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First-principles study of point defects in an fcc Fe-10Ni-20Cr model alloy
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The influence of the local environment on vacancy and self-interstitial formation energies has been investigated
in a face-centered-cubic (fcc) Fe-10Ni-20Cr model alloy by analyzing an extensive set of first-principle
calculations based on density functional theory. Chemical disorder has been considered by designing special
quasirandom structures and four different collinear magnetic structures have been investigated in order to
determine a relevant reference state to perform point defect calculations at 0 K. Two different convergence
methods have also been used to characterize the importance of the method on the results. Although our fcc
Fe-10Ni-20Cr would be better represented in terms of applications by the paramagnetic state, we found that the
antiferromagnetic single-layer magnetic structure was the most stable at 0 K and we chose it as a reference state
to determine the point defect properties. Point defects have been introduced in this reference state, i.e., vacancies
and Fe-Fe, Fe-Ni, Fe-Cr, Cr-Cr, Ni-Ni, and Ni-Cr dumbbell interstitials oriented either parallel or perpendicular
to the single layer antiferromagnetic planes. Each point defect studied was introduced at different lattice sites
to consider a sufficient variety of local environments and analyze its influence on the formation energy values.
We have estimated the point defect formation energies with linear regressions using variables which describe the
local environment surrounding the point defects. The number and the position of Ni and Cr first nearest neighbors
to the point defects were found to drive the evolution of the formation energies. In particular, Ni is found to
decrease and Cr to increase the vacancy formation energy of the model alloy, while the opposite trends are found
for the dumbbell interstitials. This study suggested that, to a first approximation, the first nearest atoms to point
defects can provide reliable estimates of point defect formation energies.
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I. INTRODUCTION

Stainless steels (SS) are key materials in a wide range
of applications.1 These steels contain at least 11 wt % of
chromium (Cr) responsible for their stainless properties.
Austenitic SS are widely used in the nuclear industry be-
cause of their good mechanical properties and their superior
corrosion resistance over a wide range of temperature. In
particular, austenitic SS of types 304 and 316 are used, among
other things, as a primary containment barrier protecting
the reactor pressure vessels from irradiation damage. These
internal structures are quenched in a metastable phase which
contains a high proportion of austenitic solid solution. These
Fe-based alloys contain a maximum of 0.15 wt % carbon, a
minimum of 16 wt % chromium and sufficient nickel (about
10 wt %) to retain a face-centered-cubic (fcc) crystallographic
structure from the cryogenic temperature region to the melting
point of the alloy. Many solute atoms are also included (Mn, Si,
P, S, Mo, and N) to improve their performance under specific
operating conditions. Finally, these steels are paramagnetic
(PM) at the operating temperatures of nuclear power reactors.

In service, internal structures are exposed to harsh con-
ditions: temperatures around 350 ◦C, neutron irradiation,
mechanical and thermal stresses, and a corrosive environment.
This combination of factors may allow, among other effects,
the occurrence of creep, swelling, and radiation induced
segregation, thus diminishing the performance of the internals
with time. The combination of all these phenomena may

lead to the occurrence of irradiation assisted stress corrosion
which may initiate cracks in the baffle bolts that assist in
maintaining the structural integrity of the core. It is now well
understood that the above-mentioned macroscopic changes
depend on the impact of irradiation on the defect production
in these materials. In particular, it depends on how and in what
proportion the point defects (vacancies and interstitials) can
cluster into larger defects (dislocations, loops, voids, etc.) and
affect the microstructural evolution of the material. Thus, the
structure and mobility of the point defects as well as their
interactions with the atoms of the major or minor elements
must be addressed to provide insight into the mechanisms
involved under irradiation.

However, experimental data on point defects are scarce in
austenitic SS (Refs. 2–6) owing to the difficulty in precisely
determining atomic quantities7 such as the formation and
migration energies of a single vacancy or that of an interstitial.
These physical properties can also be greatly affected by
impurities5 and the influence of the local environment is
difficult to properly probe.

In this context, density functional theory (DFT) may help
to better interpret and understand experimental results. It
could seem simpler to determine these quantities theoretically,
however in the case of austenitic steels, the task of choosing a
relevant reference state is not trivial. In particular, the ground
state of Fe is body centered cubic (bcc) whereas the austenitic
steels, whose major element is Fe, are fcc at operating
conditions. Thus, it is difficult to conduct experimental studies
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of defect and solute properties in dilute fcc Fe. Considerable
experimental efforts have therefore been carried out to stabilize
the γ -Fe at lower temperature8–10 (Fe is fcc at 1185–1664 K)
to improve the current level of understanding by studying the
magnetic ordering. These experiments have shown that γ -Fe
displays a noncollinear, spiral magnetic structure.11,12

The numerous first-principles studies carried out to search
for the γ -Fe ground state13–20 showed many competing
magnetic structures lying between 0.08 and 0.15 eV/atom
above the bcc ferromagnetic ground state, thus complicating
the choice of a relevant reference state for calculations of
physical properties in γ -Fe. Another critical issue is to model
the PM state in γ -Fe since austenitic SS are PM at temperatures
where nuclear reactors operate. However, a difficulty arises
at 0 K where austenitic SS seem to be antiferromagnetic
(AFM),21 which is certainly not the most relevant state in
order to be representative of a high temperature PM state.
Furthermore, reliable first-principles calculations of the PM
state are not trivial22 and there remains some debate about
whether the paramagnetism is better represented as itinerant
or involves localized moments on the ions. In this context, a
relevant strategy used by Klaver et al.23 in dilute austenitic
Fe-Ni-Cr alloys was to calculate some physical properties
in multiple collinear magnetic structures selected as possible
reference states for austenite, and then retain features common
among these states in order to extrapolate them to the
PM state.

Finally, it is also important to consider the multicom-
ponent nature of austenitic Fe-Ni-Cr alloys. Cr has a bcc
crystal structure and exhibits an incommensurate spin-density
wave at low temperatures, which is not trivial to properly
capture in DFT.24–26 Ni is fcc and displays a ferromagnetic
(FM) ordering at low temperatures. This large difference
between the properties of the pure elements is responsible
for the wide variety of magnetic phases in the ternary phase
diagram. In particular, at low temperatures, the magnetic
phase of γ -Fe80−xNixCr20 alloys (10 < x < 30) can have an
antiferromagnetic phase, a spin-glass ordering, or a mixture
between spin-glass ordering and FM ordering as the Ni content
increases.21

Despite the difficulties presented above, first-principles
calculations still have a key role to play in such a context
due to their ability to provide predictive information about
the complex interplay occurring between the electronic and
structural degrees of freedom in complex systems. To our
knowledge, DFT studies of concentrated austenitic Fe-Ni-Cr
alloys are few27–31 and are only based on the coherent potential
approximation (CPA). In this work, we model the austenitic
steels by designing special quasirandom structures (SQS)32

formed by the major alloying elements of 304 and 316 grades
with the same average composition, i.e., respectively, 70 at.
% Fe, 20 at. % Cr, and 10 at. % Ni. This simplified ternary
system still remains very complex because its elements display
very different properties, as shown previously. However, from
a fundamental point of view austenitic Fe-Cr-Ni alloys are
key model systems that can be used in order to investigate
the complex magnetostructural behavior of austenitic steels.
In particular, the chemical disorders as well as the magnetic
properties need to be considered to explain a wide range of
properties of these alloys. We thus investigated in this work

a wide set of DFT calculations performed in a Fe-10Ni-20Cr
alloy used as model austenitic steel. In particular, we analyze
the influence of the local environments on both vacancy and
〈100〉 dumbbell formation energies in fcc metals and dilute
Fe-Cr-Ni alloys.23,33–37

The paper is organized as follows. Section II contains the
computational details used to perform the DFT calculations.
In particular, attention is paid to the calculation of point
defect formation energies in concentrated alloys. In Sec. III
we present and discuss the stability of four different magnetic
phases in order to calculate the point defect formation energies
in the Fe-10Ni-20Cr model alloy. In Sec. IV, the link found
between the local environment and the point defect formation
energies calculated in the selected reference state is presented.
Finally, we present our conclusions in the last section.

