosonic Hamiltonian of Eq. (16), for a general coupling
function 
(ε). Since [ne(ε) − nb(ε)] with ε > 0 is positive
definite for Te > Tb (negative definite for Tb > Te), the heat
current flows, as it physically should, from the hotter bath
to the colder one. In the following, we analyze in detail the
characteristics of JQ in different temperature and coupling
regimes.

The form of expression for the heat current bears a
similarity to Landauer formula. Other works studying thermal
conductance through local contacts have arrived at a similar
expressions or used a Landauer-type expression as a starting
point [2,8–10]. In the context of heat current between bosonic
reservoirs, this expression was derived in earlier works dis-
cussing Hamiltonians similar to the one in Eq. (16) [15,16,18].
This type of expression survives even when accounting
perturbatively for the interaction with vibrational modes [5].

B. Low-temperature limit

We begin with the low-temperature limit Te,Tb � �0

(throughout this paper, we assume that �0 < ωc,Deff). In this
limit, the Bose-Einstein distribution functions ne(ε) and nb(ε)
that enter the integrand of Eq. (41) have decayed long before
e−ε/Deff and |g(ε)|2 have changed in any significant manner
from their ε = 0 values. Thus, to a good approximation,
one can (i) set e−ε/Deff |g(ε)|2 → |g(0)|2 in the integrand of
Eq. (41), and (ii) extend the upper integration limit to infinity.
Taking the coupling function 
(ε) to have the power-law form
of Eq. (3), this yields

JQ ≈ (4πρ0g̃�0)2αω1−s
c |g(0)|2

∫ ∞

0
ε2+s [ne(ε) − nb(ε)] dε.

(42)

The resulting integral can now be carried out analytically using

∫ ∞

0

ε2+s

eβε − 1
dε = β−(3+s)�(3 + s)ζ (3 + s), (43)

where ζ (x) is the Riemann zeta function [35]. This in turn
gives

JQ ≈ A
(
T 3+s

e − T 3+s
b

)
, (44)

with A = (4πρ0g̃�0)2αω1−s
c |g(0)|2�(3 + s)ζ (3 + s). Lastly,

g(0) has the explicit expression

g(0) = 1

−�2
0 + 4�0[Deff(ρ0g̃)2 + 2παωc/s]

, (45)

allowing one to express the coefficient A entirely in terms of
the basic model parameters entering the bosonic Hamiltonian
of Eq. (16).

As can be seen from Eq. (44), the low-temperature heat
current shows a rather strong temperature dependence. In
particular, the linear-response heat conductance

σQ = lim
�T →0

1

�T
JQ(Te = T + �T,Tb = T ) (46)

varies as T 2+s , corresponding to T 3 for an Ohmic bath.
This should be contrasted with the heat conductance of
a generic noninteracting electronic tunnel junction, which
varies linearly with T at sufficiently low temperature [36].
For the heat conductance of a tunnel junction to display a
superlinear temperature dependence of the form found here,
its transmission coefficient must vanish in a power-law fashion
at the Fermi energy.

This power-law behavior of the heat current at low
temperatures was also observed for systems in which the
two bosonic reservoirs are connected by a system with few
degrees of freedom such as in the spin-boson model [17,19].
The similarity between these systems and the system under
consideration here, at low temperatures with respect to �0,
stems from the fact that at this temperature regime only the
lowest-lying levels of the vibrational mode of the molecule are
available for transferring energy between the baths.

C. Ohmic bath

As commented above, an Ohmic bath with s = 1 is of
particular interest. Focusing on this case and on the hierarchy
�0,Te,Tb � min{Deff,ωc}, we devise below an analytical
expression for the nonequilibrium heat current, encompassing
the crossover from the low-temperature regime max{Te,Tb} �
�0 to the intermediate-temperature one �0 < max{Te,Tb}.
This expression is approximate as it employs a power-series
expansion of the self-energies, but yields accurate results
within the regime where Deff and ωc are the largest energy
scales in the system.

