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Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3
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ZnSb and Zn4Sb3 are interesting as thermoelectric materials because of their low cost and low thermal
conductivity. We introduce a model of the lattice thermal conductivity which is independent of fitting parameters
and takes the full phonon dispersions into account. The model is found to give thermal conductivities with
the correct relative magnitudes and in reasonable quantitative agreement with experiment for a number of
semiconductor structures. The thermal conductivities of the zinc antimonides are reviewed and the relatively
large effect of nanostructuring on the zinc antimonides is rationalized in terms of the mean free paths of the heat
carrying phonons. The very low thermal conductivity of Zn4Sb3 is found to be intrinsic to the structure. However,
the low-lying optical modes are observed in both Zn-Sb structures and involve both Zn and Sb vibrations, thereby
strongly questioning dumbbell rattling. A mechanism for the very low thermal conductivity observed in Zn4Sb3

is identified. The large Grüneisen parameter of this compound is traced to the Sb atoms which coordinate only
Zn atoms.
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I. INTRODUCTION

Thermoelectric materials are capable of interconverting
heat and electricity. As for any heat engine, the conversion
efficiency is limited by the Carnot efficiency. Moreover, the
dimensionless figure of merit of a material is limiting,

zT = S2σ

κe + κl

T , (1)

where S is the Seebeck coefficient, σ is the electric conductiv-
ity, κe and κl are the electric and lattice thermal conductivities,
and T is the temperature. Generally, a zT above 1 is needed
for sufficient conversion efficiency.

Besides having a high zT , a good thermoelectric material
should be made from abundant and nontoxic components.
For this reason, Zn and Sb based compounds have attracted
interest. Zn4Sb3 first gained interest because of it having a
lattice thermal conductivity of just 0.6 W m−1 K−1 at room
temperature, whereby zT values above 1 were obtained [1].
Though progress has been made in increasing its stability
[2–4], the inherent instability of Zn4Sb3, which decomposes
into ZnSb, Sb, and ZnO upon cycling in air [2,5,6], has
increased the interest in ZnSb as a thermoelectric material
[7–16]. At room temperature, single crystalline ZnSb has been
found to have a thermal conductivity of 3–4 W m−1 K−1

[17], and for polycrystalline and doped samples, values below
2 W m−1 K−1 have been obtained [7,8,11,12,16]. A zT of 0.9
at 550 K has been reported [7,12].

Based on the observation of abundant Zn vacancies and
interstitials, the low thermal conductivity of Zn4Sb3 has been
attributed to the high crystalline disorder of Zn4Sb3 [18–20].
A different interpretation related the low thermal conductivity
to an observed low-lying optical phonon which was attributed
to Sb-Sb dumbbell rattling [21]. However, these mechanisms
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were both conjectures and only limited quantitative models
have been introduced for the thermal conductivity.

Probably, the simplest models with quantitatively predictive
power are based on Klemens-Callaway models of the Debye
solid. While such simple models cannot be expected to
reach the same precision as a solution of the full Boltzmann
transport equation [22,23], they have been found to give the
correct order of magnitude for the thermal conductivity over
a surprising large range of solids [24]. They are, hence, well
suited for quantifying a discussion of the structural origins of
a “low” thermal conductivity, as seen, e.g., in a discussion
of the influence of lone pairs on the thermal conductivity
[25]. Furthermore, their computational simplicity makes them
interesting in their own right in, e.g., a high-throughput
framework where they can provide a first estimate of thermal
conductivity. The aim of the present paper is thus twofold.
First of all, we take a step beyond earlier ab initio based
models, which take only the linear part of the acoustic bands
into account [26], by integrating over the full set of group
velocities, thereby taking the information available from ab

initio calculations better into account. We validate the model
by showing how it can reliably reproduce the ordering of the
measured thermal conductivities in a number of compounds,
including the structurally complex zinc antimonides.

