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Nonequilibrium dynamics of a noisy quantum Ising chain: Statistics of work and prethermalization
after a sudden quench of the transverse field
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We discuss the nonequilibrium dynamics of a quantum Ising chain following a quantum quench of the transverse
field and in the presence of a Gaussian time-dependent noise. We discuss the probability distribution of the work
done on the system both for static and dynamic noise. While the effect of static noise is to smooth the low
energy threshold of the statistic of the work, appearing for sudden quenches, a dynamical noise protocol affects
also the spectral weight of such features. We also provide a detailed derivation of the kinetic equation for the
Green’s functions on the Keldysh contour and the time evolution of observables of physical interest, extending
previously reported results [Marino and Silva, Phys. Rev. B 86, 060408 (2012)], and discussing the extension of
the concept of prethermalization which can be used to study noisy quantum many-body Hamiltonians driven out
of equilibrium.

DOI: 10.1103/PhysRevB.89.024303 PACS number(s): 05.70.Ln, 75.10.Jm, 05.30.Jp, 71.10.Fd

I. INTRODUCTION

In the past decade a series of groundbreaking experiments
on the dynamics of cold atoms [1] has generated new interest in
the thermalization dynamics of quantum many-body systems.
If a quantum many-body system is prepared in the ground state
of a given Hamiltonian Hi and evolved according to a new
Hamiltonian Hf , it is natural to ask whether the excess energy
will redistribute among the elementary degrees of freedom and
whether the system will eventually reach the thermal state at
later times (in the thermodynamic limit). This expectation has
been tested theoretically in pioneering works on this subject
[2], partially confirming the idea that nonintegrable quantum
many-body systems thermalize, in the sense that observables
of physical interest appear to reach asymptotically the value
predicted by the Gibbs ensemble with a temperature set by
the energy injected in the system. A noticeable exception are
integrable quantum many-body systems, which relax towards
a generalized Gibbs ensemble (GGE), i.e., a grand canonical
ensemble which takes into account all the conserved quantities
of the system [3].

The simplest protocol to study nonequilibrium dynamics is
the so-called quantum quench, which consists of preparing the
system in the ground state of a quantum many-body Hamilto-
nian H (g0), and letting them evolve according to a different
Hamiltonian H (g), the control parameter g0 being suddenly
switched to g. Though the most recent developments in
out-of-equilibrium dynamics of quantum many-body systems
have been mainly concerned in understanding which is the
asymptotic steady state attained after a quantum quench (for a
complete review on this subject, see for instance [4]), it is still
not clear what are the time scales of thermalization, whether
the process of thermalization is sudden or composed by many
stages, and which are the mechanisms behind thermalization
in quantum many-body systems.

Recent theoretical studies of quantum many-body systems
weakly perturbed away from integrability suggests that first the
system relaxes towards a prethermal state, where the expec-
tation values of observables are predicted by a modified GGE

(strongly influenced by the close integrable point [5]) and only
later when inelastic scattering becomes relevant the system
departs from the prethermal state approaching the asymptotic
thermal state. This phenomenon known as prethermalization
has been studied in many systems of physical interest, ranging
from quantum field theories [6], to the Hubbard model [7],
Luttinger liquids [8], spinor condensates [9], and nonintegrable
versions of the quantum Ising chain [10]. Signatures of
this crossover have been observed experimentally in split
one-dimensional condensates [11]. While it is evident that
the dynamics of thermalization will in general display various
crossovers, it is not clear whether this is a general phenomenon,
what are the conditions for its observability, and what are going
to be its signatures in observables of physical interest.

In this work we consider a quantum Ising chain (QIC)
perturbed by a time-dependent δ correlated noise in the
transverse field direction, and driven out of equilibrium by
a quench of the static component of the transverse field. Even
though in the past years the nonequilibrium dynamics of a QIC
has been studied in great detail theoretically [12–14], recently
the quench dynamics of a model in the Ising universality
class has been realized experimentally in an ensemble of
tilted one-dimensional atomic Bose-Hubbard chains [15],
making this problem of potential interest also for experimental
studies. Moreover, recently, the out-of-equilibrium dynamics
of noisy Hamiltonians has been studied for trapped bosons and
Luttinger liquids [16] and previously, in the framework of open
quantum systems, the interplay of many-body interactions,
dephasing, and dissipation has been studied for spin chains
coupled to classical and quantum uniform noise [17] or to
a bosonic bath [18]. As shown by us in a previous work
[19], the noisy QIC displays prethermalization in the time
evolution of observables of physical interest (e.g., the trans-
verse magnetization). More specifically, the dynamics in this
model has two stages [19]: first the system relaxes towards the
GGE of the unperturbed Ising chain through inhomogeneous
dephasing (analogue to dephasing occurring in a Ising chain
after the sudden quench of the transverse field); only later
noise-induced effects occur, suppressing exponentially fast
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in time the coherences and subsequently heating the system
towards the asymptotic thermal state. The purpose of this paper
is to study the system from a complementary point of view,
i.e., looking at the statistics of the work done while performing
the out-of-equilibrium protocol discussed above. We consider
the probability distribution function of the work done on the
system, P (w) (which received an increasing interest in the past
few years in the domain of quantum quenches [20–26]), for
static and time-dependent noisy out-of-equilibrium protocols.
We show that in contrast to the noiseless case where a low
energy threshold appears with a characteristic edge singularity
[21], a sudden quench of the QIC with a static random
transverse field drawn from a Gaussian distribution function
smooths out all nonanalyticities in the disorder averaged P (w)
(though a definite singularity remains in every realization). On
the other hand, the statistics of the work done on an Ising
chain with a time-dependent noisy magnetic field affects in a
time-dependent fashion the spectral weight associated to the
edge singularity, in a way analogous to what happens in the
dynamics of the energy absorbed by the system, presented in
Ref. [19] and widely discussed in this work. This paper is
organized as follows. In Sec. II we introduce the model and
the out-of-equlibrium protocol; in Sec. III we start the study of
the system, looking at the effect of static and dynamical noise
in the work done on a QIC by a noisy protocol. Section IV is
devoted to the derivation and the solution of a kinetic equation,
using the Keldysh formalism, and Sec. V employs these results
to study the nonequilibrium dynamics of physical observables
in order to understand which are the processes and the time
scales involved in thermalization dynamics. Finally, in Sec. VI
we summarize our conclusions. The Appendix is devoted to
a generalization of Bogolyubov transformations useful for the
computation of P (w), when a generic time-dependent protocol
is performed on the QIC [22].

II. MODEL, THE OUT-OF-EQUILIBRIUM PROTOCOL,
AND THE INITIAL STATE

The focus of this paper is on the out-of-equilibrium
dynamics of a QIC, described by the Hamiltonian

H = H0 + V (t),

H0 = −J
∑

i

σ x
i σ x

i+1 + gσ z
i , (1)

V =
∑

i

δg(t)σ z
i ,

where H0 describes the integrable quantum Ising chain and
V (t) is a time-dependent Gaussian white noise, with zero
average and amplitude �,

〈δg(t)〉 = 0,

〈δg(t)δg(t ′)〉 = �

2
δ(t − t ′).

(2)

Here σ̂
x,z
i are the longitudinal and transverse spin operators

at site i and g is the strength of the transverse field. The QIC
is among the simplest, yet nontrivial integrable many-body
systems, whose static properties [23] and quench dynamics
[12–14] are to a great extent known. It is characterized by

two dual gapped phases, a quantum paramagnetic (g > 1) and
ferromagnetic one (g < 1), separated by a quantum critical
point located at g = 1. In the following we assume J = 1 and
we restore it in the computations only when it is necessary.

The spin Hamiltonian is unitarily equivalent to spinless
fermions, ci , as can be shown by performing a Jordan-Wigner
transformation [23], i.e., defining σ̂ z

i = 1 − 2c
†
i ci and σ̂+

i =∏
j<i(1 − 2c

†
j cj )c†i . The Hamiltonian takes in Fourier space,

ck = 1√
L

∑
j cj e

ikj , the simple form

H = 2
∑
k>0

ψ̂
†
k Ĥkψ̂k, (3)

where

Ĥk = (g − cos k)σz − (sin k)σy + δg(t)σz (4)

and ψ̂k is the Nambu spinor (
ck

c
†
−k

) and σy , σz are the

Pauli matrices in the 2 × 2 Nambu space. The diagonal
form H =∑k>0 Ek(γ †

k γk − γ−kγ
†
−k), with energies Ek =√

(g − cos k)2 + sin2 k, is achieved after a Bogolyubov
rotation ck = uk(g)γk − ivk(g)γ †

−k and c
†
−k = uk(g)γ †

−k −
ivk(g)γk; the coefficients are given by

uk(g) = cos[θk(g)], vk(g) = sin[θk(g)], (5)

where tan[2θk(g)] = sin(k)/[g − cos(k)]. Therefore, the QIC
can be diagonalized in terms of free fermions, whose mass is
the gap of the theory � = |g − 1| [23].

We will consider the dynamics for the following out-of-
equilibrium protocol: at time t < 0 the system is prepared in
the ground state of H0 with a certain value of the transverse
field g0, |ψ0〉 = |ψ(g0)〉GS , and δg(t) = 0. At later time, t > 0
the system is evolved according to the full Hamiltonian H [see
(1)] with a different value of the transverse field g, as portrayed
in Fig. 1.

