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Vanishing spin gap in a competing spin-liquid phase in the kagome Heisenberg antiferromagnet
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We provide strong numerical evidence, using improved variational wave functions, for a ground state with
vanishing spin gap in the spin-1/2 quantum Heisenberg model on the kagome lattice. Starting from the algebraic
U (1) Dirac spin liquid state proposed by Ran et al. [Phys. Rev. Lett. 98, 117205 (2007)] and iteratively applying
a few Lanczos steps, we compute the lowest S = 2 excitation constructed by exciting spinons close to the Dirac
nodes. Our results are compatible with a vanishing spin gap in the thermodynamic limit and in consonance
with a power-law decay of long distance spin-spin correlations in real space. The competition with a gapped
(topological) spin liquid is discussed.
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Introduction. It is traditional wisdom that at low temper-
atures phases of matter condense by spontaneously breaking
some symmetry and thus developing order. The possibility of
realizing phases which evade ordering has only been fruitfully
explored in the recent past with many exotic scenarios. Among
these, the spin-1/2 quantum Heisenberg antiferromagnet on
frustrated lattices occupies a distinguished position. The
kagome lattice represents one of the most promising candi-
dates, given its large degeneracy of the classical ground-state
manifold and the strong quantum fluctuations. Several studies
in the past highlighted the difficulty in reaching a definitive
understanding of its low-energy properties [1–7]. Indeed, the
identification of the precise nature of the ground state of
the kagome spin-1/2 Heisenberg model remains unsettled
and widely debated. Different approximate numerical and
analytical techniques have claimed a variety of ground
states. On the one hand, density-matrix renormalization group
(DMRG), pseudofermion functional renormalization group,
and Schwinger boson mean-field calculations have supported
a fully gappedZ2 topological spin-liquid ground state that does
not break any lattice symmetry [8–15]. On the other hand, a
gapless (algebraic) and fully symmetric U (1) Dirac spin liquid
has been proposed as the ground state and widely studied
using variational Monte Carlo approach [16–23]. In addition,
valence bond crystals of different unit cell sizes and sym-
metries have been suggested from other techniques [24–34].
The coupled-cluster method suggested a q = 0 (uniform)
state [35]. Finally, extending the construction of tensor
network Ansätze of gapped Z2 spin liquids [36], a recent
calculation, based upon the so-called projected entangled
simplex states (PESS) [37] which preserve lattice symmetries,
gave remarkably accurate energies.

For a precise identification of the spin liquid, the first step
is to address the key issue of whether the ground state has a
finite spin gap or not. Recent large scale DMRG calculations
claim for a finite gap to spin excitations in the thermodynamic
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limit [8–10,38]. However, the estimate of the triplet spin gaps
given by these DMRG studies is not fully consistent. While
conventional DMRG calculations performed on cylindrical
geometries gave an estimate of � = 0.13(1) [8,9], a differ-
ent estimate of � = 0.055(5) was obtained by considering
“square” clusters with periodic boundaries and preserving
all pointlike symmetries [38]. Moreover, more recent grand
canonical DMRG calculations on an isotropic “hexagonal”
cluster gave an estimate of � = 0.05(2), which emphasized
the importance of considering isotropic/symmetric clusters
instead of cylindrical geometries, and of performing a simul-
taneous size scaling in all dimensions [10]. The message of
these latter results is that the spin gap (if any) may be much
smaller than what has been claimed by the standard DMRG.

An alternative point of view is given by Gutzwiller
projected fermionic wave functions that strongly support a
gapless scenario described by an algebraic U (1) Dirac spin
liquid. Indeed, explicit numerical calculations have shown the
U (1) Dirac spin liquid to be stable (locally and globally) with
respect to dimerizing into all known valence-bond crystal
phases [17,19,20,22]. In addition, it was shown that, within
this class of Gutzwiller projected wave functions, all the
fully symmetric, gapped Z2 spin liquids have a higher energy
compared to the U (1) Dirac spin liquid [21,39–41]. Only a
minor energy gain can be obtained by fully relaxing all the
variational freedom of the Gutzwiller projected wave function
(furthermore, this energy gain decreases upon increasing the
cluster size) [42]. Most importantly, it was shown that upon
application of a couple of Lanczos steps on the U (1) Dirac spin
liquid, very competitive energies can be achieved, without
disturbing the power-law decay of the long distance real
space spin-spin correlations, i.e., retaining a gapless state [23].
However, so far, a direct calculation of the spin gap has not
been afforded within this approach.