In the second part, we investigate the origins of the
low thermal conductivity of ZnSb and Zn4Sb3. The thermal
conductivities of the zinc antimonides are reviewed and it is
shown that to explain the observed thermal conductivities,
grain boundary and impurity scattering must be introduced.
However, it is also found that the very low thermal conductivity
of Zn4Sb3 is inherent of the structure. The low-frequency
optical peaks in both Zn-Sb compounds can be attributed to
cooperative Zn and Sb motion, questioning dumbbell rattling.
On the contrary the low thermal conductivity is related to
an exceptionally large squared Grüneisen parameter and it is
shown how it originates from anharmonic vibration of the Sb
atoms which are not bonded in dumbbells.
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II. BACKGROUND

Within the relaxation-time approximation, the lattice ther-
mal conductivity is given as

κl(T ) = 1

3

∑
i

∫
dq
8π3

v2
iqτiqCiq, (2)

where the sum is over all phonon bands; the integral is over
all q points in the first Brillouin zone; viq is the group velocity
of a given phonon mode; τiq is the mode relaxation time; and
Ciq is the mode heat capacity depending only on the mode
frequency ωiq and the temperature.

Except for the relaxation time, the quantities in Eq. (2) can
be extracted directly from the phonon dispersion relation of
a material. The relaxation-time model used in this paper is
based on the model of three-phonon anharmonic scattering
developed by Slack and co-workers [24,27,28]. There are, at
least, two different models in the literature. One is based on
the empirical finding that a good expression for the relaxation
time around the Debye temperature θD is [27,28]

τ−1
M = pω2 T

θD

e−θD/3T . (3)

A somewhat different model was given by Slack [24] based on
work on noble gas crystals by Leibfried and Schlömann [29],
and Julian [30],

κSlack
l (θD) = 0.849 × 3 3

√
4

20π3(1 − 0.514γ −1 + 0.228γ −2)

×
(

kBθD

�

)2
kBMV 1/3

�γ 2
, (4)

where γ is the Grüneisen parameter, V is the unit cell volume
of and M is the average atomic mass.

The two models can be compared by considering a Debye
model where all three branches have the same sound speed s,
relaxation time, and Debye temperature, where Eq. (2) gives

κ
Debye
l (T ) = kB

2π2s

(
kBT

�

)3 ∫ θD/T

0
τ

x4exdx

(ex − 1)2
. (5)

By inserting Eq. (3) in Eq. (5) and evaluating the thermal
conductivity at the Debye temperature

κl(θD) = p−1 k2
BθD

3
√

e

2π2s�

∫ 1

0

x2exdx

(ex − 1)2
. (6)

If we equate Eqs. (6) and (4), we obtain

p = 1 − 0.514γ −1 + 0.228γ −2

0.0948

�
2γ 2

kBθDMV 1/3s
. (7)

Inserting a Debye temperature of

θD = 3

√
6π2

V

�s

kB

(8)

into Eq. (7), for ordinary γ values between 0.6 and 1.8, we get
the expression

p ≈ 2
�γ 2

Ms2
. (9)

This is double the value used elsewhere in the literature
[27,28]. The factor of 2 was discovered by Julian [30] as a
correction to Leibfried and Schlömann’s expression [29].

The idea behind the present model is to take the full ab

initio calculated phonon dispersion into consideration when
evaluating Eq. (2), but to replace τiq by an ω and T dependent
model τ , given by Eqs. (3) and (7). Based on the discussion by
Slack we use different definitions of the Debye temperature and
Grüneisen parameters [24]. The Debye temperature is obtained
from the second moment of the whole phonon spectrum

