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nonlocal transport, and supercurrent
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We theoretically study the superconducting proximity effect in silicene, which features massive Dirac fermions
with a tunable mass (band gap), and compute the conductance across a normal-superconductor (N-S) silicene
junction, the nonlocal conductance of an N-S-N junction, and the supercurrent flowing in an S-N-S junction. It is
demonstrated that the transport processes consisting of local and nonlocal Andreev reflection may be efficiently
controlled via an external electric field owing to the buckled structure of silicene. In particular, we demonstrate that
it is possible to obtain a fully spin-valley-polarized crossed Andreev reflection process without any contamination
of elastic cotunneling or local Andreev reflection, in stark contrast to ordinary metals. It is also shown that the
supercurrent flowing in the S-N-S junction can be fully spin-valley polarized and that it is controllable by an
external electric field.
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With the advent of graphene [1] and topological insulators
[2], the study of Dirac fermions in condensed matter systems
[3] has become one of the most active research fields in
physics over the past decade. Condensed matter systems with
such a “relativistic” electronic band structure are intriguing
examples of low-energy emergent symmetries (in this case,
Lorentz invariance). This has led to a tremendous amount of
interest in terms of possible application value as well as from
a fundamental physics viewpoint.

One of the most recent advances in this field has been
the synthesis of silicene [4] which consists of silicon atoms
arranged in a honeycomb pattern with a buckled sublattice
structure [5]. As in graphene, the states near the Fermi
energy may be described by Dirac theory at two valleys K

and K ′, but an important difference is that the fermions are
massive in silicene due to a spin-orbit coupling which is
much larger than in graphene. As a result, silicene is under
the right circumstances a quantum spin Hall insulator with
topologically protected edge states. In fact, it is possible [6] to
achieve a rich variety of topological states in silicene due to a
unique feature: The buckled structure causes the sublattices to
respond differently to an applied electric field, which in turn
induces a fermion mass gap which is tunable. Closing and
reopening this gap allows for a transition between different
topological phases at a critical field value |Ez| = Ec, as shown
in Fig. 1(a).

The combination of a superconducting proximity effect
with topologically protected edge states is currently gen-
erating a lot of interest due to the possibility of creating
Majorana fermions in this manner [2,7–10]. However, studies
of proximity-induced superconductivity in silicene are still
lacking. In this Rapid Communication, we investigate pre-
cisely this topic and focus on the signature of the Andreev
reflection process, both locally and nonlocally [which is
usually dubbed crossed Andreev reflection (CAR)]. We find
that the possibility to tune both the band gap via an electric
field Ez as well as the local Fermi level via a gate voltage
provides an unparalleled control over the Andreev reflection
process in silicene. In particular, we find that it is possible

to generate a pure crossed Andreev reflection signal without
any contamination from elastic cotunneling. It is also shown
that the supercurrent flowing in the superconductor-normal-
superconductor (S-N-S) junction may be fully spin-valley
polarized and that it is controllable by an external electric
field. This finding, combined with the observation that the
Andreev reflection process is fully spin-valley polarized, as
will be described in detail later, demonstrates that silicene
provides a unique environment for obtaining controllable
superconducting transport with no counterpart in graphene
or topological insulators. These results may pave the way
for different perspectives for quantum transport polarized
with different degrees of freedom, namely, the combined
spin-valley product.

We consider a silicene layer made up by a buckled
honeycomb lattice consisting of two sublattices A and B [11].
Using a tight-binding formalism, one obtains the following
lattice Hamiltonian [6,12,13]:

H = −t
∑
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c
†
iαcjα + iλ
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Here, t is the hopping element, λ is the effective spin-orbit
coupling parameter, 2l is the separation between the A and
B sublattices in the z direction, Ez is an applied electric
field, ζi = ±1 for the A (B) sites is the staggered sublat-
tice potential term, while νij = (di × dj )/|di × dj | having
defined di and dj as the two nearest bonds connecting
the next-nearest neighbors. To describe quantum transport
in the presence of a superconducting proximity effect, we
derive an effective low-energy theory [11] for excitations
near the Dirac points Kη, η = ±. In the end, we obtain
the following k-space Hamiltonian when using a basis