II. COMPUTATIONAL DETAILS

The first-principles calculations were performed using the
DFT code VASP,38,39 a plane-wave code that implements the
projector augmented wave (PAW) method.40,41 The standard
PAW potentials supplied with VASP were used. Exchange and
correlation were described by the Perdew-Wang functional,42

adding a nonlocal correction in the form of the generalized
gradient approximation. The Vosko-Wilk-Nusair interpolation
was applied for the correlation part of the exchange-correlation
functional. Potentials with eight, six, and ten valence electrons
were used for Fe, Cr, and Ni, respectively. The blocked
Davidson algorithm43 was used to minimize the energy of
the system.

Two sets of calculations were performed in this work. Ref-
erence state calculations were performed in supercells of 256
atoms containing 180 Fe atoms (70 at. %), 50 Cr atoms (20 at.
%), and 26 Ni atoms (10 at. %). In this first set of calculations,
the local magnetic moments on atoms were initialized to im-
pose the desired magnetic ordering and then allowed to relax.
Four different collinear magnetic structures were compared to
select a relevant reference state for the point defect calculations
at 0 K. As the PM state is certainly the most relevant state
to describe the high temperature state, it was modeled by
generating two different SQSs (SQSa and SQSb) for the
six-component (Fe↑

0.5Fe↓
0.5)70(Ni↑0.5Ni↓0.5)10(Cr↑0.5Cr↓0.5)20 alloy

to take into account both chemical and magnetic disorder in
the lattice. As has been shown in Cr-N,44 the use of SQSs
to treat magnetic disordering is well justified from a practical
point of view. However, the choice of applying the adiabatic
approximation also to the magnetically disordered structure
relaxations should overestimate the formation energy of the
structure.45 As will be further outlined, the defect calculations
are performed in the AFM1 structure so that this issue does
not affect the results or conclusions.

From these SQSs, three other magnetic states were built
by initializing the moments to impose the desired magnetic
ordering. As the AFM state may be the ground magnetic state
of the fcc Fe-10Ni-20Cr alloy, we considered the single-layer
antiferromagnetic (AFM1) state in which (100) planes contain
moments in directions alternatingly parallel and antiparallel
(↑↓↑↓. . .), and the double-layer antiferromagnetic (AFMD)
state in which pairs of (100) planes contain moments in
directions alternatingly parallel and antiparallel (↑↑↓↓. . .).
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Finally, for comparison purposes, we also considered the FM
state in which all moments point in the same direction. In a
second set of calculations, formation energies of point defects
were calculated in supercells of 256 ± 1 atoms, with supercell
dimensions held fixed at the equilibrium values of the reference
state selected and ionic positions free to relax.

For the reference state calculations, two different calcula-
tion methods were considered in order to analyze its impact on
the observed properties. Fully relaxed (FR) calculations were
performed in which the atomic coordinates and the supercell
shape and volume were allowed to relax. Cubic lattice
(CL) calculations were also performed in which the lattice
maintained fcc symmetry and only the atomic coordinates and
the supercell volume were allowed to relax.

The local magnetic moments were determined by integrat-
ing the spin density within spheres centered on the atoms using
sphere radii of 1.302, 1.323, and 1.286 Å for Fe, Cr, and Ni,
respectively.

All the above-mentioned sets of calculations were per-
formed using an energy cutoff of 300 eV for the plane-wave
basis set and a 2 × 2 × 2 Monkhorst-Pack grid to sample the
Brillouin zone. First-order Methfessel and Paxton smearing46

of the Fermi surface was used throughout with a smearing
width set to 0.3 eV.

Vacancies and 〈100〉 dumbbells were considered for the
point defect calculations. These calculations were performed
in the AFM1 state which was selected as the reference
state as we will show next. Vacancies have been introduced
by removing one Fe atom from the reference state and
dumbbells have been introduced by replacing one Fe atom
from the reference state by two atoms. Point defect calculations
were performed at many sites (at least 40 sites) to analyze
the impact of the local environment on formation energies.
For comparison purposes, vacancies and interstitials were
introduced on the same sites of the AFM1 reference state. All
the possible configurations for the dumbbell were considered,
i.e., Fe-Fe, Fe-Ni, Fe-Cr, Cr-Cr, Ni-Ni, and Ni-Cr dumbbells
oriented either parallel (oriented along the [010] axis) or
perpendicular (oriented along the [100] axis) to the AFM1
magnetic planes. The point defect formation energies were
calculated by calculating the difference between the energy
of the defect lattice (either EN −1 for the vacancies or EN +1

for the dumbbells), and the energy of the reference state EN ,
where N refers to the number of atoms of the reference state
(256 atoms). However, as these lattices do not have the same
number of atoms, we need to define the chemical potentials
for one Fe atom μFe, one Ni atom μNi, and one Cr atom
μCr to be able to calculate all the point defect energies as
follows:

EV
f = EN−1 − (EN − μFe) , (1)

EFe-A
f = EN+1 − (EN + μA) , (2)

EA-B
f = EN+1 − (EN − μFe + μA + μB) , (3)

where EV
f is the formation energy of a vacancy, EFe-A

f is the
formation energy of a mixed Fe-A dumbbell, and EA-B

f is
the formation energy of an A-B dumbbell (A and B refer to
elements different than Fe). Indeed, in a concentrated Fe-Ni-Cr

system, we can expect the chemical potentials defined above
to be substantially different from the chemical potentials of
elements in their pure reference states. Thus, for the purpose
of calculating defect formation energies from Eq. (1) to
Eq. (3), calculations of the chemical potentials of the species
involved in the defects are required. At finite temperature, the
excess chemical potential differences are usually calculated
using Widom-type substitution techniques.47 This consists
of simulating the nonsubstituted reference system “A” of
energy UA (containing NA atoms of type A and NB atoms
of type B) with a Monte Carlo procedure, and estimating the
excess chemical potential difference by canonical averages
of the exponential of the substitution energy �A→BE =
EB − EA. Precise calculations of chemical potentials by DFT
methods would be extremely time consuming. This would
require, depending on temperature, sampling a large number
of configurations by a Monte Carlo Metropolis procedure. In
Appendix, we suggest an approach to calculate these quantities
while feasible in terms of calculation time. When applying
this method to estimate the reference chemical potential of
Fe, Ni, and Cr in the AFM1 Fe-10Ni-20Cr reference state, we
obtain the three differences in reference chemical potentials as
follows:

μFe-10Ni-20Cr
Cr − μFe-10Ni-20Cr

Fe = 1
2 (�Fe→Crμ − �Cr→Feμ),

(4)

μFe-10Ni-20Cr
Ni − μFe-10Ni-20Cr

Fe = 1
2 (�Fe→Niμ − �Ni→Feμ),

(5)

μFe-10Ni-20Cr
Ni − μFe-10Ni-20Cr

Cr = 1
2 (�Cr→Niμ − �Ni→Crμ),

(6)

where �A→Bμ is the minimum of the “A to B” substitution
energies and μFe-10Ni-20Cr

A is the estimate of chemical potentials
in VASP for the addition or the removal of atom A in our
AFM1 reference state. We thus calculated the minimum of
the substitution energy on most of the 180 Fe, 50 Cr, and
26 Ni atom sites. Advanced estimation techniques which
rigorously combine so-called “forward” and “backward”
estimates �A→Bμ and −�B→Aμ (Refs. 48 and 49) cannot
be applied in the present method, as no actual Monte Carlo
sampling is done in this simplified approach, and a simple
arithmetic average is taken in the previous equations. This
system of three equations [from Eq. (4) to Eq. (6)] provides
in fact only two independent equations, the last one being
the difference of the former two. It cannot be used to obtain
the values of the chemical potentials, but only to check the
reliability of the estimates (if the numerical estimate yielded
by the difference of the first two is close to the estimate of
the last one, this supports the accuracy of the estimates, as
they were not calculated with the same substitutions). The
total energy of the system calculated with VASP provides the
additional equation needed to estimate the reference chemical
potentials [Eq. (7)]. Indeed, as the calculations were made at
constant volume, and neglecting all entropic contributions, we
have EA ≈ F (V ) and

F (V ) =
∑
A

NAμFe-10Ni-20Cr
A . (7)

024101-3



J. B. PIOCHAUD et al. PHYSICAL REVIEW B 89, 024101 (2014)

FIG. 1. For each SQS, the energy per atom, �E, for the distinct magnetic states studied, is given relative to the AFM1 state calculated
using the FR calculation method.