A sudden quench of the transverse field populates all excited
states of the system, injecting an extensive ammount of energy;
this is easy to understand by looking at the populations and
the coherences immediately after the quench. In the basis of

FIG. 1. (Color online) Out-of-equilibirum protocol studied in
this paper for the QIC: the system is prepared in the ground state
of the Ising chain with g0 > 1 and is evolved according to the Ising
Hamiltonian with a different value of the transverse field g > 1, plus
a Gaussian δ-correlated noise on top of it. For simplicity, both g0 and
g are chosen within the paramagnetic phase.
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the Bogolyubov fermions diagonalizing H (g):

〈ψ0|γ †
k (g)γk(g)|ψ0〉 = sin2

(
θk − θ0

k

)
,

〈ψ0|γ †
k (g)γ †

−k(g)|ψ0〉 = −i
sin 2

(
θk − θ0

k

)
2

,

〈ψ0|γ−k(g)γk(g)|ψ0〉 = i
sin 2

(
θk − θ0

k

)
2

,

〈ψ0|γ−k(g)γ †
−k(g)|ψ0〉 = cos2

(
θk − θ0

k

)
,

(6)

where θk ≡ θk(g) and θ0
k ≡ θk(g0). Moreover, the initial state

can be written as a coherent superposition of pairs of
quasiparticles created on the vacuum of the theory after the
quench [12,13] [H (g)]:

|ψ(g0)〉GS = N
∏
k>0

(1 + i tan(�θk)γ †
k (g)γ †

−k(g))|ψ(g)〉GS,

(7)

where

�θk = θk − θ0
k ,

(8)

N = exp

[
−1

2

∑
k>0

log(1 + tan2 �θk)

]
.

Below we will focus on the interplay between the effect of
a sudden quench of g and the time-dependent noise driving
the dynamics of the system.

III. STATISTICS OF THE WORK P(w)

The effect of a quantum quench and, generally speaking,
of an out-of-equilibrium protocol on a quantum many-body
system is usually highlighted studying the time dependence
of correlation functions of local operators, as we are going
to discuss extensively starting from Sec. IV. However, since
a generic nonequilibrium protocol, as a time-dependent mag-
netic field g(t) in a quantum spin chain, can be seen as the
quantum generalization of a thermodynamic transformation,
it could be useful to characterize it studying the work
W done on our system upon performing the quench with
the noise on the top of it. In a quantum nonequilibrium
process W fluctuates among different realizations of the same
protocol [24] and its description requires the introduction
of a probability distribution P (W ). On the other hand,
work is a fundamental observable in classical and quantum
thermodynamics and should be experimentally accessible by
spectroscopic methods, as it has been recently pointed out [25].

Let us start our analysis by considering the statistics of the
work done on a quantum many-body system after a quantum
quench, P (w), characterized by a generic nonequilibrium pro-
tocol g(t). This quantity requires two energy measurements:
one at the initial time, t = τ0, and one at the final time,
t = τ (for a comprehensive review on the subject, see [24]).
We assume that the final energy is measured with respect to
the final Hamiltonian, Hτ , and that for each realization of the
out-of-equilibrium protocol the work w is given as a difference
of the outcomes of the two measures of the energy at initial

and final time. The statistics of the work is then defined as

P (w) =
∑
n,m

δ{w − [En(τ ) − Em(τ0)]}p(n|m,τ )pm, (9)

with p(n|m,τ ) ≡ |〈ψn(τ )|U (τ,τ0)|ψm(τ0)〉|2, and pm ≡
|〈ψm(τ0)|φ(τ0)〉|, where |φ(τ0)〉 is the initial state of the system,
U (τ,τ0) is the evolution operator from τ0 to τ , and |ψi(τ )〉 are
the instantaneous wave functions, computed from the equation
Ht |ψi(t)〉 = Ei(t)|ψi(t)〉. In Ref. [24], it has been shown that
the characteristic function G(u) = ∫ dw eiuwP (w) contains
full information about the statistics of the work w and can be
written as a two time correlation function,

G(u) = 〈eiuHH
τ,τ0 e−iuHτ0

〉
, (10)

where HH
τ,τ0

= U †(τ,τ0)Hτ,τ0U (τ,τ0) is the final Hamiltonian
used in the final measurement in the Heisenberg picture. For a
sudden quench it follows immediately that

G(u) = 〈eiH (g1)ue−iH (g0)u〉, (11)

where H (g0) and H (g1) are the initial and final Hamiltonian,
respectively.

One may compute exactly the statistics of the work for a
generic time variation of the transverse field in the QIC (see
the Appendix and Ref. [22]). For a sudden quench of the
transverse field in the QIC, one obtains for P (w), at low w,
a peak located at �E0, i.e., the difference in the ground state
energies before and after the quench, plus a continuum starting
above 2�, describing pairs of quasiparticles. This continuum
displays an edge singularity with universal features [21,22].
For sudden quenches within the paramagnetic phase, one may
obtain

P (ω) ∝ δ(ω) +
√

π

4

(ω − 2�)

δ
ρ2

−

√
ω − 2�

�
, (12)

where δ = 4π/L is the two-particle level spacing, ω = w −
�E0, ρ− = �0−�1

�0
, and  is the Heaviside step function [21].

Since the exponents of these singularities are expected to
be universal [21] it is natural to start our study of the effect
of the noise by clarifying its role on the universal low-energy
behavior of the statistics of the work. We separate two effects:
first we consider a quench with a final random value of the
transverse field drawn from a Gaussian distribution function
and then a Gaussian time-dependent δ correlated noise acting
on the system during its time evolution till the measurement
time t = τ .

As a warm-up, let us start with the first case, a quench of
the QIC with a final value of the transverse field drawn from
a Gaussian distribution function, corresponding to a value of
the final mass, centered in � and with variance γ :

p(�) = 1

γ
√

2π
e
− (�−�)2

2γ 2 . (13)

We now want to compute P (ω) averaged over this probability
distribution. The average energy injected into the system
through this quench is equal to the energy injected in a sudden
protocol,

�Einjected ≡ 〈ψ(g0)|[H (g + η) − H (g0)]|ψ(g0)

= �Equench ≡ 〈ψ(g0)|[H (g) − H (g0)]|ψ(g0)〉,
(14)
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meaning that the noise affects the statistics of the work, P (ω),
starting from the second and higher order moments. Never-
theless, as shown below, the probability distribution (averaged
over disorder) is reshaped in the energy window of interest.
We can study the statistics of the work by taking the average
of (12) over the Gaussian distribution (13) and assuming
γ

�
� 1, γ

|�−�0| � 1, i.e., the fluctuations of the noise are small
compared to the final gap and the amplitude of the quench.

First of all, it is important to notice that the energy
difference of the ground states �Enoise

0 can be expressed as the
difference in the ground states one would have without
noise �E0, plus an extensive correction proportional to the

fluctuations η = � − �:

�Enoise
0 = EGS(g + η) − EGS(g0) � �E0 − f (g)η,

�E0 = −
[
g + 1

π
E

(
4g

(1 + g)2

)
−g0 + 1

π
E

(
4g0

(1+g0)2

)]
,

(15)

where we retained only the first order term of the expansion
[27] and E is a complete elliptic function. The function f (g)
[28] can be expressed as a combination in the following way:

f (g) = L

π

[
1

π
E

(
4g

(1 + g)2

)
+ g − 1

2(g + 1)2 2F1

(
1

2
,
3

2
,2,

4g

(g + 1)2

)]
≡ L�(g), (16)

where 2F1 is a hypergeometric function.
Below we focus on the average statistics of the work,

P (ω) ∝
∫ ∞

−∞
dη

e
− η2

2γ 2

√
2πγ

[
δ[ω + f (g)η] +

√
π

4

[ω + f (g)η − 2� − 2η]

δ

(
�0 − � − η

�0

)2
√

ω + f (g)η − 2� − 2η

� + η

]


 e
− ω2

2[γf (g)]2

√
2πγf (g)

+
∫ ∞

−∞
dη

e
− η2

2γ 2

√
2πγ

√
π

4

[ω + f (g)η − 2� − 2η]

δ
ρ2

−

√
ω + f (g)η − 2� − 2η

�
, (17)

where in the second line we assumed γ

�
� 1 and γ

|�−�0| � 1.
This formula contains two physical effects; the first one is a
global fluctuation involving the shift of the ground state energy
[see Eq. (15)]. This effect is proportional to the system size L

and affects in the same way both the δ peak singularity and the
continuum starting at ω = 2�. The second effect is associated
to the fluctuations affecting the masses of the quasiparticles
emitted after the quench and it does not scale with the size
of the system. If one is interested in measuring the work with
reference to �E0 in an energy window close to �E0 + 2�,
the first type of fluctuations are obviously dominant and most
importantly detrimental. Indeed, the last integral in Eq. (17)
can be cast in the following form: A

√
γ ′ ∫∞

−c
dy e−y2/2√y + c

(where A = 1
4
√

2
1
δ

ρ2
−√
�

, γ ′ = γ [f (g) − 2], and c = ω−2�
γ ′ ). At

energies around 2� one would observe

P (ω) 
 1√
2πγ ′

+ C
ρ2

−
δ

√
γ ′

�

(
1

�
(

5
4

) +
√

2

�
(

3
4

) ω − 2�

γ ′ + · · ·
)