In this Rapid Communication, we compute the S = 2 spin
gap �2 of the Heisenberg model on the kagome lattice by
considering spinon excitations around the Dirac nodes. We
show that the simple variational wave function is gapless,
implying that the Gutzwiller projector does not affect the
mean-field expectation. Most importantly, by applying a few
Lanczos steps onto the variational states with S = 0 and
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S = 2, we can reach a reliable estimation of �2 on several
cluster sizes, so to extrapolate in the thermodynamic limit.
Our results are compatible with a gapless S = 2 excitation,
the upper bound of the gap being �2 � 0.02 (leading to a
S = 1 gap of � � 0.01, much smaller than what has been
obtained by standard DMRG on cylindrical geometries [8,9]
and closer to other DMRG calculations performed on square
clusters [10,38]).

On the experimental front, recent neutron scattering mea-
surements on single-crystal samples of the near perfect kagome
spin-1/2 Heisenberg model compound ZnCu3(OH)6Cl2 point
towards a gapless spin-liquid behavior, with an upper bound
of the spin gap which is estimated to be ∼J/10 (if a gap
exists) [43].

Model, wave function, and numerical technique. The
Hamiltonian for the spin-1/2 quantum Heisenberg antiferro-
magnetic model is

Ĥ = J
∑
〈ij〉

Ŝi · Ŝj , (1)

where J > 0 and 〈ij 〉 denotes the sum over nearest-neighbor
pairs of sites. The Ŝi are spin-1/2 operators at each site i. All
energies will be given in units of J .

The variational wave function is constructed by projecting
a noncorrelated fermionic state:

|�Dirac〉 = PG|�MF〉, (2)

where PG = ∏
i(1 − ni,↑ni,↓) is the full Gutzwiller projector

enforcing the one fermion per site constraint. Here, |�MF〉 is
the ground state of a mean-field fermionic Hamiltonian that
contains hopping only:

ĤMF =
∑
i,j,α

χij ĉ
†
i,αĉj,α, (3)

where α = ↑,↓ and χij = χji (i.e., real hopping). The U (1)
Dirac state is defined with nontrivial gauge magnetic fluxes
piercing the triangles and hexagons (see Fig. 1 [17]). We would
like to emphasize that the projected wave function does not

FIG. 1. (Color online) The geometrical unit cell of the kagome
lattice is shown as a shaded region, along with the lattice vectors a1

and a2. The mean-field Ansatz of the U (1) Dirac spin liquid has zero
flux piercing the triangles and π flux piercing the hexagons. Hence,
each geometrical unit cell encloses a flux π , whose implementation
requires a 2 × 1 expansion of the geometrical unit cell.

contain any variational parameter and it is fully determined
by fixing the flux pattern. The S = 0 Ansatz is constructed
by filling the lowest-energy single-particle states for both up
and down electrons; suitable boundary conditions must be
considered in order to have a unique mean-field state. This
simple Ansatz for the ground state of the kagome spin-1/2
Heisenberg model gives rather good accuracy on the energy per
site in the thermodynamic limit, i.e., E/J = −0.428 67(1) [to
be compared with E/J = −0.4386(5) obtained by the DMRG
approach [9] and E/J = −0.4364(1) by PESS [37]]. The S =
2 state is constructed by changing boundary conditions, in
order to have four spinons in an eightfold degenerate single-
particle level at the chemical potential; a unique mean-field
state is then obtained taking all these spinons with the same
spin (so that the total wave function has S = 2). The S = 2
state has k = (0,0) and is particularly simple since it can be
represented with a single Slater determinant (as the ground
state).