III. REFERENCE STATE CALCULATIONS

Different spin configurations were investigated using DFT.
In particular, tests were performed with unconstrained spin
ordering and it was seen that configurations that were initially
noncollinear, converged to collinear states. We thus present
only results obtained with collinear spin configurations in this
work. As mentioned previously, we initialized four different
magnetic states which have been tested in two different SQSs
(SQSa and SQSb). As already found in previous works for
γ -Fe,13–17 we found many minima very close in energy
corresponding to different magnetic states as can be seen
in Fig. 1. The energy differences of a few meV per atom
observed between FR and CL methods, are due to the fact
that both ferromagnetic and antiferromagnetic states transform
into face-centered-tetragonal (fct) structures when the CL
constraint is removed. By contrast, the crystallographic phase
remains fcc for the PM state. The AFM1 state is found to have
the lowest energy, in agreement with the detailed magnetic
measurements performed in polycrystalline Fe80−xNixCr20

alloys by Majumdar et al. at the composition of the Fe-10Ni-
20Cr model alloy at 0 K.21

One interesting result obtained from these calculations is
that we found that the relaxed moments carried by the Ni
atoms, mNi

DFT, and the Cr atoms, mCr
DFT, depend strongly on

the sum of the moments of their Fe first nearest neighbors
(1nn). This is illustrated in Fig. 2, which represents the
relaxed moment obtained from a magnetic configuration for
which the initial moments were initialized in the AFM1
state. Furthermore, this result is quite insensitive to the initial
magnetic configuration. The trends are clear: Cr atoms tend to
be antiferromagnetic with respect to the 1nn Fe moments, as
is the case in bcc Fe-Cr alloys,50 and their local magnetic
moments range from − 1.5μB to 1.5μB . Conversely, the
Ni moments are ferromagnetic with respect to the 1nn Fe
moments, as is the case in bcc Fe-Ni alloys,51,52 and their
local magnetic moments range from − 0.4μB to 0.4μB . It
has to be noted that Fe forms 70% of our model alloy
and therefore many Fe-rich environments exist. Thus, as the
magnetic moments of Fe atoms range between − 2μB and
2μB , as we will see next, it is not surprising that the sums of
the moments of Fe 1nn displayed in Fig. 2 lie between − 10μB

and 10μB . By contrast, the behavior of Fe moments is less
predictable, as the magnitude of Fe moments is only slightly
ruled by its local chemistry. These results are consistent with
the work published by James et al.52 who found that in
binary alloys, the Fe moment is mostly correlated with its
chemical surrounding, while the Ni moment depends more on
the magnetic surrounding.

FIG. 2. Magnitude of relaxed moments carried by Cr atoms, mCr
DFT, versus the sum of the moments of their Fe 1nn (left figure). Magnitude

of relaxed moments carried by Ni atoms, mNi
DFT, versus the sum of the moments of their Fe 1nn (right figure). The moments were initialized in

the AFM1 state.
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Finally, a number of moment flips occur during the course of
the calculation, in particular when starting with a PM phase.
In that case numerous local moment flips occurred during
the relaxation, inducing important changes of the magnetic
interactions felt at each lattice site, leading to multiple relaxed
magnetic structures. The total energy variation associated with
these changes was found to be less than 1 meV per atom on
average. These moment changes even happened when using
atomic positions and local moments of an already relaxed
configuration as input parameter to restart a second run. During
the course of the first calculation the local moments of about
10% of the Fe atoms decrease and lie between −1 and 1μB

(“low spin Fe atoms”). These local moments are then subjected
to significant changes when restarting the first calculation.
This behavior is certainly due to the competition between
many magnetic states close in energy, thus making difficult
the use of the PM phase as the reference state for point defect
calculations, although it would have been appropriate for this
study. For all the above reasons, the AFM1 state was selected
to calculate the point defect formation energies. We found an
fcc phase with lattice parameter of 3.52 Å when using the CL
method and an fct phase with lattice parameters of a = 3.50 Å,
b = 3.50 Å, and c = 3.57 Å when using the FR method.

In a recent paper by Ekholm and Abrikosov for an
alloy in the same electron concentration range, fcc Fe-Mn,53

limitations of the current functionals were analyzed, and the
necessity to compare theory with experiment in terms of lattice
parameter was underlined as an essential indicator of the
accuracy of calculations. Although no experimental lattice
parameters are available in the fcc Fe-10Ni-20Cr system,
lattice parameters of various Fe-Ni-Cr alloys (with 30%–67%
Ni, 1%–51% Fe and 17%–32% Cr) are summarized by
Marruco and range between 3.52 and 3.59 Å after long-term
exposures at temperatures between 450 ◦C and 600 ◦C.54

However, these lattice parameters have to be scaled down
to 0 K to compare to DFT. For that purpose we used as a
rule the thermal expansion found by Hayase et al. in Fe-Ni
binaries.55 We found that the predicted lattice parameter is
about 1% underestimated using this rough approximation.
It can be mentioned that this underestimation could be
larger in fcc Fe-10Ni-20Cr because the experimental lattice
parameter is expected to increase linearly with increasing Cr
and Fe concentrations.54 We also find that the predicted lattice
parameter is about 1% underestimated, comparing to a number
of austenitic grades (301, 304, 309, 316, and 4306 steels) close
in chemical composition56 and using the thermal expansion of
304 as a rule. The same DFT underestimation is found for bcc
Fe (−1.2%) and is thus expected and acceptable.

IV. POINT DEFECT CALCULATIONS

The substitution energy calculations performed in the
AFM1 reference state using DFT, �B→Aμ, and used to obtain
an estimate of zero Kelvin reference energies for the addition
or the removal of a given type of atom, i.e., μFe-10Ni-20Cr

Fe ,
μFe-10Ni-20Cr

Ni , and μFe-10Ni-20Cr
Cr [from Eq. (4) to Eq. (6)], are

listed in Table I. The difference between substitution energies
obtained in the alloy, μFe-10Ni-20Cr

A , and in the pure elements,
μ0

A, are presented in Table II. It can be noted that reference
chemical potentials calculated in the AFM1 Fe-10Ni-20Cr

TABLE I. Minimum values of substitution energies, �B→Aμ (A
and B refer to the element type), performed to obtain an estimate of
zero Kelvin reference energies in DFT for the addition or the removal
of a given type of atom in the AFM1 Fe-10Ni-20Cr system, i.e.,
μFe-10Ni-20Cr

Fe , μFe-10Ni-20Cr
Ni , and μFe-10Ni-20Cr

Cr , are presented along with
the number of calculations performed.

Substitution energy (eV) Number of calculations Minimum value

�μFe→Ni 40 2.50
�μNi→Fe 26 − 2.81
�μFe→Cr 40 − 1.43
�μCr→Fe 40 0.86
�μNi→Cr 26 − 4.07
�μCr→Ni 40 3.49

reference state, μFe-10Ni-20Cr
A , never exceed their associated bulk

chemical potentials, μ0
A. This result indicates that all elements

are more stable in the Fe-10Ni-20Cr reference state than in
their respective pure phases of lowest energies found using
DFT (μFe-10Ni-20Cr

A − μ0
A < 0 for all elements A).

It has to be mentioned again that the estimates of chemical
potentials μFe-10Ni-20Cr

A presented in Table II only represent
zero Kelvin reference energies in DFT for the addition or
the removal of a given type of atom in our AFM1 Fe-10Ni-
20Cr reference configuration. In any case, the use of these
estimated chemical potentials will only cause a global shift
in the formation energy values thus obtained, with respect to
using the exact values, and will not change the trends observed
and the relationship of the formation energies with the point
defect local environment.