θ̃D = n−1/3

√
5�2

3k2
B

∫ ∞
0 ω2g(ω)dω∫ ∞

0 g(ω)dω
, (10)

where n is atoms per unit cell. The overall Grüneisen parameter
is defined as

γ =
∑

i

∫
dq
8π3 γiqCiq∑

i

∫
dq
8π3 Ciq

, γiq = − V

ωiq

∂ωiq

∂V
, (11)

and is directly related to the observable thermal expansion
coefficient. In Slack’s model, the sum over the squared
Grüneisen parameter is used, thereby avoiding a cancellation
between the acoustic modes, which can have a negative
Grüneisen parameter, and the optical modes

γ̃ 2 =
∑

i

∫
dq
8π3 γ

2
iqCiq∑

i

∫
dq
8π3 Ciq

. (12)

Furthermore, since mainly the acoustic bands contribute to the
thermal conductivity, the sum is be performed only over modes
having an energy less than kBθ̃D .

The model gives a fitting-parameter-free expression for
calculating the thermal conductivity of a material. It has the
advantage that it takes the full phonon band structure into
account when evaluating the mean velocities. Furthermore,
γ̃ 2, s, and θ̃D can be evaluated quite straightforwardly from the
phonon band structure, thereby avoiding a certain arbitrariness
in making a Debye model for a given solid.

Using this model, and the computational methods described
in the next section, we have calculated the lattice thermal
conductivity κM

l of four reference compounds Si, Mg2Si, ZnTe,
and CdTe and the zinc antimonides ZnSb and Zn6Sb5 at 300 K
(Table I). We compare the values obtained using our model to
those of a simpler model given by Slack

κSlack
l (T ) = κSlack

l (θD)
θD

T
. (13)

The factor θD/T is introduced to comply with the observed
T −1 behavior of the thermal conductivity at temperatures
above the Debye temperature [24]. Both models are found
to predict the right order of magnitude of the thermal
conductivities (Table I). For all compounds, the Slack model
predicted the highest κ values and the present model is found
to give results in better agreement with experiment. Shown in
Fig. 1 is the relative thermal conductivity with respect to mean
free path for Si and Mg2Si compared to literature data obtained
using the full Boltzmann transport equation [31,32]. It is seen
that good agreement is obtained, further lending credibility to
the model.
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TABLE I. Calculated average sound velocity, Eq. (19); Grüneisen parameter, Eq. (12); reduced Debye temperature, Eq. (10); ω2τM; and
(v/ω)2. The thermal conductivity calculated using Eqs. (2), (3), and (7), κM

l , Eq. (13), κSlack
l , and experiment, κ

Expt.
l , at 300 K are also reported.

s θ̃D (ω2τM) (v/ω)2 κM
l κSlack

l κ
Exp
l

Compound (m/s) γ̃ 2 (K) 1015 s−1 10−15J m−1 K−1 (W m−1 K−1) (W m−1 K−1) (W m−1 K−1)

Si 5260 0.66 521 33.8 5.9 200 234 157 [33]
Mg2Si 5318 1.39 296 3.5 4.2 15 17 11 [20]
ZnTe 2413 0.62 194 6.1 4.0 25 49 18 [34]
CdTe 1952 1.00 155 2.5 3.6 9 21 8 [34]
ZnSb 2241 0.58 92 2.3 2.9 6.6 10.6 3.5 [8]
Zn6Sb5 1805 2.59 77 0.3 2.3 0.7 1.4 0.5-1.4 [35,36]

To understand the different results obtained using our
method and Slack’s method, we can take ω2τM out of the
integral in Eq. (2), and change the integral to a frequency
integral over a velocity density of states, gv2 ,

κM
l (T ) = (ω2τM)(v/ω)2 (14)

with

(v/ω)2 =
∫ ∞

0
gv2 (ω)

C(ω)