1098-0121/2014/89(2)/020504(5) 020504-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.020504


RAPID COMMUNICATIONS

JACOB LINDER AND TAKEHITO YOKOYAMA PHYSICAL REVIEW B 89, 020504(R) (2014)

Eg

Ez

Δ

kF

Eg

1

2

N S

+Ec−Ec

2λSO

(a) (b)

(c) (d)

SCSC
V V

SC

FIG. 1. (Color online) (a) Plot of the insulating gap Eg of normal-
state silicene vs an applied electric field Ez perpendicular to the plane.
(b) Band structure in an N-S silicene junction. The two conduction
bands are split at k = 0. The process “1” indicates an incoming
quasiparticle from one of the conduction bands, whereas “2” indicates
the lost electron in the valence band when Andreev reflection occurs.
(c) An effective N-S silicene bilayer where superconductivity is
induced via a proximate superconducting lead. (d) An effective N-S-N
silicene junction to probe nonlocal transport.

ψ
†
k = [(ψA

k,σ )†,(ψB
k,σ )†,ψA
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Hσ,Kη+k = ψ
†
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†
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)
,

(2)
Ĥ0 = (lEz − ησλSO)τ̂z − μ1̂ + vF (ηkxτ̂x − kyτ̂y),

with λSO = λ/2. Since we shall consider a hybrid junction con-
sisting of normal silicene and a silicene region with proximity-
induced superconductivity, it is instructive to discuss the
eigenvalues and band structure in these regions separately.
In the normal state, silicene is an insulator with topological
properties that may be controlled by an external electric
field, as discussed previously. The excitation energies read
Eη,σ (k) = ±

√
k2 + (lEz − ησλSO)2, having set the chemical

potential μN = 0. The gap between the conduction and valence
band is then Eg = 2|lEz − ησλSO| and we set vF = 1 for
brevity of notation.

To allow for proximity-induced superconductivity in the
region x > 0, it is natural to include an electric doping level
and thus a chemical potential μS � λSO,�0 in order to have a
finite carrier density at the Fermi level. The eigenvalues then

read Eη,σ (k) = ±
√

[
√

k2 + (lEz − ησλSO)2 ± μS]2 + |�0|2.
It is now instructive to compare the band structures in the N and
S regions visually, as done in Fig. 1(b). It is seen that in order
for Andreev reflection to occur, the excitation gap in the N part
must be smaller than the proximity-induced superconducting
gap �0. In this way, an incoming electronlike quasiparticle
from the N side with energy E (which must satisfy E > Eg/2
since there exist no states within the insulating gap) may be
either normally reflected within the same conduction band or
Andreev reflected. In the latter case, an electron of opposite
spin is removed from the valence band and consequently the
Andreev reflection process in undoped silicene is intrinsically
specular: The Andreev-reflected hole has a group velocity
parallel to its momentum.

Based on these observations, we are now in a position to
write down the wave functions in the N and S regions as
follows. At the interface x = 0, we find that

ψN = 1√
2Eτ+

[ηkF eiηθ ,τ+,0,0]

+ re√
2Eτ+

[−ηkF e−iηθ ,τ+,0,0]

+ rh√
2Eτ−

[0,0,ηkF e−iηθ ,τ−], (3)

ψS = te√
2

[ηeiηθS u+,u+,ηeiηθS u−e−iφ,u−e−iφ]

+ th√
2

[−ηe−iηθS u−eiφ,u−eiφ, − ηe−iηθS u+,u+].

The scattering coefficients re
η,σ , rh

η,σ , t eη,σ , thη,σ denote normal
reflection, Andreev reflection, and transmission as elec-
tronlike and holelike quasiparticles, respectively. The angle
of incidence and transmission are related via kF sin θ =
μ sin θS , where kF =

√
E2 − (lEz − ησλSO)2 and we have

defined τ± = E ± (ησλSO − lEz) in addition to u± = [1/2 ±√
E2 − �2

0/2E]1/2. We note in passing that since the incident
quasiparticles must have E > (ησλSO − lEz) in order to
exceed the insulating gap, τ± is always real and positive. Since
μS � kF , we may set θS = 0 for more transparent results.