In order to have a systematic improvement of the trial
variational wave function and approach the true ground state,
we can apply a few Lanczos steps to |�Dirac〉 [44]:

|�p-LS〉 =
(

1 +
p∑

k=1

αkĤk

)
|�Dirac〉. (4)

Here the αk’s are variational parameters. The convergence
of |�p-LS〉 to the exact ground state |�ex〉 is guaranteed for
large p provided the starting state is not orthogonal to |�ex〉,
i.e., for 〈�ex|�Dirac〉 �= 0. On large cluster sizes, only a few
steps can be efficiently performed and here we implement
the case with p = 1 and p = 2 (p = 0 corresponds to the
original trial wave function). Subsequently, an estimate of the
exact ground-state energy may be achieved by the method
of variance extrapolation: For sufficiently accurate states, we
have that E ≈ Eex + constant × σ 2, where E = 〈Ĥ〉/N and
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FIG. 2. (Color online) Finite-size scaling of the S = 2 spin gap
as a function of the inverse geometrical diameter (1/L). Both the
p = 0 and p = 2 extrapolated values give an estimate which is zero
(within error bars) in the thermodynamic limit. A linear fit is used
in both cases. The largest size considered for the p = 0 case is 2352
sites.
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TABLE I. Energies of the U (1) Dirac spin liquid (columns 2–4) and its S = 2 excited state (columns 5–7), with p = 0, 1, and 2 Lanczos
steps on different cluster sizes obtained by variational Monte Carlo are given. The ground-state and S = 2 excited-state energies of the spin-1/2
Heisenberg model estimated by using zero-variance extrapolation of variational energies on different cluster sizes are marked in bold.

Size 0-LS 1-LS 2-LS 0-LS 1-LS 2-LS Ground state S = 2 state

48 −0.4293510(4) −0.4352562(3) −0.436712(1) −0.417980(1) −0.425218(1) −0.427155(3) −0.437845(4) −0.43070(1)
108 −0.4287665(4) −0.4341032(5) −0.435787(3) −0.425567(1) −0.431290(1) −0.433217(3) −0.437178(9) −0.43516(2)
192 −0.4286749(4) −0.4334481(5) −0.435255(4) −0.427360(2) −0.432274(1) −0.434181(5) −0.43674(3) −0.43597(3)
432 −0.428656(1) −0.432519(1) −0.428274(3) −0.432169(1) −0.43652(4) −0.43631(4)

σ 2 = (〈Ĥ2〉 − 〈Ĥ〉2)/N are the energy and variance per site,
respectively, whence, the exact ground-state energy Eex can
be extracted by fitting E vs σ 2 for p = 0, 1, and 2. The
energy and its variance for p = 0, 1, and 2 Lanczos steps are
obtained using the standard variational Monte Carlo method,
independently for S = 0 and S = 2 states.

Results. Our variational calculations were performed on
square (i.e., 3 × L × L) clusters with periodic boundaries. We
start by computing the S = 2 gap for the Dirac wave function
|�Dirac〉. Before Gutzwiller projection, the mean-field state
|�MF〉 is gapless; however, given the U (1) low-energy gauge
structure of the mean-field Ansatz, it is not obvious that this
property is preserved after projection [45]. In fact, the U (1)
gauge fluctuations are expected to be wild, possibly leading to
some instability of the mean-field Ansatz [46]; nevertheless,
it has been shown that |�Dirac〉 is essentially stable against all
possible perturbations (only a marginal improvement has been
obtained by a totally unconstrained optimization of the pairing
function [42]). Here, we show that the S = 2 gap is vanishing in
the thermodymanic limit (see Fig. 2). This result is interesting
in itself, since it clearly shows that the Gutzwiller projection
does not alter the low-energy properties of the mean-field state;
this outcome is compatible with the fact that the spin-spin
correlations have a power-law decay at long distances, namely,
〈Ŝr · Ŝ0〉 ∼ 1/r4 [18].