Point defect formation energies, calculated using the chem-
ical potential estimates (Table II) are presented in Table III.
This table presents for each set of formation energies, the
number of calculations performed, the mean value, the energy
range, and the reference state considered. Our results can be
compared with the formation energy values found by Klaver
et al. in dilute Fe-Ni-Cr austenitic alloys23 where, especially
for the dumbbell formation energies, significant differences
are observed. Indeed, the mean value found for the vacancy
formation energies is similar in the fct AFM1 γ -Fe system
and in our model alloy while dumbbell formation is found to
be significantly higher in the fct AFM1 γ -Fe. It can, however,
be noted that the same general order of preference for the
different alloying elements can be found in dumbbell sites.
Indeed, Fe-Fe dumbbells are found to be the most stable. Ni
is very unlikely to be found in mixed Fe-Ni dumbbells, Ni-Ni
dumbbells are even more unlikely to form, whereas Cr, on
the other hand, can form mixed dumbbells. These results are

TABLE II. Difference between the reference chemical potentials
calculated using DFT, in a pure fcc system, μ0

A, and those calculated in
the AFM1 Fe-10Ni-20Cr system, μFe-10Ni-20Cr

A . The magnetic ordering
considered for the calculations were the AFM1, FM, and nonmagnetic
phases in pure systems (i.e., the lowest energy states) of Fe, Ni, and
Cr, respectively.

Alloying elements Fe Ni Cr

μFe-10Ni-20Cr
A − μ0

A (eV) − 0.07 − 0.002 − 0.249
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TABLE III. Energy range found for each set of formation energy
calculations is presented along with the mean value, the number of
calculation, and the reference state used. For instance, �EV

DFT refers
to the vacancy formation energy.

Point defect
Reference formation Number of Energy Mean
state energy (eV) calculations range (eV) value (eV)

fctAFM1 �EV
DFT 60 1.76–2.19 1.96

�E
[100]Fe-Fe
DFT 60 2.61–3.34 3.02

�E
[010]Fe-Fe
DFT 40 2.72–3.50 3.06

�E
[100]Fe-Ni
DFT 60 2.81–3.80 3.37

�E
[010]Fe-Ni
DFT 40 3.12–3.96 3.48

�E
[100]Fe-Cr
DFT 40 2.68–3.31 3.05

�E
[010]Fe-Cr
DFT 40 2.76–3.41 3.04

�E
[100]Ni-Ni
DFT 40 323–3.95 3.65

�E
[100]Cr-Cr
DFT 40 2.97–3.71 3.31

�E
[100]Ni-Cr
DFT 40 2.94–3.79 3.35

fctAFM1 �E
[100]Fe-Fe
DFT 40 2.75–3.51 3.05

�E
[010]Fe-Fe
DFT 40 2.79–3.56 3.05

not in agreement with the experimentally derived size factors
for Ni and Cr solutes in austenitic SS type 316 and in the
pure materials57 for which Ni is found to be undersized. These
results are not, however, necessarily in contradiction since
the experimental results were obtained at high temperatures.
Indeed, it is worth reminding that at temperatures at which
nuclear reactors operate, Fe-Ni-Cr alloys are paramagnetic,
whereas only the AFM1 state was found to be reliably usable
for DFT calculations. This seems to indicate that volume
elastic effects which are prominent at high temperatures
become negligible relative to the magnetic energies at 0 K.

We also obtained a large energy range for each set of point
defect formations, thus underlying the key role played by the
local environment. In particular, Fig. 3 illustrates the influence
of the number of Ni and Cr 1nn to the vacancy on the formation
energy values EV

f . Indeed, vacancies prefer Ni-rich and Cr-
poor environments.

TABLE IV. Variable notations used to describe the local envi-
ronment surrounding the point defects are represented along with the
number of their atomic sites. 1nn_A variable refers to the number of A

atoms first nearest neighbors to the point defect. 1nnc_A and 1nnt_A

variables refer to the number of A atoms positioned in compressive
and in tensile sites, respectively. 1nncFe_A and 1nncS_A variables
refer to the number of A atoms positioned in compressive sites,
located closer to the Fe atom of the dumbbell and closer to the solute
atom of the dumbbell, respectively.

Local variables Number

1nn_A 12
1nnc_A 8
1nncFe_A 4
1nncS_A 4
1nnt_A 4

The influence of the content of the point defect neighbor
shells was investigated in more detail and it was found that
the point defect formation energies could be estimated using
linear regressions (LRs). The variables considered are listed in
Table IV. The simplest set of variables describing the atomic
arrangement surrounding the point defects is the one which
only considers the number of alloying elements positioned in
their nearest shells. We considered in this work the 1nn of the
point defect center of mass. They will be referred to in the next
sections, as 1nn_A, where A indicates the chemical type of the
neighbor considered. In contrast to the vacancy, the specific
orientation of the dumbbell induces anisotropic relaxations
for atoms belonging to its first shells. We have thus considered
two different variables to describe the first nearest atoms of a
dumbbell defect, by introducing in the notation “t” when the
atom is positioned in a tensile site or “c” when the atom is
positioned in a compressive site. 1nnc_Ni thus refers to a Ni
atom which is situated at 1nn separation of a dumbbell and
in a compressive site, i.e., one of the black spheres in Fig. 4.
It also can be assumed that for both Fe-Ni and Fe-Cr mixed
dumbbells, first nearest atoms positioned in compressive sites
may behave differently when located closer to the Fe atom than
the solute atom of the mixed dumbbell. These two different
kinds of compressive sites have been therefore distinguished

FIG. 3. Evolution of the vacancy formation energy �EV
DFT as a function of the number of nearest-neighbor Ni atoms surrounding the

vacancy 1nn_Ni (left figure). Evolution of the vacancy formation energy �EV
DFT as a function of the number of nearest-neighbor Cr atoms

surrounding the vacancy 1nn_Cr (right figure). These figures display the results for the 60 vacancy configurations performed in the fct AFM1
reference state.
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FIG. 4. Representation of atoms at 1nn separation to a dumbbell defect oriented either along the [100] direction (a) or along the [010]
direction (b), in a fcc lattice. Atoms positioned in compressive sites are represented in gray and atoms in tensile sites are represented in white.
Dumbbell atoms are represented in black. Arrows indicate the local moments in both figures and the magnetic planes of the AFM1 reference
state are shown to aid visualization.

by introducing in the variable notation either “Fe” or “S,”
respectively, when they were positioned in the plane near
either the Fe or the solute atom of the mixed dumbbell. The
1nncFe_Ni variable thus refers to the number of Ni atoms
positioned in compressive sites, located closer to the Fe atom
of the mixed dumbbell. No such differentiation was considered
for tensile sites since they are equidistant from the two atoms
which form the dumbbell.

A systematic study has been performed in order to deter-
mine which variables among those listed in Table IV have
the greatest weight in the estimation of the formation energies
calculated using DFT. The results for each point defect are
summarized in Table V which presents the best estimates
of formation energies using LRs. The adequacy between the
formation energies calculated using DFT, �EDFT, and their
estimated values using multiple LRs, �ELR, was determined

using the Pearson product-moment correlation coefficient
r�EDFT�ELR . Correlation coefficients (CCs) were obtained by
dividing the covariance of the two variables, �EDFT and
�ELR, by the product of their standard deviations as follows:

r�EDFT�ELR

=
∑n

k=1

(
�Ek

DFT − �Ek
DFT

)(
�Ek

LR − �Ek
LR

)
√∑n

k=1

(
�Ek

DFT − �Ek
DFT

)2 ∑n
i=1

(
�Ek

LR − �Ek
LR

)2
,

(8)

where n refers to the number of points considered. This relation
measures the strength of the linear relationship between the
two sets of data �Ek

DFT and �Ek
LR, respectively. The Pearson

correlation is +1 in the case of a perfect positive linear
relationship and −1 in the case of a perfect negative linear
relationship. For intermediate values, the more the Pearson

TABLE V. LRs of interest used to estimate the required energies �E (in eV) to introduce a point defect at different lattice sites of the
AFM1 reference state using DFT, i.e., �EV

DFT and �EFe-A
DFT (A refers to the element type) energies. The obtained parameter values assigned

to the variables displayed at the top of the rows are summarized for each LR along with the crystallographic phase and the LR type which
indicates which DFT data set was fitted. Variables considered, i.e., 1nn_A, 1nnc_A, 1nnt_A, 1nncS_A, and 1nncFe_A (A refers to the element
type), are listed in Table IV. For instance, the best estimate for the formation energy of the [100] dumbbell in the fct phase is obtained by the
formula �E

[100]Fe-Fe
LR = 0.08 × 1nnc_Ni − 0.11 × 1nnc_Cr − 0.05 × 1nnt_Ni − 0.07 × 1nnt_Cr + Cst, where Cst in this precise case is 3.0.

