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Quantitative macroscopic treatment of the spatiotemporal properties of spin
crossover solids based on a reaction diffusion equation
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We propose here a new theoretical treatment of the spatiotemporal properties in spin-crosser solids, based on
the expansion of the free energy taking into account the spatial fluctuations of the high-spin (HS) fraction. This
leads to an equation of motion on the HS fraction following a reaction diffusion equation (RDE), in which most of
the parameters can be derived from the experiments. This equation involves the true temporal and spatial scales at
variance from the previous stochastic microscopic models, which were based on a homogeneous treatment of the
crystal’s properties. We have illustrated this new treatment for a two-dimensional rectangularly shaped system with
a square symmetry and we could reproduce quantitatively the process of nucleation, growth, and propagation
of the HS fraction inside the thermal hysteresis loop, accompanying a first-order transition. The computed
spatiotemporal evolution of the system allowed one to follow the propagation of a well-defined macroscopic
HS:LS interface, which was found in excellent quantitative agreement with the experimental observations of
optical microscopy on the switchable spin crossover crystal [{Fe(NCSe)(py)2}2(m-bpypz)]. The RDE treatment
should generate predictive models for novel spatiotemporal effects in spin crossover solids and more generally
for all kinds of switchable molecular solids.
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I. INTRODUCTION

The high-spin (HS)↔ low-spin (LS) transition [1] is still the
object of various experimental and theoretical investigations.
The interplay between the spin crossover and the structural
properties, originating from intramolecular vibronic coupling,
can be enhanced by elastic intermolecular interactions. The
contributions of long-range elastic interactions, particularly at
the solid state, lead to rather abrupt thermal spin transition
and in many cases to hysteresis behavior denoting a first-order
phase transition or two-step spin transition [2–4]. However,
a gradual transition, corresponding to the simple Boltzmann
distribution between two states, is generally obtained in highly
diluted crystals (i.e., noncooperative systems). The molecular
spin state transition from LS to HS is accompanied by an
expansion of the unit cell of the crystal owing to a stretching
of the bond lengths (∼10% for the FeII ion). Extensive
research efforts have been devoted to the observation and/or the
visualization of the spatiotemporal aspects on spin crossover
single crystals by optical microscopy [5–12]. These studies
have allowed to monitor a HS:LS transformation front upon
the spin crossover transition and to follow the spatio-temporal
features of the HS:LS interface. Such results have evidenced
the important role of the mechanical stresses on the front
shape and on the nucleation and growth process as well as on
the interface propagation. In spin crossover solids, the lattice
strain, originating from the molecular volume expansion or
decompression overall the crystal, gives rise to long-range
interactions, a fact which was first pointed out by Ohnishi and
Sugano [13]. Therefore, a volume change of a few molecules,
uniformly distributed in the crystal, leads to an internal
pressure which reflects at the surface of the crystal (due to the
finite volume), called the image pressure [14,15]. This pressure
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effectively acts on all molecules of the crystal (independent
of distances) with the same strength. The contribution of the
elastic interactions has been studied in detail both theoret-
ically [16–26] and experimentally by measuring the elastic
constants by Brillouin spectroscopy [27] and the strain tensors
through temperature dependent x-ray diffraction [28]. From
the experimental point of view, the spatiotemporal properties
of SC solids have been first revealed only recently through
extensive optical microscopy investigations on cooperative and
noncooperative single crystals [6,7,9,12].

Most of the experimental observations of optical mi-
croscopy demonstrated that the thermally induced SC tran-
sition appears first around some defect and then propagates
along a well stable direction with the presence of a front
transformation characterized by a stable orientation and a well-
defined shape. Several elasto-electronic models [21,29,30],
including the system’s volume change at the transition, have
been designed to describe this phenomenon and some of
them succeeded to capture a large part of the problem. For
example, they well reproduce the existence of a single domain
nucleation and growth as well as the stabilization of the front
transformation by the elastic long-range interactions, induced
by the volume change of the system. Unfortunately, these
models have no analytical solutions and their investigations
require the use of molecular dynamics (MD) or Monte Carlo
(MC) simulations (some of them combine both techniques). It
is worth noticing that the experimental values of the velocity
of the front transformation are around some μm/s, while
both simulation techniques previously quoted do not allow
one to obtain realistic time scales. For example, MD is in
the picosecond time scale and that of MC simulations is
purely phenomenological and has no direct relation with
the experimental time. So, these models, although very
instructive, have serious limitations when we want to compare
quantitatively the theoretical results with the experimental
data. In addition, they are limited in size because they are
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highly time consuming. On the other hand, at the macroscopic
scale of the optical microscopy observations (performed on
crystals of a few hundred microns in size with a resolution
comprised between 0.5 μm at 1 μm), the volume changes
are hardly visible and only spin state changes through the
thermochromism of the material are revealed.