To this end, consider the function g(ε) which enters the
integrand of Eq. (41). Since the Bose-Einstein distribution
functions ne(ε) and nb(ε) decay on a scale far smaller than
min{Deff,ωc}, it suffices to accurately represent g(ε) for ε �
min{Deff,ωc}. This allows one to expand the exact expressions
for �r

e (ε) and �r
b(ε) [see Eqs. (31) and (33) above] in x =

ε/Deff and y = ε/ωc to obtain

�r
e (ε) = −(ρ0g̃)2Deff[iπx + 2 + O(x2 ln x)], (47)

�r
b(ε) = −2παωc[iπy + 2 + O(y2)]. (48)
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Settling with linear orders in x and y, the function g(ε) is well
approximated for ε � min{Deff,ωc} by

g(ε) = 1

(ε − z+)(ε − z−)
, (49)

where z± equals ±�̃ − i/τ with the softened frequency

�̃ = �0

√
1 − 4

(ρ0g̃)2Deff + 2παωc

�0
− π2[(ρ0g̃)2 + 2πα]2

(50)

and the relaxation rate
1

τ
= π�0[(ρ0g̃)2 + 2πα]. (51)

The softened frequency �̃ characterizes the dressed excitations
of the phonon, and thus serves as the energy scale which
determines the crossover from the high-temperature to the
low-temperature behavior. Within this approximation for g(ε),
the heat current for an Ohmic bath becomes

JQ = (4πρ0g̃�0)2α

∫ ∞

0
dε ε3 [ne(ε) − nb(ε)]

|(ε − z+)(ε − z−)|2 , (52)

where we have set in addition e−ε/Deff → 1 and extended the
upper integration limit to infinity (both approximations being
well justified by the hierarchy Te,Tb � min{Deff,ωc}). The
resulting integral in Eq. (52) can be performed in a closed
analytic form in terms of the digamma function [37] ψ(z).
Skipping details of the algebra we quote here only the end
result:

JQ = (2πρ0g̃�0)2α Im

{
(τ − i/�̃)2

[
ψ

(
τ−1 + i�̃

2πTb

)

−ψ

(
τ−1 + i�̃

2πTe

)
− ln

(
Te

Tb

)]
+ iπτ (Te − Tb)

}
.

(53)

It is straightforward to confirm using the asymptotic
expansion [37]

ψ(z) = ln(z) − 1

2z
− 1

12z2
+ 1

120z4
+ O(z−6) (54)

that Eq. (53) properly reduces for Te,Tb � �̃ to Eq. (44)
with s = 1, including the precise value of the prefactor A.
More interesting is the limit �̃ < max{Te,Tb}, when the
leading contribution to Eq. (53) crosses over to a linear
dependence on the temperature difference �T = (Te − Tb).
Thus, as the larger of the two temperatures exceeds the
vibrational resonance energy, the heat current continues to
increase linearly with �T . This behavior markedly differs
from that of a resonant electronic tunnel junction, whose heat
current depends logarithmically on �T above the resonance
energy. The physical difference stems, as we show in the
following, from the bosonic nature of the vibrational mode,
which can be excited to exceedingly high energies by creating
ever more phonons. This should be contrasted with a resonant
electronic level, which can only be empty or occupied.