, (18)

where C is a numerical prefactor and � is the Euler � function.
It could be interesting to subtract these fluctuations by

some means. In order to do so there are in principle two
possibilities: the first one is to measure for each realization only
the energy differences with respect to the threshold, subtracting
the extensive shift of the ground state energy due to the noise
[see Eq. (15)]; the second one consists in rescaling the noise
amplitude by the system size, γ → γ

L
. In both ways Eq. (17)

can be properly averaged in the energy range of interest. For

ω − 2� � γ ′,

P (ω) ∝ Pquench(ω)

[
1 + O

(
γ�(g)

(ω − 2�)

)2
]

, (19)

which essentially means that, well above the energy threshold
for the production of pairs of quasiparticles in a sudden quench,
the statistics of the work is left unchanged. On the other hand,
for ω � 2� − γ ′, the statistics of the work displays a Gaussian
tail controlled by the renormalized noise amplitude γ ′,

P (ω) ∝ ρ2
−
δ

√
γ ′

�

(
γ ′

|ω − 2�|

)3/2

e
− (ω−2�)2

2γ ′2 . (20)

Let us now proceed our analysis considering more complicated
effects. We prepare the system in the ground state of the Ising
chain in the paramagnetic phase, with g0 > 1 and we let evolve
the system under the generic time-dependent Hamiltonian
H0 + V (t). In the following we assume that we have subtracted
the shift of the ground state energy and that the amplitude of
the noise has been rescaled.

It is a remarkable fact that for each realization of the noise
the square root singularity at the lower energy threshold is
independent from the out-of-equilibrium protocol performed
on the QIC [22]; what changes is the spectral weight of the
singularity in P (w), which in general will depend on the details
of the time-dependent quench, as discussed in the Appendix.
The expression of the statistics of the work in this case is

P (ω,τ ) 
 δ(ω) +
√

π

4

[ω − 2�(τ )]

δ
|ρ(τ )|2

√
ω − 2�(τ )

�(τ )
,

(21)
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where

|ρ(τ )|2 ≡ �2(τ )

∣∣∣∣ρ −
∫ τ

0

e2i
∫ t

0 dt ′�(t ′)

�(t)2
�̇(t)dt

∣∣∣∣2
= �2

(
ρ2 − 2ρ Re

[ ∫ τ

0

e2i
∫ t

0 dt ′�(t ′)

�(t)2
�̇(t)dt

]

+
∣∣∣∣ ∫ τ

0

e2i
∫ t

0 dt ′�(t ′)

�(t)2
�̇(t)dt

∣∣∣∣2) (22)

and ρ = �0−�(0)
�0�(0) , where in general �(0) is different from �0.

The derivation of Eq. (21) is postponed in the Appendix.
Using integration by parts, it is easy to show that

∫ τ

0

e2i
∫ t

0 dt ′�(t ′)

�(t)2
�̇(t)dt

= 1

�(0)
− 1

�(τ )
e2i

∫ τ

0 dt ′�(t ′) + 2i

∫ τ

0
dt e2i

∫ t

0 dt ′�(t ′). (23)

When taking the noise average of these expressions there
are going to be two separate effects. The first will consist in
fluctuations of � at the initial and final point of the trajectory
which will produce consequences similar to the ones discussed
above in the static case. If we think to the statistics of �(t) as

being Gaussian with

〈�(t)�(t ′)〉 
 �

2
δτc

(t − t ′), (24)

where τc is a correlation time [29], the fluctuations at the end

points have amplitude γ =
√

�
τc

. Now in the limit γ

�
, γ

|�−�0| �
1, we argue that to the leading order the various terms in
Eq. (21) can be averaged separately:

P (ω,τ ) 
 δ(ω) +
√

π

4

[ω − 2�(τ )]

δ
|ρ(τ )|2

√
ω − 2�(τ )

�(τ )
.

(25)

While the average of the square root singularity will produce
the smearing of the singularity described above, the average
of the spectral weight will produce a time-dependent prefactor
that appears to describe the heating of the system under the
influence of the noise. In order to average |ρ(τ )|2, we first
notice that for γ

�
, �

�
� 1, we have

1

�(τ )
e2i

∫ τ

0 dt ′�(t ′) 
 1

�(τ )
e2i

∫ τ

0 dt ′�(t ′) 
 1

�
e−�τ e2i�τ , (26)

where crossed correlations with the boundary term propor-
tional to �(τ ) can be neglected. Indeed, expanding in Taylor
series the left-hand side, we get

e2i�τ

�

(
1 − η(τ )

�
+ η(τ )2

�2
+ · · ·

)(
1 + 2i

∫ τ

0
dt ′η(t ′) + 1

2
(2i)2

∫ τ

0
dt ′dt ′′η(t ′)η(t ′′) + · · ·

)
(27)

and, taking the average over the noise, we finally have

e2i�τ

�
e−�τ

[
1 − i

�

�
+
(

γ

�

)2

−
(

�

�

)2

− i

(
γ

�

)2
�

�
+ i

(
�

�

)3

+ · · ·
]
. (28)

It should be clear that in the limit γ

�
� 1, �

�
� 1, only the first term can be kept in the right-hand side of (28).

Using Eqs. (23) and (24), and neglecting correlations coming from boundary terms, it is now straightforward to average over
the noise; for instance, for the second term in Eq. (22) we get

Re

[ ∫ τ

0

e2i
∫ t

0 dt ′�(t ′)

�(t)2
˙�(t)dt

]
= 1

�
(1 − e−2�τ cos(2�τ )) + 1

�2 + �2
[�(e−2�τ cos(2�τ ) − 1) + �e−2�τ sin(2�τ )]



�
�

�1

�

�2
e−2�τ sin(2�τ ), (29)

which is of order �
�

when reinserted in Eq. (22).
The third contribution can be written as∣∣∣∣ ∫ τ

0

e2i
∫ t

0 dt ′�(t ′)

�(t)2
�̇(t)dt

∣∣∣∣2
≡
(

1

�(0)
− 1

�(τ )
e2i

∫ τ

0 dt ′�(t ′) + 2i

∫ τ

0
dt e2i

∫ t

0 dt ′�(t ′)
)(

1

�(0)
− 1

�(τ )
e−2i

∫ τ

0 dt ′�(t ′) − 2i

∫ τ

0
dt e−2i

∫ t

0 dt ′�(t ′)
)

=
∣∣∣∣ 1

�(0)
− 1

�(τ )
e2i

∫ τ

0 dt ′�(t ′)
∣∣∣∣2 + 2 Re

[
2i
( 1

�(0)
− 1

�(τ )
e−2i

∫ τ

0 dt ′�(t ′)
)∫ τ

0
dt e2i

∫ t

0 dt ′�(t ′)
]

+ 4
∫ τ

0
dt e2i

∫ t

0 dt ′�(t ′)
∫ τ

0
dt e2i

∫ t

0 dt ′�(t ′). (30)
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Under the same approximations stated above and using
again (23), it is possible to average (30) over the time-
dependent noise (24), disregarding noise fluctuations in the
boundary terms proportional to �(0) and �(τ ). To compute
the average of (30), we need to average products of two noise
dependent quantities; for instance, it is easy to derive

4
∫ τ

0
dt e2i

∫ t

0 dt ′�(t ′)
∫ τ

0
dt e2i

∫ t

0 dt ′�(t ′)



�
�

�1
4
�τ

�2
+ O

(
�

�

)
, (31)

while all the other terms in Eq. (30) are subleading in the limit
�
�

� 1 and γ

�
� 1.

Hence our result on the statistics of the work, P (ω,τ ), can
be summarized in the following expression which contains a
transparent physical meaning

P (ω,τ ) 
 δ(ω) + (ρ2
− + 4�τ )Q(ω), (32)

where

Q(ω) =
√

π

4

(ω − 2�)

δ

√
ω − 2�

�
. (33)

The long time growth of the spectral weight appears to
indicate the continous heating of the system [it resembles
the time dependence of the energy absorbed by the system
at the early stages of the dynamics, as it will be clear from
Eq. (55)]. Notice indeed that the energy absorbed by the system
during the time-dependent protocol g(t) is nonzero, in sharp
contrast to the static case, as we will show in Sec. V. In the
following we will study in more sophisticated quantities the
interplay between dynamical noise and coherent effects due to
a quantum quench of the Ising chain.

IV. KINETIC EQUATIONS

In this section we are going to study the kinetics of local
observables and their correlation functions in the QIC. In order
to accomplish this task, we are interested in deriving a kinetic
equation for the equal time nonequilibrium Green’s function
for the protocol discussed in Sec. II. We will do so by deriving a
master equation, using the Keldysh contour technique, in order
to obtain analytically an expression for the two-point functions
of Bogolyubov fermions at equal time. These equations will
then be used to compute all the observables of interest and their
the out-of-equilibrium dynamics. Part of the results presented
in this section have been announced in Ref. [19].