In this work, we propose an alternative type of model
allowing one to describe the domain formation and propa-
gation during the spin crossover transition. Here, for the sake
of simplicity we do not consider the volume changes of the
solid (an extension including this effect is in progress). Our
model, however, uses realistic time scales and then allows
quantitative comparison with the experimental results. We
show in fact that the spin crossover problem is similar to that
of a reaction diffusion problem, and thus can be described
by a RDE, which was widely used in literature to describe
pattern formation in systems involving short-ranged activation
phenomena and long-range inhibition, like in the case of
Hydra [31], or in population models in the Fisher-Kolmogorov
equation [32,33], and in susceptible-infected-removed (SIR)
models for the spread of infectious diseases such as AIDS
or rabies [34]. Pushing the comparison further, flames [35]
in exothermic combustion systems are also reaction diffusion
processes. These models are known to give rise to traveling
waves of composition during the conversion of the system from
a metastable (or unstable) to a stable state. The manuscript is
organized as follows: Sec. II is devoted to the presentation of
the model and to the derivation of the spatiotemporal equations
of motion; in Sec. III we discuss the results of the pattern
formation and in Sec. IV we conclude.

II. DERIVATION OF THE REACTION
DIFFUSION EQUATION

To introduce the reaction diffusion equation allowing one
to study the spatiotemporal properties of spin crossover solids,
we first briefly recall the basic aspects of the model from which
we built up the present approach. As already widely discussed
in the literature, the spin crossover transition can be described
in a simple way using Ising-like models [36,37] for which we
recall the Hamiltonian,

H = −J
∑
〈i,j〉

sisj +
∑

i

(
� − kT

2
ln g

)
si . (1)

In (1), J > 0 is the intermolecular “ferromagneticlike”
coupling between spin crossover molecules, and s is the
fictitious spin with eigenvalues +1, −1, associated with the
two spin states HS and LS, respectively. � is the ligand
field splitting, i.e., the energy difference E(HS) − E(LS) of
isolated molecules, g the degeneracy ratio between the HS
and LS states, k is the Boltzmann constant, and T is the
temperature. Let us denote by m = 〈s〉 the average value of
the magnetization, which connects to HS fraction, nHS through
nHS = (1 + m)/2. It is straightforward to demonstrate that the
self-consistent equation giving the temperature dependence
of the magnetization (or the HS fraction), in the mean-field
approach, is given by

m = tanh β (Jm − �eff) , (2)
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FIG. 1. (Color online) HS fraction vs reduced temperature T/Teq

showing the mean-field thermal hysteresis associated with the spin
transition, in which we perform the dynamical studies. Dashed blue
vertical line represents the temperature of simulation in Sec. III
and n∗

HS and n∗
LS are solutions of Eq. (2). The two arrows indicate

the limiting temperatures, Tdown and Tup of the mean-field thermal
hysteresis.

where �eff = � − kT
2 ln g plays the role of a temperature-

dependent effective “field.” This equation leads to the ther-
mal hysteresis loop presented in Fig. 1, with a transition
temperature Teq, given by Teq = 2�

k ln g
. The corresponding

homogeneous mean-field free energy is easily derived as
Fhom = 1

2Jm2 − kT ln[2 cosh β(Jm − � + kT
2 ln g)].

A. Nonequilibrium properties: the reaction diffusion equation

The nonequilibrium properties of the Hamiltonian (1) have
been studied mostly in the homogeneous case [37] in the
frame of the master equation formalism [38,39] solved in
the mean-field approximation. Three types of dynamics have
been investigated, based on Arrhenius transition rates, and
Glauber and Metropolis dynamics. While the former leads
to the dynamical potential (a kind of Lyapounov function)
representation (see Ref. [37]), the two last dynamics give
a nonequilibrium system whose dynamics follows the free-
energy landscape. At very low temperature, it was proved that
the Arrhenius dynamics was the most adequate to describe the
nonlinearities of the relaxation curves of the photoinduced
HS state. In contrast, at high temperature, the free-energy
dynamics becomes also relevant. Since we are interested in
the thermally induced hysteresis loop region, we chose to use
a free-energy dynamics. Then, the macroscopic equation of
motion of the HS fraction writes