ω2
dω, (15)

gv2 (ω) = 1

3

∑
i

∫
dq
8π3

v2
iqδ(ω − ωiq), (16)

where δ is the Dirac delta function. In Fig. 2, the density of
states g is shown together with gv2 and gv2C/ω2 for ZnTe and
ZnSb. Clearly, the acoustic modes give the largest contribution
to κM

l , but the lowest optic branches cannot be neglected. The
Debye model is depicted by the dashed line in Fig. 2. For a
Debye solid, gv2C/ω2 = C/(2π2s) up to an energy of kBθ̃D .
As C is almost ω independent at T = 300 K, this corresponds
to an almost square area. κSlack

l corresponds to taking the
integral under the dashed curve, and we found that the simpler
method in all cases gave a too big integral. Furthermore, both
(ω2τM) and (v/ω)2 are only weakly temperature dependent
above the Debye temperature and can thus be viewed as
materials dependent constants. They are listed in Table I
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FIG. 1. (Color online) Calculated cumulative thermal conductiv-
ity as a function of mode mean free path for Si and Mg2Si at
300 K compared to literature data calculated using the full Boltzmann
equation [31,32].

and will be used to quantify the discussion of the thermal
conductivity in the following.

III. COMPUTATIONAL METHODS

Since Zn4Sb3 is highly disordered, a somewhat represen-
tative unit cell is very large. Therefore, we performed calcu-
lations on the ordered, interstitial-free Zn6Sb5 unit cell. The
difference between the structures is given in Table II. A force-
constant matrix was obtained with the finite-displacements
method in 2 × 2 × 2 supercells. The forces were calculated us-
ing density functional theory as implemented in VASP [37,38].
From this, the dynamical matrix can be found and diagonalized
to obtain the phonon mode eigenvectors and eigenfrequencies.
We used the Perdew-Burke-Ernzerhof (PBE) functional [39]
with projector augmented wave basis sets [40,41] and a cut-off
energy of 360 eV. For ZnSb, we used a 6 × 5 × 5 k grid,
whereas a 4 × 4 × 4 k grid was used for Zn6Sb5.

We calculated the phonon dispersion relation using
PHONOPY [42]. The phonon modes were calculated on a
32 × 26 × 24 q grid for ZnSb and a 32 × 32 × 32 q grid for
Zn6Sb5. The integrals, Eqs. (2), (10), and (12), were calculated
using a histogram method and are converged at the given grids.
We repeated this procedure for unit cell volumes which were
±3% of the relaxed volume. For the changed volumes, the
atomic positions were relaxed, and the lattice constants were
allowed to change while keeping the unit-cell volume constant.

FIG. 2. (Color online) g, gv2 , and gv2C/ω2 for (a) ZnTe and (b)
ZnSb. Also shown with a dashed line is gv2C/ω2 for a Debye model.
C is evaluated at T = 300 K and is almost ω independent.
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TABLE II. Comparison of the experimental structure Zn4Sb3

[18], and the theoretical structure Zn6Sb5. Zn4Sb3, furthermore,
contains three interstitial sites with 5%–6% occupancy.

Atom Parameter Zn4Sb3 Zn6Sb5

Space group R3c R3c

a 12.2282 12.3310
c 12.4067 12.3011

Zn1 x 0.0792 0.0813
y 0.2439 0.2432
z 0.4033 0.4023

Occupancy 0.8999 1
Sb1 x 0.3555 0.3564

y 0 0
z 0.25 0.25

Occupancy 1 1
Sb2 x 0 0

y 0 0
z 0.1364 0.1347

Occupancy 1 1

The velocities and Grüneisen parameters are calculated using
the phonon eigenvectors eiq:

viq = 1

2ωiq
〈eiq|∂D

∂q
|eiq〉, (17)

γiq = − V

2ω2
iq

〈eiq|∂D

∂V
|eiq〉. (18)

Volume changes of ±1% were also tested and the results
changed only little. To determine s, a spatial average of v

close to the � point was taken for each acoustic branch. Then,
an average was taken over the three acoustic bands

s =
(

1

3

3∑
i=1

1

s3
i

)−1/3

. (19)

IV. RESULTS AND DISCUSSION

Experimentally measured thermal conductivities can be
strongly sample dependent, and it can be necessary to consider
the contributions of grain boundaries and defects to the
scattering of the heat carrying phonons in order to understand
the low thermal conductivity. At the same time Table I shows
good overall agreement between the model and experiment
without including such effects. This is even the case for the
ordered 6:5 model of the Zn4Sb3 structure, which would
indicate that the low thermal conductivity is inherent of the
structure. The discussion is thus split into a quantitative
comparison with experiment and a more qualitative discussion
of the origin of the low thermal conductivity in Zn4Sb3.