We start recalling the definition of the statistical Green
function on the Keldysh contour [30],

Gc = −i〈Tcψki(τ )ψ†
kj (τ ′)〉, (34)

where Tc is the time ordering operator on the Keldysh contour,
and τ and i and j are indices in the Nambu space; we define
the lesser Green function as

G<(t,t ′) = [G<
k (t,t ′)]i,j = i〈ψ†

k,j (t ′)ψk,i(t)〉, (35)

which is a matrix in the Nambu space (here t and t ′ are real
times).

Using the standard approach [30], we first write the
equation for the statistical Green function with the noise as

FIG. 2. (Color online) Diagrammatic representation of the
Dyson series (37). Crossed diagrams are neglected according to the
self-consistent Born approximation.

a perturbation and we resum the Dyson series (Fig. 2)

Gc
τ,τ ′ = Gc

0τ,τ ′ + Gc
0τ,τ ′′ ⊗ �c

τ ′′,τ ′′′ ⊗ Gc
τ ′′′,τ ′ , (36)

where Gc
0τ,τ ′ is the unperturbed Green function and �c

τ,τ ′ is the
self-energy; in right-hand side the symbol ⊗ is understood as a
convolution product and all the quantities are evaluated along
the Keldysh contour.

In the following we will neglect noise crossed diagrams,
computing the self-energy within the so-called self-consistent
Born approximation [30], controlled by the small parameter
�
�

, as illustrated in Fig. 2. This dimensionless parameter is,
in a sense, the analogue of λF /l � 1 in disordered electron
systems, where λF is the Fermi wavelength and l the mean
free path.

The Dyson equation for the statistical Green function is
then

i∂tG
<(t,t ′) = HkG

<(t,t ′) +
∫

dt ′′[�<(t,t ′′)Ga(t ′′,t ′)

+�r (t,t ′′)G<(t ′′,t ′)],

−i∂t ′G
<(t,t ′) = G<(t,t ′)Hk +

∫
dt ′′[Gr (t,t ′′)�<(t ′′,t ′)

+G<(t,t ′′)�a(t ′′,t ′)]. (37)

Within the self-consistent Born approximation, we obtain for
the self-energies in Eq. (37)

�<
t,t ′ = �

2
δ(t − t ′)σzG

<
t,t ′σz,

�
r,a
t,t ′ = ∓i

�

4
δ(t − t ′).

(38)

We substitute (38) in Eq. (37), subtract the two resulting
equations and take the limit t → t ′; defining the density matrix

ρk(t) = −iG<
k (t,t), (39)

we finally obtain the master equation

δtρk = −i[Hk,ρk] + �

2
(σzρkσz − ρk), (40)

where [Hk,ρk] is responsible for the free dynamics and the
second term on the right-hand side contains information
about the dissipation due to the noise. We now apply to
(40) a Bogolyubov rotation U (θk) = exp(−iθkσx) with θk =
1/2 arctan[(sin k)/(g − cos k)], which diagonalizes the Ising
model in the basis of the Bogolyubov fermions γk . We get

∂tρk = −i[H̃k,ρk] + �

2
(σ ′ρkσ

′ − ρk), (41)

where σ ′ = U †(θk)σzU (θk) = cos 2θkσz + sin 2θkσy and the
density matrix is expressed in the basis of the Bogolyubov
fermions.
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Before solving Eq. (41), let us comment on the properties
of the noise. In the base diagonalizing the final Hamiltonian,
Hk appears as

Hk = Ekσz + δg(t)(σz cos 2θk + σy sin 2θk)

= Ekσz + δgz
k(t)σz + δg

y

k (t)σy, (42)

where δgz
k(t) and δg

y

k (t) satisfy〈
δgz

k(t)δgz
k(t ′)

〉 = �

2
(cos 2θk)2δ(t − t ′),

〈
δg

y

k (t)δgy

k (t ′)
〉 = �

2
(sin 2θk)2δ(t − t ′),

(43)

where it should be easy to see that our model is equivalent to
the QIC perturbed by two k-dependent δ correlated noises, one
along the z direction and the other one along y. Moreover, the
noise along the y direction is correlated to the noise along the
z direction〈

δgz
k(t)δgy

k (t ′)
〉 = �

2
sin 2θk cos 2θkδ(t − t ′). (44)

The usual way to solve a master equation like (41) is to
decompose the density matrix in the basis of the Pauli matrices

ρk = 1
2 1 + δfkσz + xkσx + ykσy. (45)

Plugging this decomposition in the master equation (41)
we end up with a system of differential equations for the
coefficients of the density matrix (45),

∂t (δfk) = −� sin2 2θkδfk + �

2
yk sin 4θk,

∂txk = −�xk − 2Ekyk,

∂tyk = �

2
sin 4θkδfK + 2Ekxk − � cos2 2θkyk.

(46)

We will in the following solve this system of equations in the
limit �

�
� 1, which allows us to neglect y-z correlations; we

checked this approximation numerically for different values
of k in the Brillouin zone. Taking into account the different
initial conditions (6), corresponding to an extensive amount of
energy injected in the system by the quench of the transverse
field, we immediately obtain

δfk(t) = [sin2(�θk) − 1/2]e−�t sin2 2θk . (47)

For the coherences zk = xk − iyk we instead obtain

∂tzk = (2Eki − �)zk + �

2
[1 − cos2(2θk)]

zk − z∗
k

2
; (48)

from this equation we see that the coherences decay exponen-
tially fast as �t � 1, as one can see close to k 
 0,π :

zk 
 z0
ke

2iEkt e−�t . (49)

On the other hand, from Eq. (47), we see that while most of
the modes relax fast to their thermal occupation (nk 
 1/2) on
time scales of the order of 1/�, the relaxation rates tend to
vanish close to the band edges (k = 0,±π ) (see Fig. 3).

We give the expression for δfk and zk for k 
 0, as they
will be useful to compute the leading behavior of physical
observables during thermalization dynamics, as it will be more

0.5 1.0 1.5 2.0 2.5 3.0
k

0.1

0.2

0.3

0.4

0.5

n k

FIG. 3. (Color online) Populations nk = 〈γ †
k γk〉 vs wave vector k

at different times: from bottom to top, �t = 0.1, 1, 10, 102, 103, and
104 (g0 = 2 and g = 4).

clear in the next sections:

〈γ †
k γk〉 = 1

2
+ 1

2

(
k2

2�2
ρ2

− − 1

)
e

−�k2 t

�2 ,

〈γ †
k γ

†
−k〉 = − ik

2�
ρ−e−αt−iβt ,

(50)

where ρ− ≡ �0−�

�0
and

α = �

[
1 − 1

2

(
k

�

)2]
,

(51)

β = 2�

[
1 + 1

2

(
k

�

)2]
.

V. THERMALIZATION DYNAMICS OF OBSERVABLES

Let us start now the study of the interplay between quench
and noise in the time evolution of observables of interest,
studying their dynamics from the intial state towards the
asymptotic steady state, which is the infinite temperature state,
where all fermion modes are equally occupied, nk = 1/2, for
all k in the Brillouin zone. We shall start computing the
energy absorbed by the system. We will then be concerned
with the study of thermalization dynamics of the transverse
magnetization correlator and, finally, we are going to look
for signatures of the noise in the time evolution of the order
parameter correlations.

A. Energy absorbed by the QIC

Let us start considering the energy absorbed by the system
during the noisy time-dependent protocol:

E(t) = 〈ψ(t)|H (g(t))|ψ(t)〉, (52)

where |ψ(t)〉 is the state at time t . Substituting the expression
for the Hamiltonian (4), we get

E(t) = 〈ψ(t)|
(

H0(g) + δg(t)
∑

i

σ z
i

)
|ψ(t)〉

= 〈ψ(t)|H0(g)|ψ(t)〉 + δg(t)〈ψ(t)|
∑

i

σ z
i |ψ(t)〉. (53)
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Let us now assume that at the time τ and onwards the noise
is turned off. Therefore, the total energy acquired at time τ by
the system is

E(τ ) = N

∫ π

0

dk

2π
Ek(g)[〈γ †

k (τ )γk(τ )〉 − 〈γ−k(τ )γ †
−k(τ )〉].

(54)

We can now use the expectation values for the two-point
functions of the Bogolyubov fermions derived in the previous
section to evaluate this expression as a function of τ . For
times �τ � 1, the energy is equal to the energy injected in an
ordinary quench Equench plus small corrections

E(τ ) = Equench + N

∫ π

0

dk

2π
εk cos(2�θk) sin2(2θk)�τ,

(55)

where Equench = − N
2π

∫ π

0 dk εk cos(2�θk) is the energy in-
jected in the system by a sudden quench.

At longer times, �t � 1, the energy saturates towards its
asympotic limit, zero with our choice of the vacuum energy,
with an asymptotic power law behavior 1√

�t
, which is the

signature of the slow relaxation of k 
 0,π modes, discussed
in Sec. IV [31]. In particular, Eq. (54) can be written as

E(t) = N

2π

∫ π

0
2Ekδfk

= − N

2π

∫ π

0
dk Ek cos 2�θke

−�t sin2 2θk (56)

and for �t � 1 this quantity is dominated by the modes with
smallest relaxation rate, k 
 0,π , with the final result

E(t) 

�t�1

− N

2
√

π

g2 + 1√
�t

. (57)

B. Evolution of the number of kinks

Let us now turn our attention to a more interesting quantity
to highlight the dynamics of thermalization: the density of the
number of kinks, defined as

nkink ≡ 1

2N

∑
i

〈(
1 − σx

i σ x
i+1

)〉
. (58)

Simple algebraic manipulations yield

nkink(t) = 1

2N

∑
k

[1 + 2〈γ †
k (g = 0)γk(g = 0)〉]

= 1

2N

∑
k

(2 + 2δfk(t) cos 2�α∗
k + 2yk(t) sin 2�α∗

k ).