D. Numerical results

Having analyzed analytically certain limits, we now pro-
ceed to a complete numerical evaluation of the exact heat
current of Eq. (41) at arbitrary temperatures Te and Tb. As
the temperatures Te and Tb enter the expression for the heat
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FIG. 2. (Color online) The heat current JQ between the electronic
and bosonic baths, as a function of the temperature difference between
the baths. Here, the temperature of the bosonic bath was held constant
at a low value Tb/�0 = 10−4 and the temperature of the electronic
bath Te was changed. The heat current was calculated for different
types of bosonic baths, where we considered a sub-Ohmic case (s =
1
2 , green), an Ohmic case (red), and a super-Ohmic case (s = 3

2 , blue).
Inset: a log-log plot of the low-temperature regime. The dashed lines
are following the appropriate power laws predicted in that regime
by Eq. (44). Here, JQ is measured in units of the basic heat current
J0 = (4πρ0g̃�0)2α, where 2πρ0g̃ = 0.1, and α = 10−3 are in the
weak-coupling regime. The cutoffs used are Deff/�0 = ωc/�0 = 20.

current only through the term [ne(ε) − nb(ε)] in the integrand,
it is antisymmetric under replacing them. As such, we may
restrict ourselves to calculations in which Tb is held constant
and the heat current is calculated for different values of Te,
and generalize the results for opposite values by inverting the
direction of the current.

In Fig. 2, we have addressed the case where one bath (the
bosonic one) is held at a constant low temperature Tb/�0 =
10−4, while scanning different values of Te higher than that
temperature. We have plotted the heat current in the case of
a sub-Ohmic bath (with s = 1

2 ), an Ohmic bath, and a super-
Ohmic bath (with s = 1). The graph shows a clear crossover
from a power-law behavior to a linear dependence as �T

increases to values of the order of �0. In the inset of the graph
we have plotted, on a log-log scale, the heat current for small
values of �T for each type of bath, and a dashed line following
the expected power-law behaviors at low temperatures given at
Eq. (44). The agreement between the calculated heat current
and the expected one is excellent while Te � �0, breaking
at about Te/�0 
 0.1. Figure 3 describes the heat current as
well, but focuses on the case where the temperature of the
bosonic bath is held at the high value of Tb = �0. In this case,
the heat current about �T = 0 displays a linear dependence
on �T , with different slope for every type of bosonic bath.

In Fig. 4, we have plotted the linear-response heat conduc-
tance σQ, as defined in Eq. (46), for different temperatures and
types of baths. As the temperatures rises, the conductance
increases until it saturates at about T 
 �0. The different
exponents relating to the type of bosonic baths are evident
in the low-temperature regime.

024307-7



VINKLER-AVIV, SCHILLER, AND ANDREI PHYSICAL REVIEW B 89, 024307 (2014)

0 1 2 3 4

T
e
/Ω0

0

100

200

J Q
/J

0

s = 3/2
s = 1
s = 1/2

0.9 1 1.1

-5

0

5

FIG. 3. (Color online) The heat current between the electronic
and bosonic baths as a function of the temperature difference between
the baths. Here, the temperature of the bosonic bath was held constant
at Tb/�0 = 1 and we calculated the current for different values of
Te. The heat current was calculated for different types of bosonic
baths, where we have considered a sub-Ohmic case (s = 1

2 , green), an
Ohmic case (red), and a super-Ohmic case (s = 3

2 , blue). Inset: a zoom
over the regime about the point Te = Tb = �0 where the heat current
displays a linear dependence on �T . Here, JQ is measured in units
of the basic heat current J0 = (4πρ0g̃�0)2α, where 2πρ0g̃ = 0.1,
and α = 10−3 are in the weak-coupling regime. The cutoffs used are
Deff/�0 = ωc/�0 = 20.

V. MASTER-EQUATION APPROACH

Although our solution for JQ is formally exact within the
bosonic Hamiltonian of Eq. (16), it is instructive to develop
a more transparent physical picture that would, in particular,

0 0.5 1 1.5 2
T/Ω0

0

100

200

300

σ Q
/σ

0

s = 3/2
s = 1
s = 1/2

FIG. 4. (Color online) The linear-response heat conductance σQ

between the baths as a function of the temperature T in which both
baths are held. The conductance is calculated for different types of
bosonic baths, where we have considered a sub-Ohmic case (s =
1
2 , green), an Ohmic case (red), and a super-Ohmic case (s = 3