The scattering coefficients may now be computed by
matching the wave functions at the interface x = 0 (as follows
from conservation of current flux, v̂xψ with v̂x = ∂Ĥ/∂kx)
and subsequently used to find the conductance spectrum of
the junction in the presence of an applied voltage: G/GN =
1
4

∑
η,σ

∫ π/2
−π/2 dθ cos θ (1 + |rh

η,σ |2 − |re
η,σ |2). Note that an im-

portant difference from graphene is that here we cannot make
use of a valley degeneracy: The contribution to the charge
conductance from each valley must be computed separately.
From the boundary conditions, one then obtains an explicit
analytical expression for the normal and Andreev reflection
coefficients as follows:

re = 2 cos βϒ(θ )D−1, rh = 4ei(ηθ−φ)kF cos θD−1, (4)

with ϒ(θ ) = ∑
± ±e±iηθ τ∓, D = 4(ikF sin β cos θ +

E cos β), and eiβ = u+/u−. As a consistency check, one
may consider the “graphene” limit of the above results where
λSO = Ez = 0. In this case, we have kF = τ± = E, so that
one finds rh = e−i(β+φ) for θ = 0. This agrees with the result
of Ref. [14], which found unity Andreev reflection probability
even in the presence of a large Fermi vector mismatch
(as in our case) for normal incidence. From the analytical
expressions in Eq. (4), several observations can be made. First,
the Andreev reflection process is independent of whether
Ez < Ec or Ez > Ec as long as the deviation |Ez − Ec| from
the critical field is the same. This may be seen by noting that
these two regimes are related via the substitutions τ+ ↔ τ− for
which |rh|2 and |re|2 are invariant. Second, it is seen that the
probability for Andreev reflection, and thus the conductance
of the junction, may be altered considerably by tuning the
applied electric field Ez. We illustrate this in Fig. 2, setting
λSO/�0 = 5. For Figs. 2(a)–2(e), we consider the Andreev
(solid lines) and normal (dashed lines) reflection probabilities
as a function of bias voltage for normal incidence θ = 0. Due
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FIG. 2. (Color online) (a)–(e) Normal (dashed lines) and An-
dreev reflection (solid lines) probabilities for an N-S junction with
η = σ = +1, λSO/�0 = 5.0, and lEz/�0 ranging from 5.0 to 5.8
from (a) to (e). In (f), the conductance G/GN (averaged over spin
and valleys) is plotted vs bias voltage for the same choices of lEz/�0.

to the band splitting in the N part, only the η = σ = +1 and
η = σ = −1 bands contribute to transport, and we consider
in Figs. 2(a)–2(e) the η = σ = +1 case without loss of
generality for an applied electric field lEz/�0 ranging from
5.0 to 5.8. When the field is close to the critical one, Ec,
the Andreev reflection probability totally dominates normal
reflection and one finds that it is unity for subgap energies
exactly when Ez = Ec. Upon increasing the field Ez and
thus moving away from Ec, the normal reflection probability
increases and eventually dominates Andreev reflection. Note
that in each case, transport sets in only when eV exceeds the
insulating gap, the latter varying in magnitude with Ez. The
experimental signature of this tunable Andreev reflection is
seen in the conductance G/GN shown in Fig. 2(f): For fields
close to Ec, the conductance is strongly enhanced at low bias
voltages whereas it is suppressed at higher fields Ez where
normal reflection dominates. In effect, the applied electric field
controls the Andreev reflection process and correspondingly
the conductance of the junction, enabling a switching from
Cooper pair transport to normal-state scattering.