(59)

This result has been obtained by expressing Bogolyubov
fermions at g = 0 in terms of fermions diagonalizing the
chain at finite g; consequently �α∗

k = θk(g = 0) − θk(g) is
the difference between the two angles. It is clear from this
expression that the number of kinks can be written as the
sum of two terms, nkink(t) ≡ ndrift(t) + �n(t), the first due to
populations (plus the constant term) and describing the heating
of the system towards the asympotic steady state and the

0 5 10 15 20 25 30 35
t0.56

0.58

0.60

0.62

0.64

0.66

0.68

n kink

FIG. 4. (Color online) Density of kinks vs time for a quench with
� = 0.01, g0 = 1.1, and g = 4. While the red line shows the value
attained by nkink without perturbation and predicted by the GGE, the
full time evolution (blue line) shows first a saturation towards the
GGE value and later a runaway towards the infinite temperature state.

second one responsible for dephasing and exclusively due
to coherences, which is at the origin of an intermediate
stage of the dynamics of nkink, which we shall relate to
prethermalization.

Thermalization dynamics of nkink(t) can be divided in three
stages as summarized in Fig. 4 as follows.

(1) First of all, the system relaxes towards the asymptotic
steady state of the QIC after a quench of the transverse field
without noise, which is the GGE of the QIC, accounting for
the conserved quantities of the theory, i.e., the occupation
number of the fermions nk = γ

†
k γk . This happens through the

usual inhomogeneous dephasing [14], arising from the overlap
of a continuum of frequencies in Eq. (59) and leading to a

1
(J t)3/2 decay in the J t � 1 limit. This result can be easily
derived applying a stationary phase argument to Eq. (59) in
the J t � 1 limit and in the temporal frame when the noise
is not effective �t � 1. Though the term prethermalization
has been introduced for closed quantum many-body systems
driven out of equilibrium, the appearance of an intermediate
stage of the dynamics observed here is very similar to what
have been found in closed systems [5], suggesting the use of
this term also in this context.

(2) The second stage consists of a noise-induced dephasing,
where coherences are suppressed exponentially by the noise
for �t � 1, as the leading e−�t behavior discussed before
suggests.

(3) The third stage corresponds to populations heating up.
This drives the number of kinks towards the final stage of
the dynamics, i.e., an infinite temperature state. This happens
following the same 1√

�t
behavior of the energy, and it is due

again to the presence of slow relaxing modes dominating
thermalization dynamics.

This scenario can be better understood by looking sepa-
rately at ndrift and �nkink. In Fig. 5, ndrift is plotted as a function
of time (red line), showing that this term is responsible for the
deviation of nkink from the GGE expectation value (blue line),
while �nkink, plotted in Fig. 6, first decays following a power
law, while for times �t � 1 it starts decaying exponentially
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0 5 10 15 20 25 30 35
t0.627

0.628

0.629

0.630

0.631

0.632
n d rift

FIG. 5. (Color online) Red line: populations contribution, ndrift,
for the case of a quantum quench (� = 0). Blue line: populations
contribution in the case of a quench with noise (� = 0.01). g0 = 1.1
and g = 4.

fast, departing clearly from the values attained in the usual
sudden quench protocol (blue line).

As a last remark in this section, it should be noticed that
the appearance of the prethermalization stage strictly depends
on the different behavior of the populations and coherences
during the dynamics. This implies that whether an observable
will show prethermalization or not will depend crucially on its
expression in the Bogolyubov basis. This is the reason beneath
the absence of a similar behavior in the dynamics of E(t).

C. On-site transverse magnetization

A prethermal plateau would be also observed in the ther-
malization dynamics of the on-site transverse magnetization,
〈σ z

i (t)〉, which possess a similar expression to (59) in the
Bogolyubov basis,

mz ≡ 〈σ z
i

〉 = ∫ π

0
dk

2

π
(δfk(t) cos 2θk − sin 2θkyk(t)).

(60)

50 100 150 200
t

0.002

0.001

0.001

0.002

n kink

FIG. 6. (Color online) Red line: coherences contribution, �nkink,
for the case of a quantum quench (� = 0). Blue line: coherences
contribution in the case of a quench with noise (� = 0.01). g0 = 1.1
and g = 4.

The prethermal plateau is in correspondence of the expectation
value of σ z

i evaluated in the GGE of the QIC without noise〈
σ z

i

〉
GGE = −

∫ π

0
dk

1

π
cos 2�θk cos 2θk (61)

and it is approached with a power law, 1
(J t)3/2 , in the limit

J t � 1, as in a quenched QIC [13]. On the other hand,
the on-site transverse magnetization will approach its infinite
temperature expectation value (〈σ z

i 〉T =∞ = 0) as a power law,
1√
�t

, for �t � 1, when quantum coherent effects have been
already exponentially suppressed by the noise. Hence the
nonequilibrium dynamics of this observable is exactly the
same observed for the number of kinks. In the next section
we are going to consider two-points functions of the transverse
magnetization looking for new physics behind the interplay of
noise and quench.

D. Transverse magnetization correlator

A similar scenario can be also observed in the equal-time
transverse magnetization correlation function, computed at
different spin sites ρzz(r,t) = 〈σ z

i+r (t)σ z
i (t)〉. Similar to what

we have done for nkink, the expression for ρzz(r,t) can be
written as a sum of three terms,

ρzz(r,t) = 〈σr (t)σ0(t)〉pop

+〈σr (t)σ0(t)〉coh + 〈σr (t)σ0(t)〉mix, (62)

where

〈σr (t)σ0(t)〉pop

= 4
∫ π

−π

dk

2π

∫ π

−π

dk′

2π
ei(k−k′)r

[
sin 2θk sin 2θk′δfk(t)δfk′(t)

+
(

1

2
+ cos 2θk′δfk′ (t)

)(
1

2
− cos 2θkδfk(t)

)]
, (63)

〈σr (t)σ0(t)〉coh

= 4
∫ π

−π

dk

2π

∫ π

−π

dk′

2π
ei(k−k′)r

× [− sin 2θk sin 2θk′yk(t)yk′(t)+[xk(t) + iyk(t) cos 2θk]

× [xk′(t) − iyk′(t) cos 2θk′]], (64)

〈σr (t)σ0(t)〉mix = 4
∫ π

−π

dk

2π

∫ π

−π

dk′

2π
ei(k−k′)r

× [iδfk(t) sin 2θk[xk′(t) − yk′(t) cos 2θk′]

− iδfk′ (t) sin 2θk′[xk(t) + yk(t) cos 2θk]

+ sin 2θkδfk′(t)yk(t) cos 2θk′

+ sin 2θk′δfk(t)yk′(t) cos 2θk]. (65)

Looking at the expression of the coherences (48), it should
be clear that we can extract from the integrals in Eqs. (64)
and (65) a purely time-dependent exponential decay prefactor,
which allows us to neglect these terms in the �t � 1 limit,

〈σr (t)σ0(t)〉coh ∝ e−2�t ,

〈σr (t)σ0(t)〉mix ∝ e−�t .
(66)
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In order to discriminate the separate physical associated to
noise and to the ordinary quench dynamics, we start our
analysis considering the case in which the QIC is driven
out of equilibrium only by the noise, g0 = g, and later we
will consider the more involved case of the interplay between
quench and noise.

1. Noise without quench

Let us assume to be in the long time limit �t � 1, and let
us restrict our attention to a protocol without quench (g0 = g).

The dynamics is dominated by modes near to k = 0,±π

which have the slowest relaxation. We can thus at long times
evaluate the correlator ρzz as

ρzz 
 ρzz
0 + ρzz

π + ρzz
−π , (67)

where the first contribution (which is also the only one that
would survive in the scaling limit if taken from the outset)
comes from modes close to k ∼ 0; the second and the third
one come from modes close to k ∼ ±π . Let us then consider
first ρzz

0 .
Equation (63) for large enough times �t � 1 becomes

ρzz
0 (r,t) 
 4

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dk′

2π
ei(k−k′)r

×
(

1

4
+ k

Ek

δfk(t)
k′

E′
k

δfk′(t)− �2

EkEk′
δfk(t)δfk′(t)

)
,

(68)

where the time dependence of ρzz
0 (r,t) is going to be fully

determined by the slowest mode k 
 0, and where the small k

behavior of δfk is taken,

δfk(t) =
k
0

− 1
2e

−�t k2

�2 . (69)

The correlator can thus be derived by computing the following
integral:

I =
∫ ∞

−∞

dk

2π

eikr

Ek

e
−�t k2

�2 . (70)

First of all, we make the substitution k = �q,

I =
∫ ∞

−∞

dq

2π

eiq�r√
q2 + 1

e−�tq2
. (71)

From Eq. (71) it is clear that the exponential decay induced by
the noise gives a natural cutoff which enforces the convergence
of the integral; in particular, it is clear that the largest
contribution to the integral comes from the modes q � 1√