LR type Phase 1nn_Ni 1nn_Cr 1nnc_Ni 1nnc_Cr 1nncFe_Ni 1nncFe_Cr 1nncS_Ni 1nncS_Cr 1nnt_Ni 1nnt_Cr Cst CC

�EV
LR fct −0.04 0.05 2.00 0.74

�E
[100]Fe-Fe
LR fct 0.08 −0.11 −0.05 −0.07 3.00 0.75

�E
[010]Fe-Fe
LR fct 0.15 −0.06 −0.04 −0.07 3.05 0.82

�E
[100]Fe-Fe
LR fcc 0.10 −0.08 −0.01 −0.06 3.05 0.65

�E
[010]Fe-Fe
LR fcc 0.14 −0.05 −0.05 −0.07 3.05 0.75

�E
[100]Fe-Ni
LR fct 0.03 −0.14 −0.08 −0.08 3.40 0.70

�E
[010]Fe-Ni
LR fct 0.12 −0.10 0.03 −0.09 3.50 0.70

�E
[100]Fe-Cr
LR fct 0.02 −0.08 0.01 0.08 3.05 0.57

�E
[010]Fe-Cr
LR fct 0.13 −0.05 0.11 0.12 3.05 0.79
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FIG. 5. Vacancy formation energies (in eV) obtained using
DFT, �EV

DFT, compared with their values estimated using LR 1
in Table V, i.e., �EV

LR = −0.04 × 1nn_Ni + 0.05 × 1nn_Cr + 2.0,
where 1nn_Ni is the number of Ni 1nn and 1nn_Cr is the number of
Cr 1nn to the vacancy. A CC of 0.74 is obtained between these two
sets of energies.

correlation approaches the zero value, the less correlation
exists between the two sets of data �Ek

DFT and �Ek
LR,

respectively.

A. Vacancy formation energies

The parameter values presented for �EV
LR in Table V refers

to the vacancy formation energy. It can be seen that a LR
which considers only the number of Ni and Cr atoms 1nn
to the vacancy (1nn_Cr and 1nn_Ni variables), was sufficient
to obtain a good value of 0.74 for the CC. Parameter values
assigned to these variables have a negative sign for Ni and a
positive sign for Cr, showing that to a first approximation, it
costs on average, a higher energy to introduce a vacancy near
Cr than Ni 1nn atoms. The correlation existing between these
two sets of energies can be seen in Fig. 5. These results are
in strong agreement with the work of Klaver et al. in which
Ni was found to bind to vacancies, while V-Cr interactions
were repulsive.23 Although the neighboring Fe atoms impose
the moment carried by both Cr and Ni atoms as shown in
Fig. 2, no dependence of the evolution of the vacancy formation
energy was found with the first nearest atoms of Fe. Better
estimates can be obtained by performing LRs considering more
variables. In particular, we obtained an improved CC value of
0.80 using the four-parameter LR which takes into account the
number of Cr atoms in the first three shells and the number of
1nn Ni surrounding the vacancy.

It can be mentioned that substitutional disordered fcc
Fe-Ni-Cr alloys in the paramagnetic state were studied by
Delczeg30 using CPA, i.e., by neglecting the local lattice
relaxation and short range order. As forces are not calculated
in this approach, the vacancy relaxation configuration was
obtained by minimizing the energy as a function of the distance
between the first nearest neighbors of the vacancy and of the
supercell volume only. For Fe-10Ni-20Cr, the relaxed vacancy
formation energy was found to be 1.95 eV. The results were
also interpreted in terms of effective chemical potentials,
and the theoretical predictions obtained for homogeneous
chemistry and relaxed nearest-neighbor lattice sites are in line
with the experimental observations as well as our results.

Indeed, Ni was found to decrease and Cr to increase the
vacancy formation energy of this ternary system.

B. Fe-Fe dumbbell formation energies

Similarly to what has been done in the case of vacancies,
LRs of the DFT data were performed for each dumbbell
studied. However, in the case of Fe-Fe dumbbells, we also
considered the number of atoms in tensile and in compressive
sites. In this section, the DFT formation energies of Fe-
Fe dumbbells oriented along the [100] axis, �E

[100]Fe-Fe
DFT ,

and along the [010] axis, �E
[010]Fe-Fe
DFT , are compared to

their best estimates using LRs �E
[100]Fe-Fe
LR and �E

[010]Fe-Fe
LR ,

respectively, in Table V. The LRs were performed in both fcc
and fct AFM1 reference states to analyze the impact of the
calculation method on results.

The results obtained in the fct phase show first that, as
in the case of the vacancy, the knowledge of the number
of Cr and Ni 1nn to the Fe-Fe 〈100〉 dumbbell allows a
correct estimate of the formation energies. However, the best
estimates were obtained when distinguishing between Cr and
Ni atoms positioned in tensile sites, from those positioned
in compressive sites. The LRs presented in Table V provide
estimates of �E

[100]Fe-Fe
DFT and �E[010]Fe-Fe

DFT energies with CC
values of, respectively, 0.75 and 0.82 in the fct phase. This
proves the different role played by atoms positioned in tensile
and compressive sites. The corresponding correlation existing
between the DFT values �E

[100]Fe-Fe
DFT and their estimated values

�E
[100]Fe-Fe
LR can be seen in Fig. 6.

The different parameter values obtained for these LRs
confirm that both Cr and Ni atoms positioned in tensile
and compressive sites do not contribute equally to the 〈100〉
Fe-Fe formation energy. The most prominent element proving
this feature is the negative parameter values obtained for the
1nnt_Ni variable, whereas the parameter values assigned to
the 1nnc_Ni variable are positive. Furthermore, the relative

FIG. 6. Formation energies (in eV) of Fe-Fe dumbbells ori-
ented along the [100] direction obtained using DFT, �E

[100]Fe-Fe
DFT ,

compared to their values estimated using the LR 2 in
Table V, i.e., �E

[100]Fe-Fe
LR = 0.08 × 1nnc_Ni − 0.11 × 1nnc_Cr −

0.05 × 1nnt_Ni − 0.07 × 1nnt_Cr + 3.0. 1nnc_Ni and 1nnc_Cr
variables correspond, respectively, to the number of Ni and Cr
1nn, positioned in compressive sites. 1nnt_Ni and 1nnt_Cr variables
correspond, respectively, to the number of Ni and Cr 1nn, positioned
in tensile sites. CC of 0.75 is obtained between these two sets of
energies.
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importance between compressive and tensile sites was inves-
tigated by performing two-parameter LRs taking into account
Cr and Ni atoms positioned either only in tensile or only in
compressive sites. Better CC values of 0.70 and 0.79 were
found in the latter case, i.e., by only considering compressive
sites in the estimate of �E

[100]Fe-Fe
DFT and �E

[010]Fe-Fe
DFT energies,

respectively, thus showing the stronger influence of compres-
sive sites.

Unlike the case of vacancies, the parameter values presented
in Table V show that it cost more energy to introduce
Fe-Fe 〈100〉 dumbbells near Ni atoms than near Cr atoms.
These results are in agreement with previous findings on
binding energies of single Ni and Cr solutes to 〈100〉 Fe-Fe
self-interstitial dumbbells, in pure fcc Fe, where Ni and Cr
in compressive sites generally exhibited negative and positive
binding energies, respectively.23

The same general conclusions as those presented in this
section for the fct phase can be drawn for calculations
performed in the fcc phase. Furthermore, no important changes
in the LR parameters are observed relative to those obtained in
the fct phase, as can be seen in Table V. The constraint on the
supercell does not seem to affect too strongly the relationship
between the local environment and the point defect energies.

One interesting result to note is that the LRs mostly yield
similar coefficients for dumbbells oriented differently, i.e.,
whether the Fe-Fe dumbbells are oriented along the [100]
direction (perpendicular to the AFM1 magnetic planes) or
along the [010] direction (parallel to the AFM1 magnetic
planes). Indeed, the effective interactions associated to the
LRs found for the Ni and Cr solutes with point defects
are consistent with what would intuitively be expected of
moderately oversized and undersized solutes, respectively.23

Ni binds to the vacancy and is repelled from the compressive
sites of 〈100〉 Fe-Fe dumbbells, whereas Cr atoms generally
exhibit the opposite tendencies. It also can be mentioned that
the parameter values found for �E

[010]Fe-Fe
LR are all higher than

the ones found for �E
[100]Fe-Fe
LR in Table V. However, the CCs

are not very sensitive to the exact choice of LR parameter
values. Slight variations in the LR parameters render very
similar CCs. Therefore, it is not straightforward to conclude
on the significance of the LR parameters that are finally chosen.