A. Thermal conductivity of the zinc antimonides

For the present comparison we write the resistive relaxation
time as

τ−1 = τ−1
M + τ−1

B + τ−1
V . (20)
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FIG. 3. (Color online) Calculated and experimental [8,11,16]
thermal conductivity of ZnSb. The first sample was unprocessed,
whereas the latter two were ball milled and ground, respectively.
Little anisotropy was found in the calculated values, which are shown
as averages over the x, y, and z directions.

Here, we have taken boundary (B) and vacancy (V) scattering
into account. For a crystallite with shortest dimension L, it is
normally assumed that the boundary scattering relaxation time
is [43]

τ−1
B = v/L. (21)

A vacancy (V) will give rise to a mass difference equal to
the mass of the missing atom, MV . Furthermore, the breaking
of bonds will contribute in a way corresponding to a mass
difference of 2M . This will cause a relaxation time from
vacancies of [44]

τ−1
V = c

(
MV

M
+ 2

)2
V ω4

4πns3
, (22)

where c is the vacancy concentration.
Figure 3 shows the calculated thermal conductivity as

a function of the temperature for ZnSb compared to ex-
perimental measurements. Few reports have been made on
measurements of the thermal conductivity of ZnSb single
crystals. In 1966 Shaver and Blair reported a value of
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FIG. 4. (Color online) Calculated and experimental [1,35,36,46–
48] thermal conductivity of Zn6Sb5.
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FIG. 5. (Color online) Cumulative thermal conductivity as a
function of mode mean free path for ZnSb and Zn6Sb5 at 300 K.

3.5 W m−1 K−1 at room temperature [17]. This value was
also found by Böttger et al. in 2010 on a polycrystalline
sample [8]. Other experiments show a considerably lower
thermal conductivity. Böttger et al. reported on ball-milled
samples in 2011 [11], and Eklöf et al. on ground samples in
2013 [16]. Both groups reported values below 2 W m−1 K−1.
All reported thermal conductivities are the right order of
magnitude, but lower than our calculated values. The lower
thermal conductivities might arise from smaller grain sizes
and less dense samples, and Fig. 3 illustrates how including a
boundary scattering based on L = 100 nm, Eq. (21), leads to
a thermal conductivity in good agreement with experiment.

In Fig. 4, a review of the measured thermal conductivities
for Zn4Sb3 is shown. Battacharya et al. [36] did not observe
a drop in the thermal conductivity at 250 K, where an order-
disorder phase transition of the Zn sublattice in Zn4Sb3 occurs
[45]. Schweika et al. used the absence of this drop to rule out
a dominant role from Zn disorder on the thermal conductivity
[21]. However, this argument overlooked the measurements by
Pedersen et al. [35], which were also available at the time, and
show a drop in the thermal conductivity at 250 K. This drop
was later confirmed by measurements by Wu et al. [46]. It is

also clear that the samples not exhibiting a drop at 250 K
have a higher thermal conductivity than the ones that do.
The discrepancy between these results agrees well with the
study by Dasgupta et al. [47] who performed a systematic
study of synthesis conditions and their effect on the transport
properties [47]. It was found that Zn-depleted Zn4Sb3 has a
thermal conductivity more than double that of more Zn-rich
samples. The measurements were only performed above room
temperature, but it is seen (Fig. 4), that the thermal conductivity
of the Zn-depleted phases agree well with the results where
no drop at 250 K is observed, whereas Zn-rich samples agree
with the low thermal conductivity observed for samples which
have a drop at 250 K.