�t
;

in other words, recalling that �t � 1, we can expand the
denominator of the integrand for small q. To first order we
get

I =
∫ ∞

−∞
dq eiq�re−�tq2

(
1 − 1

2
q2 + · · ·

)
=
√

π

�t
e− (�r)2

4�t + O

(
�r

�t

)
, (72)

and so, substituting in Eq. (68), for the transverse magnetiza-
tion correlator we get

ρzz
0 (r,t) = − 1

π

�2

4

1

�t
e− (�r)2

2�t . (73)

Concerning the computation in the �r � �t regime, we
observe first of all that

1

(q2 + 1)1/2
= 1

�
(

1
2

) ∫ ∞

0
da a−1/2e−a(q2+1), (74)

where �( 1
2 ) is the Euler � function. Inserting (74) in Eq. (71),

we have

∫ ∞

−∞
dq

eiq�r−�tq2√
q2 + 1

=
∫ ∞

−∞
dq

∫ ∞

0

da

�(1/2)
a−1/2e−iqmr−�tq2−a(q2+1) =

∫ ∞

0
da a−1/2e

− m2r2

4(a+�t) −a 1√
a + �t

=
a+�t≡b

∫ ∞

�t

db√
b − �t

e− m2r2

4b
−b+�t

√
b

=
b≡ mr

2 c
e�t

∫ ∞

2 �t
mr

dc

√
mr
2√

mrc
2 − �t

1√
c
e−mr(c+ 1

c
)

= 2eα2β

∫ ∞

α

dx
1√

x2 − α2
e
−β(x2+ 1

x2 )
, (75)

where in the last equality we defined c = x2, α2 = 2�t
�r

, and β = �r
2 . The last integral in Eq. (75) can be evaluated with a

saddle-point approximation around x 
 1, in the limit α � 1, β � 1,

2eα2β

∫ ∞

α

dx
1√

x2 − α2
e
−β(x2+ 1

x2 ) 
 2eα2β e−2β

√
1 − α2

∫ ∞

0
dx e−4β(x−1)2



β�1

2eα2β−2β

√
1 − α2

√
π

2
√

β
=
√

2π

�r

e−�r+�t√
1 − 2�t

�r

∝
�r
�t

�1

e−�r

√
�r

, (76)
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where we kept the Gaussian fluctuations around the saddle
point x 
 1.

This expression allows us to find the correlation function
in the �r � �t limit, after some straightforward algebra on
Eq. (68),

ρzz
0 (r,t) 
 e−2�r

2πr2
. (77)

It should be clear from these expressions that the diffusive
behavior found for the correlator (73) in the �r � �t limit
and indicating the continuous heating of the system towards
the infinite temperature state travels with a wave-front speed
γ = �

�
, which means that points with �r � �t do not present

any signature of the noise and their correlation function is the
same of σ z

i in the QIC without noise and quench [see Eq. (77)
and for comparison [23]].

Before considering the combined signature of the noise and
the quench on the on-site magnetization correlation function,
let us restore lattice corrections originating from k 
 ±π

modes in Eq. (63); for ρzz(r,t), in the �r
�t

� 1 limit, we get
(assuming the lattice spacing a = 1)

ρzz(r,t) = − 1

π

�2

4

1

�t
e− (�r)2

2�t

(
1 + g + 1

g − 1
cos(πr)e− gr2

�t

)2

.

(78)

In the space-time region defined by
√

�t
g

� r � �t
�

, lattice

corrections are completely negligible; on the other hand, in

the limit r �
√

�t
g

the signature of the noise is still diffusive.

Therefore, we can conclude that the qualitative behavior of the
on-site magnetization correlation function is diffusive.

2. Effect of the quench

Now we are interested in studying the interplay between
quench and noise in the spreading of quantum correlations
in ρzz(r,t). We use the expressions for populations and
coherences, Eqs. (47) and (48), and look for the different
spatiotemporal regimes emerging during the time evolution
of this observable.

The dynamics is characterized by the propagation of two
“wave” fronts: at earlier times, �t � 1, a first front appears
at r 
 J t , controlled by the velocity of quasiparticles emitted
after a quench (v 
 J ), which separates unconnected space-
time regions, r � J t , where σ z

i correlations behave as in the
QIC without quench, from a region of space-time connected
points r � t , where the stationary correlation function is the
same of a quenched QIC [13]. This is consistent with the
Lieb-Robinson limit [32], as already found for other systems
[33] and by many authors for the sudden quench of the QIC
[12–14]. The effects of the noise are hardly relevant at early
times as observed for the evolution of nkink.

On the other side, taking the long time limit, �t � 1, for
�r � �t we find again a diffusive spreading of correlations,
while for unconnected space-time points (�r � �t) the
stationary correlation function crosses over to the asymptotic
expression of the correlation function in a quenched QIC
without noise [13].

FIG. 7. (Color online) Spreading of quantum and thermal corre-
lations in the noisy quantum Ising model (J = 1): the transverse
field correlator has a first crossover when ballistic quasiparticles,
carrying quantum correlations, propagate at the distance r . Thermal
correlations propagate at a second stage, leading to a crossover to a
diffusive form, consistent with thermal dynamics.

This scenario can be summarized in the following expres-
sions for the correlation function:

ρzz(r,t) 
�t�1

{
1

2πr2 exp[−2�0r], r � vt,
1
rα exp[−r/ξz], r � vt,

(79)

where ξz is the correlation length associated to a simple
quantum quench of the transverse field and α a constant,
computed in Ref. [13]. In the large-times regime, �t � 1,
the noise becomes relevant and the second crossover, between
quenched QIC correlation functions and diffusive behavior,
emerges:

ρzz(r,t) 
�t�1

{
1
rα exp[−r/ξz], γ t � r � vt,

− 1
π

�2

4
1
�t

exp
[− (�r)2

2�t

]
, r � γ t,

(80)

where γ = �
�

is the small parameter, which controls the self-
consistent Born approximation used in Sec. IV to resum the
Dyson series [34].

This type of light-cone spreading of correlations has
been observed experimentally (without noise) in the quench
dynamics of the Bose-Hubbard model [35] and in the coherent
split of 1D Bose gases, characterizing the wave front associated
to the prethermal state [36]. (See Fig. 7.)

E. Order parameter correlations

This last subsection is devoted to study whether the
diffusive behavior observed before is a general signature of the
effect of the noise in correlation functions; in order to answer
to this question, it is sufficient to compute the equal-time order
parameter correlation functions, ρxx

lm , for a QIC perturbed by
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the noise without adding the effect of a quench in the transverse
field.

The usual way to perform this computation in the ground
as in a thermal state is to recast ρxx

lm in a Toepltiz determinant
form and to evaluate the large-spin separation limit l − m =
n → ∞, using Fisher-Hartwig conjecture [37]. For a quantum
quench the situation is in general much more complicated [13].
Hence we will therefore restrict our attention to the dynamics
in the presence of the noise at long times, where the coherences
have been suppressed and only populations evolve. In this case
we may proceed with standard methods.

Let introduce the operators

Ai ≡ c
†
i + ci, Bi ≡ c

†
i − ci, (81)

where ci is the Jordan-Wigner fermion on the lattice; from (81)
it follows [38] that

ρx
ml = 〈σx

mσ x
l

〉
= 〈BlAl+1Bl+1...Am−1Bm−1Am〉. (82)

We can factorize this expression, using Wick theorem, and,
noticing that 〈AlAm〉 = 0 and 〈BlBm〉 = 0, we only need to
compute 〈BlAm〉:

〈BlAm〉 =
∫ π

−π

dk

2π
e−ikRei2θk 2δfk ≡ s(R), (83)

where R = l − m and δfk = − 1
2e−� sin2 2θ1t .

It is possible to show [38] that the order parameter correlator
can be cast in the form of a n + 1 × n + 1 Toeplitz determinant,

det(Tn) = det|s(j − k)|nj,k=0 = Dn[f ], (84)

where Tn is a Toeplitz matrix

Tn =

⎛⎜⎜⎜⎝
s(0) s(−1) s(−2) · · · s(−n)
s(1) s(0) s(−1) · · · s(1 − n)
s(2) s(1) s(0) · · · s(2 − n)
· · · · · · · · · · · · · · ·
s(n) s(n − 1) s(n − 2) · · · s(0)

⎞⎟⎟⎟⎠.

(85)

It is convenient to write

s(R) =
∫ π

−π

dk

2π
e−iRkf (k), (86)

where f (k) is a periodic complex function f (k) = f (k + 2π ),
called the generating function.

Let us now compute the order parameter correlator
[Eq. (82)] in the large R limit, using the large n expansion of a
Toeplitz determinant [Eq. (84)] which can be extracted using
the Fisher-Hartwig conjecture [37]. The latter states that, if
f (k) can be cast in the form

f (k) = f0(k)
∏

r

exp{ibr [k − kr − π sgn(k − kr )]}

× [2 − 2 cos(k − kr )]ar , (87)

where k ∈ (0,2π ), kr are singularities (jumps, zeros, or poles)
of f (k), f0(k) is an infinitely differentiable function in
k ∈ (0,2π ), and ar,br are two complex numbers, then the
asymptotic expansion of the Toeplitz determinant, for large

n, is

Tn ∼
n→∞ el0nn

∑
r (a2

r −b2
r ), (88)

where l0 = ∫ π

−π
dk
2π

log f0(k).
First of all, we are briefly going to set the notation,

computing the order parameter correlator of the QIC at
equilibrium, and then we will move to the case of interest
for this section.