Let us move to the central part of this work by applying
a few Lanczos steps to the original Dirac state. In Table I
and Fig. 3, we report the results for the S = 0 and S = 2
states separately. The very computationally demanding p = 2
calculations have been performed for 48, 108, and 192 sites,
while for the 432-site cluster only the first Lanczos step
has been considered. In the former cases, the zero-variance
extrapolation can be exploited by a quadratic fit of the
three points, namely, E = Eex + A × σ 2 + B × (σ 2)2. The
zero-variance extrapolation gives size consistent results for
the energy per site [47]. Indeed, even though the Lanczos step
procedure (with a fixed p) becomes less and less efficient
when increasing the system size, the extrapolation procedure
remains accurate: This can be seen by noticing that the gain
in the energy and variance with respect to p = 0 decreases
with L, but the extrapolation is not affected, since the slope is
essentially unchanged. For the larger cluster, i.e., 432 sites, we
also considered a quadratic fit: We first obtained an estimate
of the A and B coefficients by a size scaling of the smaller
clusters and then verified that indeed, these values give an
excellent fit (i.e., least mean-square error) of the points for
432-site cluster.

The computation of the S = 0 and S = 2 energies allows
us to obtain the extrapolated gap for each size independently,
which is reported in Table II and Fig. 2. Here, despite having
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FIG. 3. (Color online) (a) Variational energies as a function of the variance of energy, for zero, one, and two Lanczos steps. The ground-state
S = 0 energy on the 48-, 108-, and 192-site clusters is estimated by extrapolating the three variational results to the zero-variance limit by a
quadratic fit, while only two points have been used for the 432-site cluster, and the method of extrapolation is explained in the main text. (b)
The same for the S = 2 excited state.
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TABLE II. The S = 2 gap of the spin-1/2 Heisenberg model
obtained from the estimates of S = 0 and S = 2 energies on different
cluster sizes (marked in bold in Table I) is given. The estimate in the
thermodynamic limit is zero (within error bars).

48 108 192 432 ∞ 2D limit

0.3429(7) 0.218(3) 0.147(11) 0.090(34) −0.04(6)

an error bar that increases with the system size, we can
reach an extremely accurate thermodynamic extrapolation,
namely, �2 = −0.04 ± 0.06. Therefore, our main conclusion
is that our competitive Ansatz has gapless excitations. Our
best estimate for the upper bound on the S = 2 gap is �2 �
0.02, leading to a S = 1 gap that would be approximately
half of this value, i.e., � � 0.01. This latter result is much
lower than previous DMRG estimates [8,9], which were
done by considering cylindrical geometries Lx × Ly , i.e.,
first performing the limit Lx → ∞ and then increasing the
circumference Ly . In contrast to this, it has been shown
that more isotropic lattices lead to a different thermodynamic
extrapolation, suggesting possible difficulties when using large
aspect ratios Lx � Ly , and nonsimultaneous size scaling of
different dimensions [10]. This fact has also been discussed
in a recent work on valence-bond solids [48], where it has
been pointed out that the long cylinders may turn even a
true valence-bond order into a disordered phase (with only
short-range correlations).

Summary. We have reported the S = 2 gap in the kagome
spin-1/2 Heisenberg antiferromagnetic model by using an
improved variational technique based upon Gutzwiller pro-
jected fermionic wave functions. The application of a few
Lanczos steps on top of the U (1) Dirac spin liquid, together
with a zero-variance extrapolation, gives extremely accurate
results, which strongly support the fact that the ground
state is gapless. However, controversial claims based on
DMRG [8,9,11] and tensor network methods [36,37] of
a gapped topological spin liquid raise concerns about the
possibility for the existence of different basins of attraction in
the energy landscape. In this picture, it would be very difficult
to cross over from one state to the other, requiring either a
very large number of states within DMRG and tensor network
methods or a very large number of Lanczos steps in our
approach.
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