2 ,
blue). Here, σQ is measured in units of a basic heat conductance
σ0 = (4πρ0g̃)2�0α, where 2πρ0g̃ = 0.1, and α = 10−3 are in the
weak-coupling regime. The cutoffs used are Deff/�0 = ωc/�0 = 20.

elucidate the source of distinction between the bosonic system
under consideration and a conventional resonant tunnel junc-
tion. To this end, we devise below a master-equation approach,
applicable at weak coupling. This approach to address heat
flow was previously applied by Segal [15,38], considering a
different setup. Leijnse and others [39] have also used this
method to calculate the thermopower properties in a similar
setup.

The basic components of the theory are the probabilities
Pn(t) to find the local boson b† at time t in the state where
b†b = n. These probabilities are connected at the golden-rule
approximation by rate equations of the form

dPn

dt
=Pn+1Wn+1→n + Pn−1Wn−1→n

− Pn (Wn→n+1 + Wn→n−1) (55)

(terms with n − 1 should be omitted for n = 0), with the
transition rates [20]

Wn→n+1 = 2π (n + 1)[F (�0)ne(�0) + 
(�0)nb(�0)], (56)

Wn→n−1 = 2πn{F (�0)[1 + ne(�0)]

+
(�0)[1 + nb(�0)]}. (57)

Here, F (�0) equals (ρ0g̃)2�0 exp(−�0/Deff). The golden-
rule approximation used here corresponds to lowest-order
perturbation theory in both the coupling to the phononic bath
[represented by the coupling function F (ε)] and the coupling to
the bosonic bath [represented by the coupling function 
(ε)].

A. Effective temperature

It is useful to define at this point the reduced transition rates

w↑ = 2π [F (�0)ne(�0) + 
(�0)nb(�0)] , (58)

w↓ = 2π {F (�0)[1 + ne(�0)] + 
(�0)[1 + nb(�0)]} , (59)

such that Wn→n+1 = (n + 1)w↑ and Wn→n−1 = nw↓. Focus-
ing on steady state, when dPn/dt = 0, Eq. (55) can be recast
as an infinite set of coupled linear equations

P1 = (w↑/w↓)P0, (60)

Pn+1 =
(

n

n + 1
+ w↑

w↓

)
Pn − n

n + 1

w↑
w↓

Pn−1, (61)

whose solution is Pn = Bpn with p = w↑/w↓ < 1. Here, B =
(1 − p) is a normalization factor which comes to ensure that∑∞

n=0 Pn = 1. Thus, the probabilities Pn obey a Boltzmann-
type form with an effective temperature Teff defined by

p = e−�0/Teff . (62)

Consider first the case of thermal equilibrium, when Te =
Tb = T and ne(ε) = nb(ε) = n(ε). Under these circumstances,

p = w↑
w↓

= n(�0)

1 + n(�0)
= e−�0/T , (63)

hence Teff equals T irrespective of details of the two baths.
Once a temperature gradient is applied between the two
reservoirs, i.e., Te �= Tb, then Teff falls in-between min{Te,Tb}
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and max{Te,Tb}, as follows from the equality

e−�0/Teff = qe−�0/Te + (1 − q)e−�0/Tb (64)

with

q = F (�0)[1 + ne(�0)]

F (�0)[1 + ne(�0)] + 
(�0)[1 + nb(�0)]
. (65)

Equation (64) can be solved analytically in the high-
temperature limit �0 � Te,Tb, where Fermi’s golden rule
(and thus our master-equation approach) is expected to apply.
Specifically, expanding each of the exponents to linear order
in �0 one obtains

Teff 
 TeTb

qTb + (1 − q)Te

. (66)

This expression can further be simplified by noting that q

depends implicitly on Te and Tb through the Bose-Einstein
distribution functions ne(�0) 
 Te/�0 and nb(�0) 
 Tb/�0.
Plugging these relations into Eq. (65) and inserting the
resulting expression for q into Eq. (66), one finally arrives
at

Teff = F (�0)

F (�0) + 
(�0)
Te + 
(�0)

F (�0) + 
(�0)
Tb, (67)

where we have made repeated usage of the fact that �0 �
Te,Tb. It should be stressed that this result equally applies to
all forms of the bosonic bath, be it Ohmic, sub-Ohmic, or
super-Ohmic.