∂m

∂t
= −�

∂Fhom

∂m
= −�J [m − tanh β(Jm − �eff)], (3)

where � is a frequency factor fixing the time scale which
can be temperature dependent and Fhom is the homogeneous
free energy, whose expression is given above and from which
we derived the right-hand side of Eq. (3). At infinite time, we
have ∂m

∂t
= 0, and the stationary state of (3) leads to find out the

equilibrium self-consistent equation (2). It is worth noticing
that contrary to the macroscopic master equation, based on
the dynamical potential approach [37], which uses “realistic”
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transition rates, related to the frequency of the metal-ligand
stretching vibration mode [40], the frequency factor � appear-
ing here is clearly a phenomenological parameter, although its
value can be determined from experimental relaxation curves
in the high-temperature regime. In addition, we should mention
that in Eq. (3), the coordination number z = 4 (for a square
lattice) is absorbed in the interaction parameter J .

In the following, we propose to extend this previous
homogeneous mean-field dynamical approach to account for
the space dependence of the HS fraction.

Let nHS(�r,t) represents the spatiotemporal dependence
of the HS fraction per site. Also let the field f (�r) =
f hom(nHS(�r), �∇nHS(�r)) be the density (F /volume) of the
free energy F at position �r . The homogeneous density,
f hom(nHS) = f (nHS, �∇nHS = 0) is the free-energy density in
the absence of gradients and is related to the usual homo-
geneous free energy Fhom(nHS) = V × f hom(nHS), where V

is the volume (here the surface) of the system. Following
a standard procedure [41–43] (revisited in Sec. I of [44])
allowing one to derive the reaction diffusion equation, we
expand f (n(�r)) in successive powers of the gradients [45]
assuming an isotropic material, which gives the following
relation:

f (nHS, �∇nHS) = f hom(nHS) + D

2
| �∇nHS|2. (4)

There, the density of the homogeneous free energy, f hom, tends
to narrow the interface region, while the gradient contribution
leads to spread the interface region. The constant D is the
diffusion constant and is related to the second derivative of
the free energy with respect to the gradient components of
the HS fraction [44]. The time dependence of the HS fraction
including the spatial variations can be derived from the rate
change of the total free energy,Fhom, with respect to its current
order-parameter field. After some mathematical developments
and assuming a small change of the order parameter, we arrive
at the RDE, which writes

∂nHS

∂t
= −�

∂Fhom

∂nHS
+ D ∇2nHS, (5)

which becomes when we use the expression of ∂Fhom

∂nHS
given in

(3),

∂nHS

∂t
= −�J [(2nHS − 1) − tanh β(J (2nHS − 1) − �eff)]

+D ∇2nHS. (6)

In (6), the “reaction” terms, obviously due to the homogeneous
free energy, act locally while the diffusion coefficient plays the
role of a rigidity connecting the local cell to the neighbors. It
is worth noticing here that the RDE (6) can be also directly
obtained from a variational principle, as reported in [46].

III. SPATIOTEMPORAL PROPERTIES AND PATTERN
FORMATION INSIDE THE THERMAL HYSTERESIS LOOP

We now investigate the pattern formation of the SC system
in the thermal hysteresis loop of Fig. 1, using RDE (6). We
considered a rectangularly shaped 2D lattice with a square
symmetry (see Fig. 2), with size Lx × Ly = 100 μm × 20 μm.

FIG. 2. (Color online) Snapshots of the lattice configurations
during the nucleation and growth of the LS state domain inside
the thermal hysteresis at temperature T = 0.9Teq. The parameter
values are given in the text, except D = 1.0 μm2/s. Red (blue) area
corresponds to LS (HS) state.

The parameter values used in the model, chosen in or-
der to be realistic as much as possible, are � = 450 K,
J = 300 K, � = 1/300 K−1s−1, ln(g) 	 5 (entropy change
	 80 J K−1mol−1). The corresponding transition temperature
is then Teq = 2�

k ln g
≈ 180 K. The diffusion parameter, D

(experimentally unknown), is scanned over a large interval,
D(μm2/s) ∈ [0 : 5], so as to reach typical experimental values
of the front velocity, some μm/s [6,8]. To solve the RDE (6),
the system is coarse grained spatially (dx = dy = 0.1 μm)
and temporally (dt = 10−3 s). The distance between the cells,
1 μm corresponds more or less to the spatial resolution of
optical microscopy. The calculations are performed at constant
temperature T = 0.9 × Teq = 161.65 K (see Fig. 1), at which
the LS (HS) state is stable (metastable). We set initially the
system in the metastable HS state (blue area), in which a small
square-shaped (red area) LS domain is inserted at the bottom
left corner, to initiate the reaction (see the upper left snapshot
of Fig. 2).