Figure 4 shows that the calculated thermal conductivity is in
good agreement with experiment. Considering the simplicity
of the model and the complexity of the real Zn4Sb3 structure,
the agreement is probably somewhat fortuitous. However, the
general ability of the model to predict the relative magnitudes
of the thermal conductivities is again validated. It would thus
appear that the low thermal conductivity of Zn4Sb3 is indeed
related to the structure itself. To get an estimate of the role
of defects in lowering the thermal conductivity of Zn4Sb3, we
included scattering from the experimentally observed 10% Zn
vacancies [18] through Eq. (22). At 300 K this resulted in a
47% reduction of κ .

In order to predict the effect of microstructuring on the ther-
mal conductivity, we calculated the cumulative contributions
to κ as a function of phonon mean free path (MFP)

� = τv. (23)

The results are shown in Fig. 5. It is seen that the main
heat carrying phonons have MFPs between 10 and 1000 nm.
This disagrees with the model of Schweika et al. [21] which
estimated an extremely low MFP of the heat carrying phonons
of 0.96 nm. The difference in MFP has important implications
for the effect of nanostructuring. At 300 K, 64% of the heat in
ZnSb is carried by phonons with a mean free path longer than
100 nm, whereas the same is true for 42% of the heat at 800 K,
which explains the large effect of nanostructuring (Fig. 3).
Figure 5 also shows the MFP of Zn6Sb5. It is interesting
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FIG. 6. (Color online) Phonon dispersion relations, and pure and weighted DOS for (a) ZnSb and (b) Zn6Sb5.
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to note how the heat carrying phonons have a shorter MFP
than in ZnSb, which would make the effect of nanostructuring
smaller. It is also seen how the vacancies lower the contribution
from the short MFP phonons, whereby the relative influence
of nanostructuring is increased.

B. Origin of the low thermal conductivity

The calculated phonon dispersion relations and projected
density of states (DOS) for ZnSb and Zn6Sb5 are shown
in Fig. 6. Both structures have low-lying optical branches
between 4 and 8 meV. In Table III the frequencies of
the Raman-active modes are listed and compared to the
experimentally observed peak energies [49]. The general
agreement is similar to what is found for the ZnSb structure
[14] and reasonable when taking into account the overesti-
mated unit-cell volume, and resulting underestimated peak
energies, obtained when using the PBE functional. This is
also seen in the average speed of sound for Zn6Sb5, which is
underestimated (Table I), compared to the experimental value
of 2310 m/s [1]. Significant Zn-vibrational contributions are
found for the low energy modes, and we found the Sb1 atoms
to have a larger contribution than the Sb2 atoms. We also
investigated the relative contributions of Zn and Sb vibrations
to the individual eigenstates in the Brillouin zone, and in
all cases found Zn contributions above 40%. This would
disagree with the analysis by Schweika et al., who estimated
that in Zn4Sb3, these optical branches originated from Sb-Sb
dumbbell rattling [21], but it aligns well with the conclusions
drawn by Jund et al. [14]. Because of the high mobility of Zn
in Zn4Sb3 [50], we would expect the Zn atoms to be loosely
bound in this compound. The same is, apparently, true in ZnSb,
since we also found soft Zn modes in ZnSb, which agrees well
with our earlier observation of a low formation energy of Zn
vacancies [15]. We would argue that the loose binding of the
Zn atoms makes it impossible for the antimony dumbbells to
rattle independently.

The low thermal conductivity of the Zn-Sb compounds
is quantified by (ω2τM) and (v/ω)2 [Eq. (14)] in Table
I. Comparing the two compounds ZnTe and ZnSb, the
thermal conductivity of ZnTe is about four times larger both

TABLE III. Energies of the Raman-active modes in meV. The
experimental values are taken from Ref. [49].

PBE

A1g Eg Expt.