We now demonstrate that silicene offers a unique testbed
for probing nonlocal transport in the form of crossed Andreev
reflection. The experimental setup is shown in Fig. 1(d) and
we assume as before a strongly doped superconducting region
with large μS . The fact that both the insulating gap and the
Fermi level in silicene (due to its low density of states) may be
controlled simply by external electric fields or gate voltages
[15] is the key to obtaining not only a pure CAR signal (without
any elastic cotunneling) but also a nonlocal current which
is fully spin polarized in each valley. To see how this may
be obtained, let 2|mL,R| denote the gap in the left and right
normal silicene region between the lowest-lying conduction
band and highest-lying valence band with m = λSO − lEz. As
in Fig. 1(b), the two other bands are assumed to be separated
largely and thus do not contribute to transport. Setting the
Fermi level to the top of the valence band in the right

region (μR = −mR), the fate of nonlocal transport depends
on the band structure in the left region. We consider here two
scenarios: (i) There is no gap in the left region (mL = 0) with
μL = 0, meaning that the electric field is equal to the critical
value Ec, and (ii) there is a gap 2mL in the left region and the
Fermi level is tuned to lie right at the bottom of the conduction
band (μL = mL). In case (i), Andreev reflection can occur
in addition to normal reflection for any incident energy since
there is no gap in the spectrum, whereas in the right region
only CAR is possible. The reason is that an incident electron
from the conduction band only has a gap to tunnel into in
the right region. Consider now instead scenario (ii). In this
case, local Andreev reflection is no longer possible since the
spectrum is gapped on the left side. For the same reason as in
case (i), elastic cotunneling is not possible either. This means
that only normal reflection and CAR are physically allowed
scattering processes for this system. We emphasize here that it
is not crucial that the Fermi level lies exactly on the gap edge,
as considered above: A deviation from this simply means that
the current flow starts at a different applied voltage. We have
chosen the above values to illustrate the principle used to
obtain pure CAR as they offer the simplest visualization of the
underlying idea.

The scattering probabilities are computed using the same
method as in the N-S case, matching wave functions at the two
interfaces with scattering coefficients re, rh, th associated with
normal reflection, Andreev reflection, and crossed Andreev re-
flection. It is important to note that the probability coefficients
belonging for each process (Re,Rh,Th) must be derived from
the continuity equation, and are not necessarily equal to simply
the modulus square of the above quantities [11]. One obtains
an expression for the (zero-temperature) nonlocal conductance
Gnl which may be experimentally measured:

Gnl

G0
= 1

4

∑
η,σ

∫ π/2

−π/2
dθPh|th|2

√
qh

F − k2
y, (5)

where Ph = 1/(E − μR), qh
F = √

(μR − E)2 − m2
R is the

wave vector of the CAR hole on the right side, ky = kL sin θ

is its transverse momentum, and G0 is a normalization
constant. To investigate quantitatively the probabilities for
these reflection processes to occur, consider Fig. 3. We fix
μS/�0 = 20 and set the band gap to m/�0 = 5 when it is
present in each region and also consider junction lengths
L � 2ξ where ξ is the superconducting coherence length,
since the non-self-consistent approach used here is valid only
for a sufficiently large superconducting region. In Fig. 3(a), the
CAR process is shown both as a function of angle of incidence
and junction length at a fixed voltage eV/�0 = 0.9 in the
top panels and also as a function of bias voltage for a fixed
junction length L/ξ = 2.1 for normal incidence in the bottom
panels. As seen, both local and nonlocal Andreev reflections
are possible in this case and the maximum probability reached
for the CAR process is about 30% (we have verified this for
other parameter choices). Still, it should be noted that CAR
is the only nonlocal transport process available due to the
Fermi level lying right at the top of the valence band, which
means that the current in the right N part is carried solely by
crossed Andreev reflected holes. This is in complete contrast to
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FIG. 3. (Color online) Top row: Contour plot of the CAR probability for a bias voltage eV/�0 = 0.9 vs angle of incidence θ and junction
length L. Bottom row: Probabilities for the different scattering events for a fixed junction length L/ξ = 2.1 for normal incidence. In column (a),
we consider scenario (i) as described in the main text (nongapped-superconductor-gapped) whereas in (b) we consider scenario (ii) as described
in the main text (gapped-superconductor-gapped). We have considered in all cases a strongly doped superconducting region with μS/�0 = 20
and set mL/�0 = 0 and mR/�0 = 5 in (a) whereas mL/�0 = mR/�0 = 5 in (b). The coefficients (Re,Rh,Th) are the probabilities for normal,
Andreev, and crossed Andreev reflection, respectively.

usual metallic systems which typically give the same order of
magnitude for the probability of elastic cotunneling and CAR.