A. Structure of the HS:LS interfaces

The resolution of the Lx × Ly/(dx × dy) = 2000 coupled
differential equations arising from the discretization of the lat-
tice is performed by the finite difference method. We illustrate
in Fig. 2 some selected snapshots of the system configuration
showing the spatial distribution of the HS fraction along the re-
laxation process at times t = 3.8,63.6,93.6,120.0, 200.0, and
300 s. One can see that very quickly after the injection of the
square-shaped LS domain, it becomes circular, and this shape
is maintained as long as its radius ρ is smaller than the width Ly

of the lattice. The circular shape of the interface in this region
results form the minimization of its length (the interface energy
cost) under the constraint of a contact angle of π/2, imposed
by the open boundary conditions. When ρ exceeds the value
Ly = 20 μm, the transformed region reaches the border of the
lattice, then the shape and the orientation of the interface start
to change accordingly. After a while, t 	 15 s, the interface
tends to a stable shape, straight and perpendicular to the lattice
side borders (ρ → ∞). It is worth noticing that while these
results are new in the spin crossover topic, similar behaviors
of nucleation and propagation have been already reported
in literature of magnetic materials [47,48], where magnetic
domain wall propagation is driven by an applied magnetic
field. However, the present situation is much more similar to
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FIG. 3. (Color online) Interface profile along the propagation
direction corresponding to the different configurations of Fig. 2. The
simulated curves computed using RDE (6) nicely follow Eq. (7),
given in the text.

the nucleation and propagation of domains in ferroelectric
systems in the vicinity of the thermal instabilities caused
by the presence of first-order phase transition. Although,
similar to the domain wall propagation in magnetic systems,
fundamental differences exist between these two phenomena,
since entropic (thermal) effects play an important role in the
present case, because we are dealing with a thermally driven
first-order phase transition.

B. Study of the flow regime

We now focus on the flow regime, which is characterized by
the presence of a straight and stable-shaped interface traveling
at constant velocity. The propagation of the transformation
along the x axis can be followed by selecting a typical y value
and plotting the nHS(x) dependence for different t values. The
obtained curves are shown in Fig. 3. They represent propaga-
tive solutions of the so-called Kolmogorov equation [33]:

nHS(x,t) 	 n∗
HS + n∗

LS

2
+ n∗

HS − n∗
LS

2
tanh

(
x − x0

ω

)
, (7)

where x0 = vt is the position of the interface center, ω

the interface width, and n∗
HS and n∗

LS are solutions of the
mean-field self-consistent equation (2).

We followed the interface position as a function of time
during the propagation process of Fig. 2. The results are
presented in Fig. 4(a), for three selected y values, y = 1,
y = Ny/2, y = Ny , corresponding to the bottom, the center,
and the top of the lattice, respectively. In all cases, the used
value of the diffusion constant, D = 1.0 μm2 s−1 leads at long
time, to a constant propagation velocity, v 	 4.5 μm/s, of the
HS:LS interface; a result which is consistent with the available
experimental data [5–12]. Furthermore, an inspection of the
simulated interface profiles of Fig. 3, leads to width value,
ω 	 10 μm, which is also in quite good agreement with optical
microscopy observations [6–8]. A detailed comparison to the
experimental data will be presented in the next section.

We have also studied the dependence of the interface
velocity and width upon the diffusion constant D, and found

(a)

(b)

FIG. 4. (Color online) (a) Time dependence of the HS:LS inter-
face position along the propagation direction (x axis) for different y

values. (b) HS:LS interface velocity (blue curve), in the flow regime
vs reduced temperature T/Teq inside the thermal hysteresis of Fig. 1
which is represented here (red curve). Remark the linear character of
the interface speed with temperature and its particular value (v = 0)
at the transition temperature (the Maxwell point).

in both cases that v and ω grow as
√

D [44], a result which
was already reported in literature [46], where scaling analysis
showed that the interface width scales as

√
D and the interface

speed is proportional to this width.