Differences in the effective interactions can, however, be
expected owing to the fact that the local magnetic environment
felt by dumbbell atoms introduced in the reference state
strongly depends on the dumbbell axis relative to the AFM1
magnetic planes. Indeed, whatever the dumbbell orientation,
there are on average as many spin-up as spin-down 1nn atoms
in the AFM1 state, as represented schematically in Fig. 4.
However, significant differences in the magnetic moment
distribution exist for the tensile and the compressive sites. This
feature is illustrated in Fig. 7, which represents the magnetic
moments of the Fe atoms 1nn to an Fe-Fe dumbbell plotted
as a function of their ionic relaxations, i.e., the displacement
the atoms underwent after the dumbbell was introduced. The
ionic relaxations will be noted as δd

[100]Fe-Fe
DFT or δd

[010]Fe-Fe
DFT

depending on whether the dumbbell was introduced along
the [100] or the [010] axis. Note that the sign of the ionic
relaxation is a simple way of visualizing whether the atom is
in a compressive site or in a tensile one. These figures clearly
show significant differences whether Fe-Fe dumbbells are
oriented along the [100] direction or along the [010] direction.
Depending on the orientation of the dumbbell axis, the Fe
moments are not distributed equivalently between tensile and
compressive sites. Indeed, when the dumbbell is introduced
with its axis perpendicular to the AFM1 magnetic planes
[Fig. 4(a)], moments on Fe atoms in tensile sites are positive,
whereas moments on Fe atoms in compressive sites (all with
negative values in the reference state) have mostly negative
values (about two-thirds in Fig. 7) due to a significant number
of moment flips induced by the introduction of the [100]
dumbbells, as will be discussed later. However, when the
dumbbell is introduced with its axis parallel to the AFM1
magnetic planes [FIG. 4(b)], moments on Fe atoms in tensile
sites are negative, but moments on Fe atoms in compressive
sites can be either positive or negative. This arises from
the specific configuration of the AFM1 structure. Indeed,
compressive sites lie within two planes “down,” whereas
tensile sites lie within a single plane “up” when interstitials
are introduced with their axis perpendicular to the AFM1
magnetic planes, as can be seen in Fig. 4. Similarly, tensile
sites lie within a single plane “down,” whereas compressive
sites lie within two planes having, on average, the same
amount of Fe atoms with moments “up” and “down” when

FIG. 7. Magnetic moments of Fe atoms 1nn to Fe-Fe dumbbells measured in the defect containing lattices m as a function of their ionic
relaxations, i.e., δd

[100]Fe-Fe
DFT or δd

[010]Fe-Fe
DFT depending on whether dumbbells were introduced along the [010] axis (left figure) or the [100] axis

(right figure). Atoms in tensile sites (1nnt) are represented as open squares and atoms in compressive sites (1nnc) are represented with open
triangles. Moments on Fe atoms of dumbbells are also represented along the zero abscissa (black squares).
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FIG. 8. Average values of DFT magnetic moments (in μB ), 〈m〉, for atoms that are 1nn to 〈100〉 Fe-Fe dumbbells. The values displayed in
parentheses refer to the mean value of the absolute of moments.

interstitials are introduced with their axis parallel to the
AFM1 magnetic planes. As a result, both Cr and Ni atom
moments, which are imposed by 1nn Fe atom moments as
shown in Fig. 2, also present significant differences if the

Fe-Fe dumbbell is oriented along the [100] direction or along
the [010] direction. The major trends can be seen schematically
in Fig. 8, which presents, for the specific case of 〈100〉 Fe-Fe
dumbbells, the mean values of the magnetic moments carried

TABLE VI. Average values of DFT magnetic moments 〈m〉 for atoms that are 1nn to sites where defects were introduced in the reference
state (without defect), and for atoms that are 1nn to defects (with defect). For each defect type, the relevant 1nn sites are considered: 1nn
refers to first nearest-neighbor atoms; 1nnc and 1nnt refer to atoms positioned in compressive and in tensile sites, respectively; 1nncFe and
1nncS refer to atoms positioned in compressive sites, located closer to the Fe atom of the dumbbell and closer to the solute atom of dumbbells,
respectively; and “Defect” refers to atoms positioned at defect sites. The values displayed in parentheses refer to the mean value of the absolute
of moments.

〈m〉 (μB ) 〈m〉 (μB )

Without defect With defect

Point defect type Site type Fe Cr Ni Fe Cr Ni

Vacancy 1nn −0.35 −0.49 0.02 −0.58 −0.29 −0.03
Defect 1.37

[100]Fe-Fe 1nnt 1.41 0.87 0.04 1.93 (1.93) 0.92 (0.94) 0.06 (0.09)
1nnc −1.29 −0.89 0.13 −0.34 (0.85) −0.61 (0.61) 0.16 (0.16)

Defect 1.37 0.37 (0.37)
[010]Fe-Fe 1nnt −1.23 −0.90 0.09 −1.99 (1.99) −1.17 (1.19) 0.03 (0.14)

1nnc 0.05 −0.19 −0.05 0.00 (0.93) 0.03 (0.39) −0.11 (0.17)
Defect 1.37 −0.21 (0.25)

[100]Fe-Ni 1nnt 1.43 0.92 −0.15 2.03 (2.03) 1.34 (1.34) −0.15 (0.15)
1nncFe −1.29 −0.90 0.11 −0.44 (0.76) −0.59 (0.59) 0.18 (0.18)
1nncNi −1.28 −0.91 0.11 −1.17 (1.36) −0.59 (0.59) 0.11 (0.11)
Defect 1.37 0.74 (0.73) −0.07 (0.11)

[010]Fe-Ni 1nnt −1.19 −0.95 0.12 −2.05 (2.05) −1.30 (1.30) 0.08 (0.08)
1nncFe 0.08 −0.26 −0.02 −0.17 (0.85) 0.05 (0.38) −0.13 (0.17)
1nncNi 0.08 −0.26 −0.02 −0.16 (1.36) −0.13 (0.52) −0.11 (0.17)
Defect 1.51 −0.65 (0.65) −0.21 (0.21)

[100]Fe-Cr 1nnt 1.46 0.77 −0.10 1.85 (1.85) 0.82 (0.83) −0.08 (0.09)
1nncFe −1.21 −0.98 0.11 −0.50 (0.89) −0.63 (0.63) 0.11 (0.12)
1nncCr −1.20 −0.99 0.12 −0.13 (0.57) −0.59 (0.59) 0.09 (0.09)
Defect 1.51 0.20 (0.22) 0.11 (0.18)

[010]Fe-Cr 1nnt −1.19 −0.95 0.12 −1.88 (1.88) −1.15 (1.15) 0.09 (0.09)
1nncFe 0.08 −0.26 −0.02 0.01 (0.98) −0.06 (0.39) −0.06 (0.12)
1nncCr 0.08 −0.26 −0.02 −0.22 (0.69) −0.05 (0.34) −0.03 (0.10)
Defect 1.51 −0.01 (0.11) 0.13 (0.16)
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by atoms positioned at defect sites and their 1nn sites, and in
Table VI, which summarizes the same information but for all
the point defects studied and compared to bulk calculations.
It can be seen in Table VI that whatever the orientation of
the dumbbell axis, the magnitude of the moments carried by
the Fe and Cr atoms has been globally reduced for the atoms
in the compressive sites (1nnc) and enhanced for those in
the tensile sites (1nnt) by the introduction of the defect.
Furthermore, the moments carried by the dumbbell atoms are
significantly reduced compared to the moment of the Fe atom
which was at the site the dumbbell was created (defect-free
reference state). These trends are in accordance with previous
studies on bcc Fe.58 Finally, the moments of Fe dumbbells
are more reduced when introduced along the [010] direction
(negative sign on average) rather than along the [100] direction
(positive sign on average). To be more specific, as can be easily
seen in Fig. 8, most of the Fe-Fe dumbbell atoms introduced
along the [100] axis have positive moments (0.37μB), whereas
their first nearest Cr and Ni exhibit on average, in compressive
sites, negative (−0.61μB ) and positive (0.16μB) moments,
respectively. In this case, the moment interactions between
the point defects and these atoms seem to be favorable since,
on average, Fe atoms of dumbbells have antiferromagnetic
interactions with Cr atoms and ferromagnetic interactions
with Ni atoms as in Fig. 2. When Fe-Fe dumbbell atoms are
introduced along the [010] axis, the situation is different. Fe
atoms of the dumbbells have an average moment −0.21μB and
almost no interaction with Cr and Ni atoms (whose moments
are, respectively, on average 0.03μB and −0.11μB ). In this
case, almost one-third of the Fe atoms in the compressive sites
have flipped spins, and the effect of the Ni and Cr atoms are
thus less important.