1. Order parameter correlations in the QIC

Consider the quantum Ising model

H0 = −
∑

i

σ x
i σ x

i+1 + gσ z
i (89)

in the paramagnetic phase g > 1.
In this case (see note [39])

〈BlAm〉 = s(R)

=
∫ π

−π

dk

2π
eikRe−ik cos k − g + i sin k√

(cos k − g)2 + sin2 k
(90)

and f (k) can be rewritten, making the change of variable
z = eik , as a function in the complex plane (λ ≡ 1/g)

f (z) = z−1/2 (z − g)1/2

(zg − 1)1/2
= z−1 (λz − 1)1/2

(λz−1 − 1)1/2
, (91)

which has four branch points z = 0, 1/g, g, and ∞. We choose
the two branch cuts in the following way: the first linking z = 0
with z = 1/g, and the second one linking z = g with z = ∞.

It is not immediate to apply the Fisher-Hartwig conjecture
on Eq. (91); in this case, some additional manipulations on the
generating function are required; following Ref. [40], we note
that

1

2π

∫ π

−π

dk f (k)e−ikR =
∫

C
f (z)z−R dz

2πiz
, (92)

where C is a closed contour encircling the origin in the annulus
1/g < |z| < g, where f (z) is analytic with our choices of
branch cuts. The integral involved in the Toeplitz determinant
is defined over a circle of radius 1, encircling the origin, (92),
but applying Cauhy’s theorem inside the annulus 1/g < |z| <

g we can move the integration from the circle of radius 1 to
the circle of radius g = 1/λ; this is equivalent to make the
substitution z → z/λ in Eq. (92), and to keep the integration
over the circle |z| = 1, as shown in Ref. [40] (for a technical
remark on this point, see [41]).

Following this procedure it is possible to rewrite Eq. (91)
in this form,

f (z) = λ

z

(1 − z)1/2(
1 − λ2

z

)1/2 , (93)

where the Fisher-Hartwig formula can be immediately applied;
resubstituting again z = eik , we get the following Fisher-
Hartwig decomposition (87),

f (k) ∼ f0(k)e− 3
4 ik(1 − cos k)1/4, (94)

where

f0(k) = λ

(1 − λ2e−ik)1/2
. (95)
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It is now easy to show that

l0 =
∫ π

−π

dk

2π
log

λ

(1 − λ2e−ik)1/2
= log λ, (96)

which gives for the correlation function ρxx(R), according to
(88), the following result:

ρxx(R) ∼
R→∞ R−1/2e−R/ξeq (97)

where ξeq = (log g)−1.

2. Order parameter correlations in a noisy QIC

We are now ready to derive the main result of this section,
adding to the QIC the usual noisy time-dependent perturbation.
Recalling (83), we get in this case for the generating function
f (k)

f (k) = e−�t sin2 2θkf eq(k), (98)

where f eq(k) is the static generating function for the Toeplitz
determinant in the QIC at equilibrium, presented in the
previous subsection. The function e−�t sin2 2θk is nonzero and
smooth in (0,2π ), so our only task is to make the change of
variable in the complex plane z → z/λ as before, necessary to
apply the Fisher-Hartwig conjecture.

The correlation function, using Fisher-Hartwig conjecture,
takes the form

ρxx(R,t) ∼
R→∞

R−1/2e−R/ξ (t), (99)

where
1

ξ (t)
= 1

ξeq
+ 1

ξ (t)noise
(100)

and
1

ξ (t)noise
= �t

∫ π

−π

dk

2π
a(k). (101)

ξeq is the exponent coming from the regular part of the
generating function at equilibrium [see Eq. (97)], while a(k)
has the following form:

a(k) ≡ sin2 2θk = (eik − e−ik)2

(eik − e−ik)2 − (2g − eik − e−ik)2
.

(102)

The integral ∫ π

−π

dk

2π
a(k) (103)

can be written in the complex plane (z = eik) as∮
|z|=1

dz

2πiz
a(z), (104)

where

a(z) ≡ 1

1 − ( (z−1−
√

1− 1
g2 )(z−1+

√
1+ 1

g2 )

(z− 1
g

)(z+ 1
g

)

)2 (105)

has poles in z = 0, 1
g2 ,1.

Considering we move from the circle of radius 1 to the
one of radius 1

λ
, where feq(k) has a branch cut, we need to

regularize the integral (104), deforming the integration contour
from inside in order to avoid z = 1; in other words, we consider
the circle of radius 1 − ε, taking the limit ε → 0+.

Applying the residue theorem to (104) we get

1

ξ (t)noise
= �t

2g2
. (106)

This result can be checked numerically, studying the asymp-
totic behavior of a Toeplitz determinant, whose entries are
generated by (98).

For a quench without dissipation the stationary correlation
function has in general an exponential form ρxx(R,t) ∼
exp[−R/ξ ], with a correlation length ξ dictated by the non-
thermal distribution function of quasiparticles and predicted
by the generalized Gibbs ensemble [13]. Turning on the noise,
the signatures of the crossover observed for the transverse
magnetization are expected in this case to be different; indeed,
the same exponential form persists and the spreading of
quantum and thermal correlations will not result in a diffusive
form, but rather modify just the specifics of the correlation
length which at later times shrinks as 1/�t for large times.

The different signatures observed in the transverse and
longitudinal magnetization are consistent with analogous
phenomenology observed elsewhere for quenches in the QIC
[12].

VI. CONCLUSIONS

In this paper we studied the effect of the noise on the
nonequilibrium dynamics of a quantum Ising chain driven
out of equilibrium by a sudden quench of the transverse
field. We considered a Gaussian time-dependent δ correlated
noise superimposed on top of the transverse magnetization,
generalizing in this way to the noisy case the ordinary sudden
quench dynamics addressed in other works [12–14]. First of
all, we computed in the small noise limit, �

�
� 1, the statistic

of the work done on the system for static and dynamical noisy
out-of-equilibrium protocols, showing in the static case that
the effect of the fluctuations is to smooth the singularities
associated to the existence of a low-energy quasiparticle
production threshold in the usual sudden quench of the QIC,
while in the dynamical case we have shown the additional
emergence of a time-dependent spectral weight of the edge
singularity in P (ω,τ ).

The nonequilibrium dynamics resulting from the interplay
of a quantum quench and a time-dependent noise is character-
ized by three stages. First, inhomoegenous dephasing brings
the system towards the GGE of the unperturbed Ising chain;
then, a second dephasing mechanism comes into play, killing
exponentially the coherences on the time scale of the inverse
noise amplitude. Finally, the noise heats up the populations,
driving the system towards the infinite temperature state, as
confirmed by the study of a wide class of observables (number
of kinks, on-site transverse magnetization, and correlation
function of the transverse magnetization). It is a remarkable
fact that, analogous to nonintegrable quantum many-body
systems [5], an intermediate steady state appears during
dynamics, which can be considered in a broader sense a
prethermal state. We found, remarkably, that this generalized
prethermalization occurs only in those observables which can
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show an interplay between the relaxation and dephasing of
populations and coherences.

We conclude observing that the method, used in this
paper and based on Keldysh technique, could be employed
also to understand thermalization dynamics of quenched
closed quantum many-body systems [10], where many issues
concerning prethermalization and the role of interactions in
out-of-equilibrium problems, such as the time scales involved,
are still elusive; finally, the noisy quantum Ising chain is a
potential playground to study fluctuation-dissipation relations
out of equilibrium, which has been recently at the center of the
attention of a series of papers on this topic [14].
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APPENDIX A: GENERALIZED TIME-DEPENDENT
BOGOLYUBOV TRANSFORMATION AND STATISTICS

OF THE WORK IN THE QUANTUM ISING CHAIN

In this Appendix we derive a formula for the characteristic
function, G(u), introduced in Sec. III, Eq. (10). We use
a generalization of Bogolyubov transformations for time-
dependent protocols, and then in Sec. III we specialize these
results for a time-dependent noisy perturbation.

We consider a QIC in the transverse field g0 and we prepare
the system in the ground state of the paramagnetic phase,
|ψ(g0)〉; we perform a generic time-dependent protocol, g(t),
with these boundary conditions: g(t = 0) = gi > 1 and g(t =
τ ) = gf > 1, in general gi,gf �= g0. For instance, the sudden
quench case is recovered from our expressions when ġ(t) = 0,
hence gi = gf .