1. The driving force of the interface propagation

Next, we studied the temperature dependence of the front
speed inside the hysteresis loop. The results are presented in
Fig. 4(b) and show that the interface velocity behaves linearly
in the transition temperature region and increases when
approaching the upper and lower temperatures of the hysteresis
loop, which are the limiting temperatures of metastability of
the LS and HS phases, respectively. To identify, much more
precisely, the driving force and the relevant parameters at the
origin of the interface motion, we expanded the expression
of the homogeneous free energy in powers of the HS fraction
around the equilibrium temperature and we found that the front
velocity, v = dx0

dt
obeys the relation,

v = 3

2
k(T − Teq)

√
2D�

J
ln g, (8)
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(a)

(b)

FIG. 5. (Color online) (a) Time dependence of the average HS
value corresponding to the interface propagation of Fig. 2. (b)
Time dependence of the square of the average gradient of the HS
fraction, showing the different regimes involved during the interface
propagation. (Inset) Time derivative of HS fraction, − ∂nHS

∂t
vs time.

See text for more explanations. The parameter values are those of
Fig. 2.

which agrees very well with the numerical results depicted
in Fig. 4(b). Equation (8) allows one to identify the driving
force of the front motion as due to the effective field, �eff =
� − kT ln g = k ln g(Teq − T ), which can be expressed as the
“distance” between the system’s temperature and the transition
temperature.

C. Edge effects and transient regimes

The edges of the system play a major role during the
propagation process. First of all, they govern the orientation
of the interface in the flow regime, through the geometric
condition of a border-interface right angle, in the present case
of free boundary conditions and high-symmetry lattice. This
condition would not be obeyed in the case of lower-symmetry
systems. In addition, the beginning and the end of the process
are obviously impacted by edge effects associated with the
vicinity to the extremities of the system. This is conveniently
visualized by plotting the spatially averaged HS fraction as a
function of time [see Fig. 5(a)]. Four successive regimes are
easily identified : (i) onset of the front shape, followed by

(ii) the propagation of a circular front until it reaches the top
border, (iii) reshaping towards a linear shape, and (iv) flow
regime at constant propagation velocity. In the latter, the total
averaged HS fraction behaves linearly in time. Indeed, in this
region where the interface’s orientation is stable, one can easily
understand that the HS fraction writes, nHS ∝ 1 − x0/Lx ,
where x0 is the position of the front and Lx is the lattice
length [see Fig. 5(a)]. On the other hand, while the quoted
four regimes are hardly seen in the relaxation curve of the
average HS fraction, they appear quite clearly in Fig. 5(b)
(and inset), where we represent the time dependence of the
gradient, | �∇nHS| (the time derivative, − ∂nHS

∂t
), of the HS

fraction, which is mostly sensitive to the interface region, and
then to the interface length evolution. A meticulous inspection
of these curves allows one to conclude that (i) the first regime,
characterized by a very rapid relaxation due to the onset of the
front transformation from the initially injected square shape to
circular shape, is located in the time interval [0 − 20] s, while
the second step [20 − 70] s corresponds to the propagation of
the front along the width of the lattice (that is, the shortest
length) towards the nearest surface (here, border). During this
process the radius increases until it reaches the value of the
lattice’s width, which results in an increase of the interface
length and consequently that of the associated HS fraction’s
gradient. In the third step [70 − 100] s, the front’s shape
transforms from circular to linear due to the edge effects,
which decreases the interface length, then the fourth regime
[100 − 240] s starts where the interface has a stable orientation
and a constant length, leading to a plateau in the behavior of
‖ �∇nHS‖ and − ∂nHS

∂t
. In the last regime, the interface feels the

surface (the lattice border) and the front shape changes again
to circular before disappearing. In this region, the change in
the propagation properties is enhanced when the border-front
distance becomes of the same order of magnitude as the
interface width.

D. Comparison to experiments

To improve the present spatiotemporal model, we compared
quantitatively the obtained results with those derived from
optical microscopy experiments on the spin crossover sample
[{Fe(NCSe)(py)2}2(m-bpypz)], where py designates pyridine
and bpypz designates 3,5-bis(2-pyridyl)-pyrazolate [8]. This
material, here abbreviated Fe(NCSe), presents a thermally
induced first-order transition between the LS and the HS states
accompanied with a hysteresis loop of 10-K width, centered
around ∼112.6 K, as depicted in Fig. 6. There, we have inserted
optical microscopy images of the crystal in the LS, HS and
inside the bistable area in which a very well-defined HS:LS
interface can be easily identified.

Due to specific anisotropic structural changes upon the spin
transition, the HS:LS interface of this system is oriented with
an angle of 57o with respect to the direction of the crystal’s
length. The absence of elasticity contribution in the present
version of the model does not allow one to reproduce this
orientation, although extensions in this line are in progress
and will be presented in a future work.