The situation becomes even more intriguing when consid-
ering scenario (ii), where now CAR is the only physically
allowed process in addition to normal reflection. In this case,
CAR probability reaches essentially 100%, meaning that all
of the incoming electrons from the left N side combine with
electrons from the right N side to produce Cooper pairs in
the superconductor. A similar effect can be obtained at one
specific voltage in graphene [16], but in that case elastic
cotunneling occurs immediately upon deviating from that bias
voltage. In the present case of silicene, there is no elastic
cotunneling at all in the subgap regime and we have pure CAR
at all voltages. In addition to generating a nonlocal Andreev
(hole) current in this way, it is interesting to observe that this
nonlocal current is fully spin-valley polarized, which has no
counterpart in other semiconducting systems [17]. This means
that in each valley, the current is fully spin polarized with
opposite spin polarization in the two valleys such that the
product spin ⊗ valley is conserved. The nonlocal conductance
defined in Eq. (5) is shown in Fig. 4 and is seen to show similar
behavior to that of the CAR probability.

Finally, we have also computed the supercurrent flow
through silicene, by considering an S-N-S junction. This setup
is experimentally viable and has previously been used to study
the supercurrent through, e.g., graphene [18,19] and topolog-

ical insulators [20–22]. We consider here ballistic transport
which is appropriate under the assumption of relatively short
junction lengths satisfying L 
 ξ . In such a scenario, the
supercurrent is carried solely by Andreev bound states (ABS)
existing in the junction. These bound states are formed by
resonant Andreev reflections occurring at the two interfaces
and may be computed by setting up similar wave functions
as in the N-S case and identifying the resonance energies. We
compute the spin- and valley-dependent ABS energies ε for
a junction with a finite chemical potential μN in the normal
region, which is assumed to cross both of the conduction bands.
Denoting the superconducting phase difference as �φ and
setting μN � �0, we find that

ε(�φ)

�0
= ±

√
4M2 cos2(�φ/2) + L2(M2 − k2)2

4M2 + L2(M2 − k2)2
(6)

upon defining M = μN + (ησλSO − lEz) and
k = √

μ2
N − (ησλSO − lEz)2. This gives rise to a supercurrent

in the zero-temperature limit of the form

I (�φ)

I0
=

∑
ησ

M2 sin �φ

[4M2 + L2(M2 − k2)2]ε(�φ)
. (7)

The most interesting aspect of the above equation is that it
explicitly depends on the applied electric field Ez, suggesting
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FIG. 4. (Color online) Nonlocal conductance for (a) gapless and (b) gapped silicene on the left side [corresponding to scenarios (i) and (ii)
described in the main text].

that one may experimentally control the supercurrent in a given
sample by tuning the field Ez. Moreover, in the case where the
Fermi level only crosses the lowest conduction band (η =
σ = ±1), the supercurrent is fully spin-valley polarized since
Andreev reflection conserves this polarization.

To make a connection to the experimental arena, here we
estimate the value required for some of the main parameters
used in our calculations. The proximity-induced superconduct-
ing gap may be of order ∼1 meV according to experiments
using a conventional s-wave superconductor contacted to a
low-dimensional system with spin-orbit coupling (see, e.g.,
Ref. [23]). The spin-orbit coupling strength λSO has been
computed to 3.9 meV by a first-principles calculation [13]
which gives a critical electric field strength Ec = 17 meV/Å.
It should be noted that very recent first-principles calculations

[24] suggest that superconductivity could appear intrinsically
in silicene [25] under specific conditions.

Looking forward, it would be interesting to investigate the
effect of a magnetic exchange field [26] on our results to see,
e.g., how it alters the spin-valley polarization of the supercur-
rent and if it is possible to obtain electrically controllable 0-π
oscillations. We leave these issues for future investigations.
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