It can be noted that the reference state seems to be more
stable against the addition of a [010] dumbbell than that of a
[100] dumbbell. For the latter, significant instabilities in the
moments of the Fe atoms in compressive sites can be seen
in Fig. 7. Indeed, Fe atoms positioned in compressive sites
of [100] oriented dumbbells are prone to important moment
variations, which can even sometimes alter locally the AFM1
ordering, as shown previously. This is not observed for the
[010] oriented dumbbells. Thus, the AFM1 magnetic structure
seems more robust against addition of [010] Fe-Fe dumbbells,
which may account for the better CC values obtained system-
atically for the LRs. This behavior can be easily understood
since [010] dumbbell atoms lie inside AFM1 planes, whereas
[100] dumbbell atoms lie in between two magnetic planes,
thus breaking the AFM1 symmetry. Moments carried by [100]
dumbbell atoms are therefore expected to be more prone
to unpredictable variations owing to their proximity with
both magnetic planes “up” and “down.” This behavior has
been confirmed by performing dumbbell calculations with
different initial magnetic configurations (up-up, up-down, and
down-down) which led to different final moments for the
dumbbell atoms.

Despite the different magnetic interactions found between
[100] and [010] oriented dumbbells and knowing the key role
played by atoms in compressive sites in the evaluation of the
formation energy as shown by the LRs presented previously,
we find that the dumbbell formation energies are nevertheless
similar on average whether the dumbbell is oriented along

the [100] or the [010] direction, as can be seen in Table III.
This result suggests that it is the chemical composition of the
first shell of atoms surrounding the Fe-Fe dumbbells which
provides the largest contribution to the formation energy values
and that the magnetic interactions between dumbbell atoms
and their 1nn in tensile or compressive sites constitute second-
order effects.

C. Mixed dumbbell formation energies

In this section, the results obtained for mixed dumbbells
are analyzed. As two different atoms form the dumbbells, the
position of the atoms in compressive sites relative to the mixed
dumbbells was also considered in the LR variables.

The parameter values presented for �EFe-Ni
LR and �EFe-Cr

LR
in Table V follow the same trends as those observed for
the Fe-Fe dumbbells. First of all, Cr and Ni positioned in
compressive sites were also found to impact strongly on the
calculated formation energies. Furthermore, in this case, the
more one differentiates between the different types of sites
that are 1nn to the mixed dumbbells, the better the estimates
are of the point defect formation energies. Thus, the best CCs
were obtained by differentiating between the compressive sites
located closer to the Fe or closer to the solute atom of the
dumbbell, i.e., by considering both 1nncFe_A and 1nncS_A

variables, respectively, instead of the 1nnc_A variable defined
in Table IV. The analysis of the parameter values assigned to
these variables shows that the formation energies depend on
how the Cr and Ni atoms in compression sites are positioned
with respect to the mixed dumbbell. Indeed, parameters
presented in Table V for �EFe-Ni

LR and �EFe-Cr
LR can have similar

as well as different values depending on the location of the 1nn
in compressive sites relative to the dumbbell atoms.

In the case of the Fe-Ni [100] dumbbell, for instance, the
presence of Cr atoms positioned in compressive sites tends
to decrease the formation energy whatever their positions are
relative to the mixed dumbbell. This tendency seems to be
more pronounced when Cr atoms are located closer to the Fe
atom in the dumbbell (the magnitudes of the parameter values
assigned to the 1nncFe_Cr variable are larger), but as in the
case of 〈100〉 Fe-Fe dumbbells, slight variations in the LR
parameters render very similar CCs, thus making the results
difficult to interpret. Parameter values assigned to the number
of Ni atoms in compressive sites, however, have opposite signs
depending on their location. The occurrence of Ni atoms in
compressive sites located next to the Fe atom of the [100]
Fe-Ni dumbbell tends to increase the formation energy, as was
found for the 〈100〉 Fe-Fe dumbbell in the previous section.
However, when located next to the Ni atom of the [100] Fe-Ni
dumbbell, they tend to decrease the formation energy. These
more energetically favorable interactions found for Ni-Ni pairs
are in agreement with results obtained by Klaver et al.,23 which
generally found a modest attraction of Ni-Ni pairs in pure
fcc Fe. No such behavior was observed for the [010] Fe-Ni
dumbbell, for which both Cr and Ni atoms in compressive
sites seem to have similar influence on the formation energy,
whatever their positions relative to the mixed dumbbells. These
different effective interactions found between the Ni atom in
the dumbbell (oriented either along the [100] or the [010] axis)
and its first nearest Ni in compressive sites, though, do not
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necessarily contradict each other owing to the strong influence
of the magnetic state on the binding energies found by Klaver
et al.23 In particular, Ni-Ni pairs generally exhibited modest
attractions in the AFM1 state but repulsive binding in the
AFMD state.

In the case of the Fe-Cr dumbbells, we found that it is
necessary to take into account the position of Cr and Ni
atoms in compression sites relative to the mixed dumbbell to
obtain good estimates of the DFT formation energies. Indeed,
whatever the direction of the dumbbell axis, bad estimates
(small CC values) were found otherwise. The CC values
are found to be considerably enhanced by describing more
accurately the first shell surrounding the Fe-Cr dumbbells.
Indeed, the addition of one Cr in the dumbbell seems, whatever
the dumbbell orientation, to have a strong impact on the
behavior of the local environment. In particular, the parameter
values of the two variables describing the effective interactions
between Cr atoms in compressive sites and the two atoms of
the dumbbells (1nncS_Cr and 1nncFe_Cr variables) exhibit
opposite signs. Negative values are obtained when the Cr
atoms in compressive sites are close to the Fe atom of the
dumbbell which indicates favorable interactions. However,
when the Cr atoms in compressive sites are close to the Cr atom

of the mixed dumbbell, these interactions are unfavorable, in
agreement with the strong Cr-Cr repulsion in pure fcc Fe for
three different magnetic structures.23 It may be mentioned that
very similar repulsive interactions are also found for Cr-Cr
pairs in bcc FM Fe (Refs. 58 and 59) at short separation
distances.

It is worth mentioning that magnetic moments of the Fe,
Cr, and Ni atoms 1nn to the mixed dumbbell follow the same
trends as those displayed for the 〈100〉 Fe-Fe dumbbell, as
can be seen in Table VI. Indeed, moments measured in the
reference state are, on average, enhanced with the addition of
the [100] oriented dumbbell, whereas with the addition of the
[010] oriented dumbbell, the moment amplitudes are generally
reduced in both compressive and tensile sites. The solute atom
in mixed dumbbells can have a strong impact on the moments
measured on atoms in the compressive sites as can be easily
seen in Fig. 9. In particular, the Ni atom of Fe-Ni dumbbells
tends to decrease the values of Fe moments in the compressive
sites. The moments also depend on the location of the 1nn in
compressive sites relative to the dumbbell atoms. This feature
is particularly significant for the mixed dumbbells oriented
along the [100] axis for which Fe moments are weaker when
located next to the Ni atom of the Fe-Ni dumbbell and greater

FIG. 9. Average values of DFT magnetic moments (in μB ), 〈m〉, for atoms that are 1nn to 〈100〉 mixed dumbbells. The values displayed in
parentheses refer to the mean value of the absolute of moments.
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when located next to the Cr atom of the Fe-Cr dumbbell,
relative to the case of [100] Fe-Fe dumbbells. Furthermore,
the mean values of moments found for the Fe atom of the
mixed dumbbell are on average, respectively, positive for the
[100] oriented dumbbell and negative for the [010] dumbbell,
as previously found for the 〈100〉 Fe-Fe dumbbells. Their mean
amplitudes are, however, greater for the Fe-Ni dumbbells and
weaker for the Fe-Cr dumbbells relative to those measured in
the Fe-Fe dumbbells. The mean values of moments carried by
the Ni atom of the mixed dumbbell are negative for both kinds
of dumbbell. Lower values are nevertheless found for the Ni
atom of the [010] oriented dumbbell. These results underline
again the significant impact of the direction of the dumbbell
axis. By contrast, the mean values of moments carried by the
Cr atom of the mixed dumbbell are positive for both kinds of
dumbbell and are of equal magnitude.