We have followed the experimental interface motion inside
the hysteresis loop at temperature T = 115.04 K where the
HS (respectively, LS) state is stable (respectively, metastable),
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FIG. 6. (Color online) Experimental (black curve) and theoret-
ical (blue curve) thermal hysteresis of the sample Fe(NCSe). The
experimental curve results from magnetic measurements on several
single crystals and the theoretical curve was calculated within the
homogeneous mean-field approach at equilibrium. The three optical
microscopy images of the crystal correspond to the three phases, LS
(interval 100 − 107.5 K), HS (116 − 120 K), and the coexistence
region inside the thermal hysteresis loop.

above the experimental transition temperature, Teq = 112.6 K
of the sample. To make a relevant comparison with experi-
ments, we considered a 2D lattice as in the theoretical section,
i.e., having a square symmetry and a rectangular shape of size
Lx × Ly = 100 μm × 20 μm. The parameter values allowing
one to reproduce the experimental thermal hysteresis loop of
the HS fraction are J = 138 K, ln(g) = ln(150) 	 5 (entropy
change 	 80 J K−1mol−1), and 2� = Teq ln(g) 	 800 K.
Within these parameters, the self-consistent mean-field Eq. (2)
gives the theoretical thermal hysteresis (blue curve) shown in
Fig. 6, which reproduces quite well the experimental one. The
diffusion parameter and the frequency factor are taken as D =
16.6 μm2/s and � 	 0.36 K−1s−1, respectively. The space
and time steps used in the simulations are dx = dy = 0.1 μm
and dt = 10−4 s, respectively. The distance between the cells,
taken equal to 0.357 μm corresponds to the spatial resolution
of optical microscopy data presented in this work.

In Fig. 7, we present simultaneously the experimental
(crosses) and the theoretical (dashed curve) time dependencies
of the HS fraction during the nucleation and propagation
process of the front transformation from LS to HS inside the
hysteresis loop of Fig. 6. The obtained results clearly indicate a
very good agreement between theory and experiments almost
overall the time interval. To check the global consistency of our
model, we have compared the experimental interface profile
(deduced from the spatial dependence of the optical density
along the front propagation direction at time t = 6 s) with
the theoretical predictions, obtained using the same set of
parameter values as those leading to the theoretical curve of
Fig. 7. The results, summarized in Fig. 8, confirm here also the
good quantitative agreement between theory and experiments,
as well as the relevance of the model.

Finally, we have also analyzed the local kinetics of the
HS fraction on a point inside the crystal. Here, the idea is
to follow the time dependence of the HS fraction in a fixed
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FIG. 7. (Color online) Experimental (crosses) kinetic behavior
of the HS fraction during LS to HS transformation of the crystal
Fe(NCSe) inside the hysteresis loop at temperature T = 115.04 K.
The dashed curve is derived from the resolution of RDE. The
parameter values are given in the text. An excellent agreement is
found between theory and experiment.

small region of the crystal (one pixel at the scale of optical
microscopy measurements, i.e., around 1 μm2) during the front
propagation. As long as the front is far from this point, the HS
fraction is that of the stationary LS state, i.e., nHS 	 0.3. When
the front comes around the considered point, the HS fraction
increases in time until reaching the value of the stationary HS
state (i.e., nHS 	 0.9). The experimental and theoretical results
are depicted in Fig. 9 and are in very good agreement with each
other. In particular, interesting information arising from this
local kinetics analysis concerns the time of local nucleation
of the HS fraction, obtained from the width of the curve of
Fig. 9, as �t 	 1 s. This value is an excellent agreement
with other experimental lifetime values obtained on different
spin crossover compounds using pump probe reflectivity
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FIG. 8. (Color online) Experimental (crosses) spatial depen-
dence of the HS fraction profile along the propagation direction
during the LS to HS transformation of the compound Fe(NCSe).
The dashed curve is the theoretical curve, obtained with the same
parameter values as those of Fig. 7. The two curves show the spatial
cross section of the interface at time t = 6 s.
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FIG. 9. (Color online) Local kinetics of the LS to HS trans-
formation on a local point of the crystal Fe(NCSe) during the
front propagation. Crosses (dashed line) stand for experimental data
(theoretical curve). The parameter values of the calculated curve are
the same as those of Figs. 7 and 8.