B. Heat current

The steady-state solution to the probablities Pn can be used
in turn to calculate the heat current. Focusing again on the
heat current flowing between the bosonic bath and the local
phonon, the latter involves the transition rates W b

n→n±1 to and
from bosonic bath. Explicitly, the heat current takes the form

JQ = �0

∑
n

Pn

(
W b

n→n−1 − W b
n→n+1

)
, (68)

where

W b
n→n+1 = 2π (n + 1)
(�0)nb(�0),

(69)
W b

n→n−1 = 2πn
(�0) [1 + nb(�0)] .

Using these rates, the expression for the heat current gains the
compact form

JQ = 2π�0
(�0) [neff(�0) − nb(�0)] , (70)

where neff(�0) = ∑
n nPn = (e�0/Teff − 1)−1 is the average

occupancy of the localized phonon. Recalling that Teff lies
between the temperatures of the bosonic and electronic baths, it
is clear that JQ is positive (negative) when Te > Tb (Te < Tb),
which gives the correct direction of the heat flow.

The above result provides a transparent picture for the linear
dependence of the heat current on the temperature gradient in
the high-temperature regime. In this regime, the expression for
JQ can be further approximated using Eq. (67) for the effective
temperature, which results in

JQ 
 2π

(�0)F (�0)

F (�0) + 
(�0)
(Te − Tb). (71)

Hence, the linear dependence on the temperature gradient
stems from the large occupancy of the localized phonon, which
does not saturate with increasing temperature. Segal [38],
using the master-equation approach, described a similar linear
dependence of the heat flow on the temperature difference.
This should be contrasted with a spinless electronic resonant
level, which can only be empty or singly occupied.

While Eq. (70) properly captures the physics of the high-
temperature regime, it fails to produce the required power-law
behavior in the low-temperature regime Te,Tb � �0. Indeed,
replacing the Bose-Einstein functions with simple exponents
and using Eq. (64) for the effective temperature, the heat
current becomes

JQ 
 2π�0

(�0)F (�0)

F (�0) + 
(�0)
(e−�0/Te − e−�0/Tb ), (72)

where we have omitted the exponentially small Bose-Einstein
distribution functions in the expression for q [see Eq. (65)].
Thus, the master-equation approach predicts activated low-
temperature behavior in place of the correct power-law form.

C. Validity of the master-equation approach

The fact that the master-equation approach well describes
the high-temperature regime but fails at low temperatures is
by itself not surprising. Here, we can exploit the exact solution
to carefully examine the range of validity of the approach and
the simple physical picture that it lends. Generally speaking,
the quality of the master-equation approach depends on two
parameters: (1) the temperatures involved and (2) the strength
of the coupling constants. Naturally, the master-equation
approach loses quantitative accuracy as the coupling constants
are increased since Fermi’s golden rule corresponds to lowest-
order perturbation theory. Nevertheless, as we shall show,
the qualitative picture can remain quite accurate even when
the coupling constants are increased. To critically examine
the master-equation approach we shall focus on the three
quantities: (1) the effective temperature Teff defined by the
average occupancy of the localized phonon [see Eq. (73)]; (2)
the Boltzmann-type distribution of the localized phonon; and
(3) the heat current JQ.