Our goal is to compute

G(u) = 〈ψ(g0)|eiuHH
τ,τ0 |ψ(g0)〉, (A1)

where HH
τ,τ0

= U †(τ,τ0)Hτ,τ0U (τ,τ0) denotes the Hamiltonian
used in the measurement process; the superscript H indi-
cates that operators are taken in the Heisenberg picture. In
Eq. (A1) we dropped the inessential global phase prefactor
present in Eq. (10). We can rewrite G(u) in Schrödinger
representation, absorbing the evolution in the wave function
|ψ(τ )〉 = U (τ,τ0)|ψ(g0)〉,

G(u) = 〈ψ(τ )|eiuHτ |ψ(τ )〉. (A2)

In order to compute this quantity, we make the central ansatz
of our method, that consists in introducing an operator γ̃k(t),
which annihilates the state at time t ,

γ̃k(t)|ψ(t)〉 = 0, (A3)

which means that |ψ(t)〉 is a Bogolyubov vacuum at each time,
for a certain operator, γ̃k(t). The choice of the initial state

implies γ̃k(0) = γk(g0). From our ansatz, it follows that

0 = i
d

dt
[γ̃k(t)|ψ(t)〉]

=
(

i
∂

∂t
γ̃k(t)

)
|ψ(t)〉 + γ̃k(t)

(
i

∂

∂t
|ψ(t)〉

)
=
(

i
∂

∂t
γ̃k(t) + γ̃k(t)H (t) − H (t)γ̃k(t)

)
|ψ(t)〉 (A4)

and this implies

i
∂

∂t
γ̃k(t) = −[γ̃k(t),H (t)]. (A5)

At a certain time t , H (t) is diagonalized by a set of Bogolyubov
operators γk(t), which are related in the usual way to
the Jordan-Wigner fermions, ck = uk(t)γk(t) − ivk(t)γ †

−k(t),
where uk(t) = cos θk(t) and vk(t) = sin θk(t); the Bogolyubov
angle, θk(t), depends on the time protocol g(t) and the
Hamiltonian is diagonalized as usual,

H (t) =
∑
k>0

Ek(t)[γ †
k (t)γk(t) − γ−k(t)γ †

−k(t)]. (A6)

Now, we look for two time-dependent coefficients ak(t)
and bk(t), which unitarily relate γ̃k(t) to γk(t), through the
following rotation:

γ̃k(t) = ak(t)γk(t) − ibk(t)∗γ †
−k(t). (A7)

At t = 0 this equation becomes, with our boundary conditions,

γ̃k(g0) = ak(t = 0)γk(gi) − ibk(t = 0)∗γ−k(gi)
†, (A8)

which is the usual Bogolyubov rotation in the case of a
sudden quench in the QIC (see, for instance [21],), with initial
conditions, ak(t = 0) = cos �θk and bk(t = 0) = sin �θk . We
are now ready to substitute (A6) and (A7) in Eq. (A5), where
we need u̇k = −vk(t)θ̇k(t) and v̇k = uk(t)θ̇k(t); after straight-
forward algebra we get two coupled first order differential
equations for ak(t) and bk(t):

iȧk = −Ek(t)ak − ib∗
k θ̇k(t),

iḃ∗
k = iθ̇k(t)ak + b∗

kEk(t).
(A9)

Defining qk(t) ≡ b∗
k (t)

ak (t) , it is possible to write the following
differential equation:

iq̇k = iθ̇k(t) + 2qkEk(t) + iq2
k θ̇k(t). (A10)

In the following we will need the small k expansion of qk , so
we solve (A10), expanding qk in series, qk(t) =∑∞

n=0 cn(t)kn.
The zeroth order solution is null,

iċ0 = 2c0�(t), c0(t = 0) = 0, (A11)

because qk(t = 0) = tan �θk ∼k∼0
1
2k �0−�i

�0�i
has a vanishing

zero order in the k expansion.
For the first order solution we have

iċ1(t) = − i

2�(t)2
ġ(t) + 2�(t)c1(t),

c1(t = 0) = 1

2
k
�0 − �i

�0�i

.

(A12)
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Using the method of separation of arbitrary constants and
taking into account that c0(t) = 0, ∀t , we find

c1(t) = e−2i
∫ t

0 �(t ′)dt ′
(

c1(0) −
∫ t

0

e2i
∫ t ′

0 �(t ′′)dt ′′

2�(t ′)2
�̇(t ′)dt ′

)
.

(A13)

If we now come back to the original problem, we see that
(A7) and the ansatz γ̃k(t)|ψ(t)〉 = 0 allows us to write the state
at time t = τ as a BCS state, similar to what is usually done
for a sudden quench in the QIC [see, for instance [12,13,21]
or Eq. (7)]:

|ψ(τ )〉 = exp

[
i
∑
k>0

bk(τ )∗

ak(τ )
γ
†
k (τ )γ †

−k(τ )

]
|0〉τ , (A14)

where |0〉τ is the vacuum of the QIC at time τ and γ
†
k (τ ), the

Bogolyubov operators diagonalizing the Hamiltonian at time
t = τ . Following the same procedure of [21], it is possible to
write the characteristic function, G(u), of the statistics of the

work as

G(u) ∼ exp
(
N
∫ π

0
dp

π
log[1 + |qp(τ )|2e2iuEp(gf )]

)
exp
(
N
∫ π

0
dp

π
log[1 + |qp(τ )|2]

) , (A15)

where gf = g(t = τ ).
Considering that G(u) is the Fourier transform of P (ω), and

since we are interested in the low energy behavior of P (ω), it
is sufficient to compute G(u) for large values of u. In the limit
Ju � 1 we can use a stationary phase argument and consider
only the small p contribution of |qp(τ )|2 to the integrals
in Eq. (A15). The small p expansion of |qp(τ )|2 can be
straightforwardly computed from Eq. (A13). This computation
differs from the sudden quench case [21] only in the expression
of qp(τ ); while in the latter qp(τ ) is time independent, in this
case it is a complicated expression depending on the details of
the protocol. On the other hand, the square root singularity at
2�f is left unchanged. Apart from this important difference,
the computation of P (ω) follows a standard procedure; see, for
instance [21]. We mention that a similar technique has been
developed in Ref. [22] to compute the statistics of the work
done by globally changing in time the mass in a free bosonic
field theory with relativistic dispersion and for generic time
variations of the transverse field in a quantum Ising chain.

[1] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and
I. Bloch, Nature (London) 415, 39 (2002); T. Kinoshita,
T. Wenger, and D. Weiss, ibid. 440, 900 (2006); L. E. Sadler,
J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-
Kurn, ibid. 443, 312 (2006); S. Hofferberth, I. Lesanovsky,
B. Fischer, T. Schumm, and J. Schmiedmayer, ibid. 449, 324
(2007); S. Trotzky, Y. Chen, A. Flesch, I. P. McCulloch,
U. Schollwck, J. Eisert, and I. Bloch, Nature Phys. 8, 325
(2012).

[2] M. Srednicki, Phys. Rev. E 50, 888 (1994); C. Kollath,
A. Laeuchli, and E. Altman, Phys. Rev. Lett. 98, 180601 (2007);
M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,
854 (2008).

[3] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev.
Lett. 98, 050405 (2007); T. Barthel and U. Schollwock, ibid.
100, 100601 (2008).

[4] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011); A. Lamacraft and J. Moore,
Ultracold Bosonic and Fermionic Gases (Elsevier, Oxford,
2012), Chap. VII.

[5] M. Kollar, F. A. Wolf, and M. Eckstein, Phys. Rev. B 84, 054304
(2011).

[6] J. Berges, S. Borsanyi, and C. Wetterich, Phys. Rev. Lett 93,
142002 (2004).

[7] M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702
(2008); ,Ann. Phys. (NY) 324, 2146 (2009); ,New J. Phys.
12, 055016 (2010); M. Eckstein, M. Kollar, and P. Werner,
Phys. Rev. Lett. 103, 056403 (2009); M. Stark and M. Kollar,
arXiv:1308.1610.

[8] A. Mitra, Phys. Rev. B 87, 205109 (2013).
[9] R. Barnett, A. Polkovnikov, and M. Vengalattore, Phys. Rev. A

84, 023606 (2011).
[10] M. Marcuzzi, J. Marino, A. Gambassi, and A. Silva, Phys. Rev.

Lett. 111, 197203 (2013).

[11] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and
J. Schmiedmayer, Science 337, 1318 (2012); M. Kuhnert,
R. Geiger, T. Langen, M. Gring, B. Rauer, T. Kitagawa,
E. Demler, D. Adu Smith, and J. Schmiedmayer, Phys. Rev.
Lett. 110, 090405 (2013).

[12] D. Rossini, A. Silva, G. Mussardo, and G. Santoro, Phys. Rev.
Lett. 102, 127204 (2009); D. Rossini, S. Suzuki, G. Mussardo,
G. E. Santoro, and A. Silva, Phys. Rev. B 82, 144302 (2010).

[13] P. Calabrese, F. H. L. Essler, and M. Fagotti, Phys. Rev. Lett. 106,
227203 (2011); ,J. Stat. Mech. (2012) P07016; ,(2012) P07022;
F. H. L. Essler, S. Evangelisti, and M. Fagotti, Phys. Rev. Lett.
109, 247206 (2012); M. Fagotti and F. H. L. Essler, Phys. Rev.
B 87, 245107 (2013).

[14] H. Rieger and F. Igloi, Phys. Rev. B 84, 165117 (2011); F. Igloi
and H. Rieger, Phys. Rev. Lett. 106, 035701 (2011); L. Foini,
L. F. Cugliandolo, and A. Gambassi, Phys. Rev. B 84, 212404
(2011); ,J. Stat. Mech.: Theory Exp. (2012) P09011.

[15] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann,
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