measurements allowing one to monitor the relaxation curves
of the HS fraction at different temperatures [49]. On the
other hand, it is useful to mention that in recent experi-
mental work, based on optical microscopy investigations on
the spin crossover sample [Fe(btr)2(NCS)2].H2O (btr=bis-
triazole) [6], a similar plot was obtained and phenomeno-
logically described in terms of a nucleation and growth
process, through the Kolmogorov-Johnson-Mehl-Avrami-type
law [50], nHS(t) = C{1 − exp[−k(t − t0)γ ]}, with an expo-
nent value γ 	 2. For the present sample, it is clearly seen
that the hyperbolic tangent law, given in Eq. (7), leads to an
excellent agreement with the experimental results. Moreover
this good accordance with the experimental data is obtained
with the same parameter values as those used for Figs. 7 and 8,
which demonstrates the whole consistency of the reaction
diffusion model in the description of the spatiotemporal
properties of switchable spin crossover solids.

IV. CONCLUSION

We have presented a general description of the interface
dynamics at the thermally induced spin transition of spin

crossover solids. For that, we have extended the macroscopic
homogeneous master equation, describing the relaxation prop-
erties of SC solids, by incorporating the spatial dependence
of the HS fraction. We found that the general equation of
motion accounting for the spatiotemporal properties of SC
solids writes as a reaction diffusion equation, where the
diffusion phenomenon concerns the spin states. Considering
an isotropic system, in which the diffusion constant D is
taken as independent of the space directions (as well as
temperature and HS fraction), we have calculated the time
dependence of the HS fraction inside the thermal hysteresis
loop of a spin crossover solid and derived the temperature
dependence of the interface speed inside the coexistence
region. Four dynamical regimes have been evidenced through
the propagation mechanism and their origins have been
identified and explained. To check the accuracy of this
approach, we performed a comparative analysis between the
theoretical predictions and the experimental spatiotemporal
data derived from optical microscopy measurements on the
spin crossover sample Fe(NCSe)(py)22(m-bpypz)]. We have
compared for the same set of theoretical parameter values (i)
the time dependence of the spatially averaged HS fraction,
(ii) the spatial shape of the interface profile, and (iii) the time
evolution of the local kinetics of the HS fraction. An excellent
agreement was found for all of these quantities between theory
and experiment, which denotes that the present approach is
really very efficient and allows one to capture a large part of
the spatiotemporal and the front propagation dynamics in spin
crossover solids.

This work offers several interesting extensions. Among
them, we quote, (i) the inclusion of elastic properties and
volume changes; (ii) the description of the spatiotemporal
properties in the vicinity of the light-induced instability to
investigate the spatiotemporal properties of the light-induced
phase separation that we reported several years ago. Three-
dimensional extensions of the present model also constitute a
nice challenge and target to approach the realistic cases.
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[2] C. P. Köhler, R. Jakobi, E. Meissner, L. Wiehl, H. Spiering, and
P. Gütlich, J. Phys. Chem. Solids 51, 239 (1990).

[3] R. Jacobi, H. Spiering, and P. Gütlich, J. Phys. Chem. Solids 53,
267 (1992).

[4] K. Boukheddaden, J. Linares, E. Codjovi, F. Varret, V. Niel, and
J. A. Real, J. Appl. Phys. 93, 1 (2003).

[5] F. Varret, A. Slimani, K. Boukheddaden, C. Chong, H. Mishra,
E. Collet, J. Haasnoot, and S. Pillet, New J. Chem. 35, 2333
(2011).

[6] A. Slimani, F. Varret, K. Boukheddaden, C. Chong, H. Mishra,
J. Haasnoot, and S. Pillet, Phys. Rev. B 84, 094442 (2011).

[7] C. Chong, A. Slimani, F. Varret, K. Boukheddaden, E. Collet,
J. C. Ameline, R. Bronisz, and A. Hauser, Chem. Phys. Lett.
504, 29 (2011).

[8] A. Slimani, F. Varret, K. Boukheddaden, D. Garrot, H.
Oubouchou, and S. Kaizaki, Phys. Rev. Lett. 110, 087208
(2013).

[9] F. Varret, C. Chong, A. Slimani, D. Garrot, Y. Garcia, and
D. Naik Anil, in Spin-Crossover Materials: Properties and
Applications, 1st ed., edited by Malcolm A. Halcrow (John
Wiley and Sons Ltd. Oxford, UK, 2013), Chap. 16.