1. Effective temperature

As shown above, the master-equation approach predicts an
effective temperature Teff which is manifest in the average
phonon occupancy neff(�0). Similarly, one can define an
effective temperature from the exact phononic occupancy
〈n̂b〉 = 〈b†b〉 according to

〈n̂b〉 = 1

e�̃/Teff − 1
, (73)

where �̃ is the softened phonon frequency, approximated by
Eq. (50). Usage of the softened frequency, rather than the
bare one, comes to account for the higher-order correction
not included in the golden-rule approximation. We emphasize
that Eq. (73) serves as an ad hoc definition of an effective
temperature, which does not, by itself, imply a Boltzmann-type
distribution. We shall examine this latter point in the following
section.
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FIG. 5. (Color online) The effective temperature of the localized
phonon as a function of the electron-phonon coupling g and for
different values of the coupling to the bosonic reservoir α. The red line
represents the effective temperature calculated based on the master-
equation approach, while the black line is the effective temperature
extracted from the phononic occupancy as given in Eq. (73). In this
graph Deff/�0 = ωc/�0 = 20, the bosonic bath was taken to be
Ohmic and the temperatures used are Te/�0 = 3, Tb/�0 = 2, which
lie well within the applicability temperature range of the master-
equation approximation.

Figure 5 compares the effective temperature extracted from
the exact solution with the master-equation result of Eq. (64),
scanning different coupling strengths. There is an excellent
agreement at weak coupling which gradually deteriorates as
the combined coupling to the two baths is increased. The
agreement is controlled by the decay time τ of Eq. (51),
which depends quadratically on the coupling g to the electronic
bath and linearly on the coupling α to the bosonic one.
For the strongest coupling considered (right-hand side of the
lower-right panel), the deviation between the two curves is of
the order of 20%, which is still quite moderate.

2. Boltzmann-type distribution

The Boltzmann-type distribution of the probabilities Pn

predicts all the moments of the phononic occupancy 〈ns
eff〉 =∑

n nsPn. The ratio between the moments can be expressed
using the moments themselves, giving the ratio between the
first two moments 〈

n2
eff

〉
〈neff〉 = 2〈neff〉 + 1, (74)

which does not directly depend on the effective temperature,
and is true for every Boltzmann-type distribution, regardless
of the value of the temperature. We shall use this ratio as a
benchmark for examining how close the phononic distrubtion
is to a Boltzmann-type one, as the exact ratio is calculated
using the phononic Green’s functions at steady state

〈n̂b〉 = lim
t→∞ G<

bb† (t,t),
(75)〈n̂2

b〉 = lim
t→∞{G<

bb† (t,t)[2G<
bb† (t,t) + 1] + |G<

bb(t,t)|2}.
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FIG. 6. (Color online) The ratio between the second and first
moments of the phononic occupation number n̂b = b†b as a function
of the electron-phonon coupling g and for different values of the
coupling to the bosonic reservoir α. The red line represents the
ratio as predicted by the master equation, while the black line is the
actual ratio calculated according to the exact solution. In this graph
Deff/�0 = ωc/�0 = 20, the bosonic bath was taken to be Ohmic and
the temperatures used are Te/�0 = 3, Tb/�0 = 2, which lie well
within the applicability temperature range of the master-equation
approximation.

The calculated ratio deviates from the Boltzmann-type one due
to the presence of the term G<

bb(t,t), which is identically zero
for thermal distributions.

In Fig. 6, we have plotted the exact ratio between the
second and first moments of the phononic occupation and
compared it to the expected ratio where the distribution was
Boltzmann-type. Similarly to the comparison done for the
effective temperature, the comparison was done as a function
of the coupling strength. For small couplings, the exact ratio
matches excellently the one expected from a Boltzmann-
type distribution, thus confirming the approximation. As
the coupling is increased, the exact ratio deviates from the
Botlzmann-type prediction, and the nonthermal nature of the
distribution becomes prominent. We feel it is important to
stress, however, that the distribution is not thermal for any
coupling strength.