4.76
6.46

7.10 8.03
10.29 11.54

12.14 12.13 13.52
13.19 15.38
14.19

16.79 17.66 18.98
18.45 19.16 21.22
20.44 21.55 22.49

22.17
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FIG. 7. (Color online) Root mean square of the mode Grüneisen
parameters for ZnSb and Zn6Sb5.

experimentally and in the model. This is mainly due to a shorter
relaxation time in ZnSb, whereas the velocity term (v/ω)2

accounts for about one-third of the reduction. Comparing the
6:5 zinc antimonide to the 1:1, there is a drop of thermal
conductivity by almost a factor 8, again in good agreement
with experiment. It is seen that this is mainly due to a large
decrease in (ω2τM). Table I shows that this decrease can almost
entirely be attributed to the increase in the squared Grüneisen
parameter of the acoustic bands γ̃ 2 [Eq. (12)]. The very low
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FIG. 8. (Color online) (a) Structure of the Zn6Sb5 structure used
to model the 4:3 phase. (b) and (c) show the coordination of the Sb1
and Sb2 atoms, respectively.
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thermal thermal conductivity in the 6:5 or 4:3 phase is thus
due to a strong increase in the anharmonicity.

In Fig. 7, we introduce an atom projected contributions
Grüneisen DOS

γ 2
μ(ω) =

(
V

2ω2

)2 ∑
i

∫ ∣∣∣∣〈φμiq|∂D

∂V
|eiq〉

∣∣∣∣
2

δ(ω − ωiq)
dq
8π3

,

(24)

where φμiq is a version of the eigenvector containing only
nonzero elements on those entries which are related to the
investigated atom μ. It is seen that the Zn and Sb2 atoms
in Zn6Sb5 contribute to the Grüneisen parameter in a very
similar way as those in the ZnSb, which is understandable
by comparing the 6:5 structure (Fig. 8) to that of ZnSb (see
Fig. 2 in Ref. [9]). The coordinations of atoms Zn and Sb2
are very similar to those in ZnSb. Both structures have Sb-Sb
dumbbells with interatomic distances around 2.8 Å, where the
Sb2 atoms furthermore coordinate to three Zn atoms. The Sb1
atoms coordinate a prism of six Zn nearest neighbors and are
not involved in a Sb-Sb dumbbell. It is interesting to note
how the large γ̃ 2 is directly related to the Sb1 atoms (Fig. 7),
which have no equivalent in the 1:1 structure. This provides a
clear indication that the very low thermal conductivity of the
Zn4Sb3 and its model 6:5 phase is directly related to a strongly
anharmonic potential and local environment of the Sb1 atoms
[Fig. 8(b)].

V. CONCLUSION

We have introduced a model to calculate the lattice thermal
conductivity based on ab initio calculated phonon dispersions.
The model has been found to give results in reasonable
quantitative agreement with experiment and correctly predict

the relative magnitudes of thermal conductivities in a number
of semiconductor structures. The model is used to rationalize
the relatively large effect of nanostructuring on the thermal
conductivity of the zinc antimonides in terms of the mean free
paths of the heat carrying phonons.

Low-lying optical modes involving both Zn and Sb
vibrations are found in both ZnSb and Zn6Sb5, strongly
questioning dumbbell rattling. Furthermore, in agreement with
experiment, we found the thermal conductivity of Zn6Sb5 to be
approximately eight times lower than in ZnSb. A mechanism
for the very low thermal conductivity observed in Zn4Sb3 has
been identified and traced to the anharmonic motion of the Sb1
atoms which coordinate only Zn atoms.

Since the 6:5 structure is an ordered model of the disordered
4:3 phase, disorder is not necessary to explain the low
thermal conductivity of the disordered phase. The low thermal
conductivity thus seems to be an inherent feature of these
structures. However, it is also clear that disorder on the
zinc lattice further lowers the thermal conductivity in the
experimental phases.
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