V. CONCLUSIONS

We have determined point defect formation energies in an
fcc Fe-10Ni-20Cr model alloy. In order to select the most
appropriate reference state, we modeled PM, AFM1, AFMD,
and FM structures. The most stable state obtained using DFT
is AFM1, which was therefore used for the point defect
calculations. A study of this reference state showed that the
moments of the Cr and Ni atoms are ruled by the moments of
their nearest-neighbor Fe atoms. We estimated μFe-10Ni-20Cr

A (A
refers to the element type) chemical potentials for Fe, Ni, and
Cr atoms, by calculating the minimum of substitution energy
on most of the 180 Fe, 50 Cr, and 26 Ni atoms sites. Our
extensive set of point defect calculations based on DFT shows
a large energy range for each set of point defect formations,
thus underlying the importance of the local environment in
concentrated alloys. In particular, we underline the key role
played by the atoms of the first shell surrounding the point
defects in the formation energy values. The main results can
be summarized as follows:

(1) The simple knowledge of the number of Ni and Cr
atoms 1nn to the vacancy (1nn_Ni and 1nn_Cr, respectively)
is sufficient to estimate with a reasonable agreement the DFT
data. The vacancy formation energy decreases (increases) with
increasing amount of Ni (Cr) neighbors.

(2) Inversely, linear regressions usually showed that the
more first neighbor Ni atoms the larger the dumbbell formation
energy, whereas the more first neighbor Cr atoms the lower the
dumbbell formation energy.

(3) Dumbbell formation energies are best estimated by
linear regressions using the variables describing the effective
interactions between Cr and Ni atoms in compressive sites
and for the dumbbell atoms (i.e., 1nnc_Ni and 1nnc_Cr for
self-interstitials and 1nncFe_Ni, 1nncFe_Cr, 1nncS_Ni, and
1nncS_Cr for mixed dumbbells).

(4) The chemical composition of the first shell of atoms
surrounding the Fe-Fe dumbbells provides the largest con-
tribution to the formation energy values, whereas magnetic
interactions between dumbbell atoms and their 1nn in tensile
or compressive sites seem to present second-order effects.

(5) The interactions of Ni and Cr solutes with point defects
in fcc Fe-10Ni-20Cr are consistent with what would intuitively
be expected of moderately oversized and undersized solutes,

respectively. Ni binds to the vacancy and is generally repelled
from the compressive sites of 〈100〉 Fe-Fe dumbbells but shows
positive binding in the tensile sites. Cr exhibits the opposite
tendencies. The same conclusions can be drawn for the self-
interstitial atom formation energies. Indeed, Ni is very unlikely
to be found in mixed Fe-Ni dumbbells or in Ni-Ni dumbbells.
Cr, on the other hand, can form mixed dumbbells. These results
are not, however, in agreement with the experimentally derived
size factors for Ni and Cr solutes in type 316 SS and in the
pure materials.57

(6) A few differences can be reported for the mixed
dumbbells compared to 〈100〉 Fe-Fe dumbbells. In particular,
when located next to the Ni atom of the [100] Fe-Ni dumbbell,
Ni atoms tend to decrease the formation energy. Similarly,
located next to the Cr atom of the [100] Fe-Cr dumbbell, Cr
atoms tend to increase the formation energy. These results are
consistent with the strong Cr-Cr repulsion and the energetically
favorable interactions found for Ni-Ni pairs by Klaver et al. in
pure fcc Fe.23

These results are of interest as they provide insight about
interactions which occur in fcc Fe-Ni-Cr model concentrated
alloys. In particular, such information is required to build
reliable cohesive models to model the microstructure evolution
of concentrated austenitic stainless steels used in the nuclear
industry.
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APPENDIX: CALCULATION OF CHEMICAL POTENTIALS

Although naturally defined at constant temperature and
pressure, the chemical potential can also be calculated in
constant volume and temperature simulations:

∂F

∂NA

∣∣∣∣
T ,V,NB 	=A

= μA.

At finite temperature, the excess chemical potential differences
�μex = (μB − μid

B ) − (μA − μid
A), where μB refers to the

chemical potential of species B and μid
B refers to the ideal

contribution of μB , are usually calculated using Widom-type
substitution techniques47 which, in principle, can be done
either at constant pressure or at constant volume. This consists
of simulating the nonsubstituted reference system “A” of
energy UA (containing NA atoms of type A and NB atoms
of type B) with a Monte Carlo procedure, and estimating the
excess chemical potential difference by canonical averages
of the exponential of the substitution energy �A→BE =
EB − EA:

�A→Bμex = −β−1ln〈exp(−β�A→BE)〉A,

where β = (kBT )−1 and 〈〉A denotes the canonical average on
the “A” system configurations. Stating the ratio of the ideal
gas contributions gives60

�A→Bμ = −β−1 ln

〈
NB

NA + 1
exp(−β�A→BE)

〉
A

.
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In practice, to obtain accurate estimates of the chemical po-
tential differences, it is safer to realize the inverse substitution
starting from a “B” system of energy EB with an additional B

atom (containing NA − 1 A-type atoms and NB + 1 B-type
atoms) as a reference, and to make a canonical average on the
“B to A” substitution energies �B→AE = EA − EB :

�B→Aμ = −β−1ln

〈
NA

NB + 1
exp(−β�B→AE)

〉
B

. (A1)

For the purpose of calculating defect formation energies from
Eq. (1) to Eq. (3), calculations of the chemical potentials
of the species involved in the defects are required. Precise
calculations of chemical potentials by DFT methods would
be extremely time consuming. This would require, depending

on temperature, sampling a large number of configurations by
a Monte Carlo Metropolis procedure. Thus, the estimates of
chemical potentials we present are in fact only zero Kelvin
reference energies in VASP for the addition or the removal of a
given type of atom in our AFM1 reference state (simply called
chemical potential and referred to as μFe-10Ni-20Cr

A , where
A refers to the element type), thus neglecting any entropic
contribution. The zero Kelvin equivalent of Widom-type
substitution techniques and associated Monte Carlo procedure
for estimates of �μ would be to estimate it from the minimum
value of substitution energies sampled. Indeed, the limit of
Eq. (A1) for β−1 →

T →0
0, the ideal gas contribution vanishes

and

�A→Bμ = −β−1ln 〈exp(−β�A→BE)〉A

≈ −β−1ln

[
1

n

n∑
i=1

exp(−β�A→BEi)

]

= −β−1ln

(
1

n
exp

[−β min
k

(�A→BEk)
] n∑

i=1

exp
{−β

[
�A→BEi − min

k
(�A→BEk)

]})

= −β−1ln

⎡
⎣1

n
exp

[−β min
k

(�A→BEk)
]⎛
⎝1 +

n∑
i=1,i 	=j

exp
{−β

[
�A→BEi − min

k
(�A→BEk)

]}⎞⎠
⎤
⎦

= −β−1ln
{
exp

[−β min
k

(�A→BEk)
]} − β−1ln

(
1

n

)
− β−1ln

⎡
⎣1 +

n∑
i=1,i 	=j

exp (−βεi)

⎤
⎦

→
β−1→0

min
k

(�A→BEk),

where j is such that �A→BEi = mink(�A→BEk), εi = �A→BEi − mink(�A→BEk) > 0 for any i 	= j , and where the sum over
k is made on the substitution energies sampled in the AFM1 configuration. Similarly, we have �B→Aμ →

β−1→0
mink(�B→AEk).
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