3. Heat current

As a third quantity to which we look in order to examine
the validity of the master-equation approximation is the heat
current between the two baths JQ. The exact expression for
the heat current is given in its integral form in Eq. (41) and
the expression derived from the master-equation approach
given in Eq. (70). The comparison of the results of these two
expressions is plotted in Fig. 7 where we have scanned dif-
ferent temperatures while holding the temperature difference
between the baths constant. In accordance with our previous
analysis of the results, the master equation reproduces quite
well the exact result only at high temperatures, and deviating
from it significantly as the temperatures are lowered.
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FIG. 7. (Color online) A comparison between the exact calcula-
tion of the heat current between the reservoirs JQ and the approximate
calculation relying on the master-equation approach as given in
Eq. (70). The temperature difference between the reservoirs is held
fixed with (Te − Tb)/�0 = 0.2 and both temperatures are changed.
Inset: the ratio of the approximated result from the exact one,
showing a larger difference as the temperature is lowered. Here, JQ is
measured in units of the basic heat current J0 = (4πρ0g̃�0)2α, where
2πρ0g̃ = 0.1, and α = 5 × 10−4 are in the weak-coupling regime.
The cutoffs used are Deff/�0 = ωc/�0 = 20.

VI. OFF-RESONANCE CONDITION

So far, only the resonant case where εd = 0 was considered.
Since εd can be controlled by using suitable gate voltages,
studying its effects on the heat current is of particular interest.
In this section, we address the case where εd is given some
nonzero value, breaking the particle-hole symmetry of the
model. Staying in accordance with the rest of our discussion,
where we have assumed that the bandwidth Deff is the
largest energy scale of the system, we are interested in the
regime where |εd | � Deff in addition to g � Deff . We shall
demonstrate that in this regime the leading contribution of εd

to the heat current is either ε2
dg

2/D4
eff or ε4

d/D
4
eff .

Before getting to the task of explicitly calculating the
heat current for the off-resonant case, we first consider the
symmetries of the Hamiltonian of Eq. (1). If εd = 0, then
the system holds a particle-hole symmetry, which breaks for
nonzero values of εd . Writing the Hamiltonian as a function
of εd and carrying out a particle-hole transformation

c
†
k → −c−k,

d† → d, (76)

b†, β†
n → −b†, − β†

n,

one finds out that H(εd ) → H(−εd ), while the expression for
JQ remains unchanged. Thus, we conclude that JQ is an even
function of εd .

Next, we turn to the calculation done in Sec. IV under
resonance conditions and aim at adjusting it to the case where
εd �= 0. Since the εd term in the Hamiltonian of Eq. (16) is
linear in the operators aq and a

†
q , one may express its effects on

the heat current by appropriate corrections to the bare Green’s
functions pertaining to these operators. We will then be able

to use the functions, dressed by the εd term, to recalculate the
self-energies �r,a of Eq. (30) and �<,> of Eq. (35). To this
end, we consider a free Hamiltonian to which we add an εd

term

Hεd
=

∑
k>0

εka
†
kak + ε̃d

∑
k>0

ξk(a†
k + ak), (77)

where ε̃d = εda. We will designate by g
r,a,<,>
0 k (t,t ′) the

unperturbed Green’s functions given, in energy space, by

g
r,a
0 k(ε) =

[
(ε − εk ± iη)−1 0

0 −(ε + εk ± iη)−1

]
, (78)

g
<,>
0 k (ε) = ±2πne(±ε)

[
δ(ε − εk) 0

0 −δ(ε + εk)

]
, (79)

and by g
r,a,<,>
q,q ′ (ω) the dressed functions with respect to the

Hamiltonian.
The Hamiltonian can be diagonalized exactly by intro-

ducing new bosonic creation and annihilation operators ãk =
ak + ε̃dξk/εk , by which it takes the form

Hεd
=

∑
k>0

εkã
†
kãk − ε̃2

d

∑
k>0

(
ξk

εk

)2

. (80)