024306-7

http://dx.doi.org/10.1016/0022-3697(90)90052-H
http://dx.doi.org/10.1016/0022-3697(90)90052-H
http://dx.doi.org/10.1016/0022-3697(90)90052-H
http://dx.doi.org/10.1016/0022-3697(90)90052-H
http://dx.doi.org/10.1016/0022-3697(92)90055-I
http://dx.doi.org/10.1016/0022-3697(92)90055-I
http://dx.doi.org/10.1016/0022-3697(92)90055-I
http://dx.doi.org/10.1016/0022-3697(92)90055-I
http://dx.doi.org/10.1063/1.1517164
http://dx.doi.org/10.1063/1.1517164
http://dx.doi.org/10.1063/1.1517164
http://dx.doi.org/10.1063/1.1517164
http://dx.doi.org/10.1039/c1nj20332k
http://dx.doi.org/10.1039/c1nj20332k
http://dx.doi.org/10.1039/c1nj20332k
http://dx.doi.org/10.1039/c1nj20332k
http://dx.doi.org/10.1103/PhysRevB.84.094442
http://dx.doi.org/10.1103/PhysRevB.84.094442
http://dx.doi.org/10.1103/PhysRevB.84.094442
http://dx.doi.org/10.1103/PhysRevB.84.094442
http://dx.doi.org/10.1016/j.cplett.2011.01.041
http://dx.doi.org/10.1016/j.cplett.2011.01.041
http://dx.doi.org/10.1016/j.cplett.2011.01.041
http://dx.doi.org/10.1016/j.cplett.2011.01.041
http://dx.doi.org/10.1103/PhysRevLett.110.087208
http://dx.doi.org/10.1103/PhysRevLett.110.087208
http://dx.doi.org/10.1103/PhysRevLett.110.087208
http://dx.doi.org/10.1103/PhysRevLett.110.087208


PAEZ-ESPEJO, SY, VARRET, AND BOUKHEDDADEN PHYSICAL REVIEW B 89, 024306 (2014)

[10] S. Bedoui, G. Molnár, S. Bonnet, C. Quintero, H. J. Shepherd,
W. Nicolazzi, L. Salmon, and A. Bousseksou, Chem. Phys. Lett.
499, 94 (2010).

[11] S. Bedoui, M. Lopes, W. Nicolazzi, S. Bonnet, S. Zheng,
G. Molnár, and A. Bousseksou, Phys. Rev. Lett. 109, 135702
(2012).

[12] S. Bonnet, G. Molnár, J. S. Costa, M. A. Siegler, A. L. Spek,
A. Bousseksou, W. Fu, P. Gamez, and J. Reedijk, Chem. Mater.
21, 1123 (2009).

[13] S. Ohnishi and S. Sugano, J. Phys. C 14, 39 (1981).
[14] H. Spiering, K. Boukheddaden, J. Linares, and F. Varret, Phys.

Rev. B 70, 184106 (2004).
[15] K. Boukheddaden, Phys. Rev. B 88, 134105 (2013).
[16] N. Willenbacher and H. Spiering, J. Phys. C 21, 1423 (1988).
[17] H. Spiering and N. Willenbacher, J. Phys.: Condens. Matter 1,

10089 (1989).
[18] T. Nakada, P. A. Rikvold, T. Mori, M. Nishino, and S. Miyashita,

Phys. Rev. B 84, 054433 (2011).
[19] M. Nishino, K. Boukheddaden, Y. Konishi, and S. Miyashita,

Phys. Rev. Lett. 98, 247203 (2007).
[20] M. Nishino, C. Enachescu, S. Miyashita, K. Boukheddaden, and

F. Varret, Phys. Rev. B 82, 020409(R) (2010).
[21] C. Enachescu, L. Stoleriu, A. Stancu, and A. Hauser, Phys. Rev.

Lett. 102, 257204 (2009).
[22] C. Enachescu, M. Nishino, S. Miyashita, L. Stoleriu, A. Stancu,

and A. Hauser, Europhys. Lett. 91, 27003 (2010).
[23] C. Enachescu, M. Nishino, S. Miyashita, L. Stoleriu, and

A. Stancu, Phys. Rev. B 86, 054114 (2012).
[24] M. Nishino, C. Enachescu, S. Miyashita, P. A. Rikvold,

K. Boukheddaden, and F. Varret, Sci. Rep. 1, 162 (2011).
[25] W. Nicolazzi, S. Pillet, and C. Lecomte, Phys. Rev. B 78, 174401

(2008).
[26] A. Slimani, K. Boukheddaden, F. Varret, H. Oubouchou,

M. Nishino, and S. Miyashita, Phys. Rev. B 87, 014111 (2013).
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