This is a free Hamiltonian with respect to the ãk’s. The
correlation functions between the original bosonic operators
are related to the correlation functions of the ãk’s by the fact
that

〈a†
q(t)ak(t ′)〉 = 〈ã†

q(t)ãk(t ′)〉 + ε̃2
d

ξkξq

εkεq

. (81)

We can thus adjust the lesser and greater Green’s functions,
in the energy domain, by adding the appropriate term propor-
tional to δ(ε), which reflects the fact that the extra term added
by εd on the right-hand side of Eq. (81) is independent of time:

g
<,>
k,q (ε) = g

<,>
0 k (ε)δk,q

+ 2πε̃2
dξkξqg

r
0 k(0)ga

0 q(0)δ(ε)

(
1 1
1 1

)
. (82)

We continue to note that the retarded and advanced Green’s
functions remain unchanged by this addition of nonzero εd , as
the extra term is constant and drops out when the commutation
relations are taken.

Having arrived at the conclusion that the corrections due
to the εd term exist only at ε = 0, we point to the fact that
the integrand in the expression for the heat current given in
Eq. (41) depends directly on ε. Therefore, all such terms
do not contribute to the heat current, leaving it independent
of the value of εd . As εd reflects the energy associated
with the charging of the level, one would expect that its
value will directly affect the heat current. We understand the
independence of the latter on the value of εd as a result of the
weak-coupling regime |εd |,g � Deff , and expect that as either
of these values is increased, εd will play a role in determining
the heat current. Taking into account that the heat current is
an even function of εd , we conclude our discussion in noting
that the leading contribution in this regime is not lower than
(εd/Deff)4 or (εd/Deff)2(g/Deff)2.
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VII. CONCLUSIONS

In this paper, we have presented an asymptotically exact
calculation of the heat current between a bosonic bath and
a fermionic bath, that is mediated by a single molecule.
The calculation is based on a mapping of continuous model
given by the Hamiltonian of Eq. (1) onto a form quadratic
in bosonic operators [29,40,41]. This mapping is valid in
the weak-coupling regime, where Deff � max{g,g2/ω0,|εd |},
and Deff is the effective electronic bandwidth. This model
may describe, under suitable mappings, several physically
and experimentally relevant setups, the most relevant being
a molecule adsorbed on a surface, a molecular junction, and
an Aharonov-Bohm interferometer with a molecular device
embedded in one of its arms.

The exact calculation yields a Landauer-type expression
for the heat current, given in Eq. (41). Such an expression
stands in accordance with previous works on thermal currents
in confined nanostructures [2,5,8–10,15,16,18].

At low temperatures, the heat current strongly depends on
the nature of the bosonic bath. Assuming that the bosonic bath
has a power-law form and is characterized by the power s, the
low-temperature linear-response heat conductance varies as
T 2+s . At high temperatures, however, the heat current depends
linearly on the temperature difference between the two baths,
regardless of the nature of the power-law governing the bosonic
bath. The crossover between the low- and high-temperature

regimes is at the scale of the softened vibrational mode
frequency �̃ given in Eq. (50).

The high-temperature behavior, which is markedly different
than the transmission through a purely electronic system, is
explained by the bosonic nature of vibrational mode, which
can be excited to high energies by creating more phonons.
This is illustrated by a master-equation analysis of the system,
which is perturbative in nature but is justified in the high-
temperature and weak-coupling regime. In that regime, the
master-equation approach reproduces the heat current that
was calculated exactly previously, and also offers an effective
temperature that we assign to the local vibrational mode. It
should be stressed that even at that regime it does not have a
thermal distribution, and the effective temperature is a useful
illustrative approximation.

As our solution is exact only at weak electron-phonon
coupling, one would expect different features to appear
in the heat current as the interaction strength is in-
creased. It would be interesting to compare our results
with such an analysis, and see how our calculation persists
into the strong-coupling regime. We leave that to future
work.
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