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The search for realistic one-dimensional (1D) models that exhibit dominant superconducting (SC) fluctuations
effects has a long history. In these 1D systems, the effects of commensurate band fillings—strongest at half-
filling—and electronic repulsions typically lead to a finite charge gap and the favoring of insulating density wave
ordering over superconductivity. Accordingly, recent proposals suggesting a gapless metallic state in the Holstein-
Hubbard (HH) model, possibly superconducting, have generated considerable interest and controversy, with the
most recent work demonstrating that the putative dominant superconducting state likely does not exist. In this
paper we study a model with nonlocal electron-phonon interactions, in addition to electron-electron interactions.
This model unambiguously possesses dominant superconducting fluctuations at half filling in a large region of
parameter space. Using both the numerical multi-scale functional renormalization group (MFRG) for the full
model and an analytic conventional renormalization group for a bosonized version of the model, we demonstrate
the existence of these dominant SC fluctuations and show that they arise because the spin-charge coupling at high
energies is weakened by the nonlocal electron-phonon interaction and the charge gap is destroyed by the resultant
suppression of the Umklapp process. The existence of the dominant SC pairing instability in this half-filled 1D
system suggests that nonlocal boson-mediated interactions may be important in the superconductivity observed
in the organic superconductors.
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I. INTRODUCTION AND BACKGROUND

Many interesting novel electronic materials, including
charge-transfer solids and conducting polymers, are quasi-
one-dimensional physical systems and exhibit clear effects
of both electron-phonon (e-ph) and electron-electron (e-e)
interactions. Accordingly, a large number of one dimensional
(1D) Hamiltonians have been studied as microscopic models
for these systems, with considerable success in describing
the range of ground states, nonlinear excitations, and optical
and transport properties of these materials. One outstanding
challenge for theorists has remained, however: namely, the
identification of a 1D model, incorporating both electron-
phonon and electron-electron interactions with realistic in-
teraction parameters that exhibits dominant superconducting
fluctuations [1–4]. This has proven especially difficult because
of the strong tendency in these 1D systems to form insulating
density waves ground states: charge density wave (CDW),
spin density wave (SDW), or bond-order wave (BOW). Hence
the recent suggestion [5] that the 1D Holstein-Hubbard (HH)
model at half-filling might have, for a narrow window of
parameters, a region of dominant superconducting fluctuations
has generated considerable interest. While further analyses
[6–8] suggest that this model likely does not have dominant su-
perconducting fluctuations, these studies have rekindled inter-
est in finding a 1D model which does have clearly dominant SC
fluctuations for a range of physically reasonable parameters.

In this paper, we define and study such a model, which
we call the “extended Holstein–extended Hubbard” (EHEH)
model. We will define the model precisely in the ensuing
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section, but for now we note simply that it involves both
on-site (U ) and nearest-neighbor (V ) repulsive e-e interactions
and nonlocal e-ph interactions. Before describing the EHEH
model in detail, let us first briefly summarize the results in the
Holstein-extended Hubbard (HEH) model, as these serve as a
very useful guide to the surprising subtleties encountered in
studies of this seemingly simple model. The Hamiltonian for
the HEH model is

HHEH = −t
∑
i,σ

(c†i+1,σ ci,σ + H.c.) + ω0

∑
i

a
†
i ai

+U
∑

i

ni,↑ni,↓ + V
∑

i

nini+1

+ gep

∑
i,σ

(a†
i + ai)ni,σ . (1)

Here electrons move in a tight-binding 1D lattice, where c
†
i,σ

(ci,σ ) creates (annihilates) an electron at site i with spin σ ,
niσ is the electron number operator, ni = ni,↑ + ni,↓, and
a
†
i creates a (dispersionless Einstein) phonon of frequency

ω0 at site i. The electron density is coupled locally with
strength gep to phonons on the same site. The e-e interactions
are described by the standard extended Hubbard model with
on-site interaction U and nearest-neighbor interaction V .

To recall the results for this model we begin with the case
gep = 0, so the model reduces to the familiar extended Hubbard
model [9], which incorporates only e-e interactions. We focus
on the half-filled case in the physical region with U and V

both positive. For 2V � U , CDW fluctuations are dominant
and the ground state is indeed a long-range ordered CDW.
In contrast, for 2V � U , spin density wave fluctuations are
dominant and the ground state is an (algebraically decaying)
SDW. Recent results [10–17] have shown that there also exists
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a small region around the line U = 2V in the U -V plane in
which the ground state is a long-range ordered BOW (also
sometimes called a bond-charge density wave). But there is no
evidence for dominant superconducting fluctuations in this
model for half-filling with U and V positive. This result
coincides with the naive expectation that, for purely repulsive
interactions, superconducting pairing should not exist. For the
pure Hubbard model (V = 0) the exact solution [18] shows
that the charge gap opens immediately for U > 0 but that it is
exponentially small for small U .

We consider next the case of e-ph interactions only, in
which we recover the equally familiar 1D Holstein model [19].
In a pioneering study nearly three decades ago, Hirsch and
Fradkin [20] argued that for spin-1/2 electrons, in the half-
filled Holstein model a charge gap opens unconditionally for
any nonzero e-ph coupling and at any finite phonon frequency.
In the adiabatic limit (ω0 = 0) the gap is also exponentially
small in gep. While some subsequent studies have supported
these results [21–23], others [24–29] have suggested that for
sufficiently large ω0 a finite value of gep is required to open
the gap, so for sufficiently small gep there is a gapless phase.

Similarly, in the full HEH model, although the initial
study [30] suggested no gapless phase, more recent stud-
ies [5,6,27,28,31–38], have found the “gapless” metallic phase
mentioned above in a small region of the gep-U plane around
the line U = 2g2

ep/ω0. Reference [6] gives a plausible intuitive
interpretation of this phase, as well as a clear statement
of the important caveat that the likely exponentially small
nature of any gap in this region makes drawing definitive
conclusions from these numerical studies very difficult. A
further reflection of the subtleties in this problem is the fact
that other studies, including some recent results, do not find
this gapless phase [39–41].

Whatever the ultimate resolution of this issue in the HH
model [42], the “fragility” of the gapless metallic state and
the absence of dominant superconducting fluctuations in that
model strongly suggest that we seek a more robust model
in which it is clear that there are dominant superconducting
fluctuations. A hint as to what sort of model could produce
this result comes from considering a problem simpler than the
full many-body problem: namely, the two-electron “bipolaron”
problems. Recently, several groups have studied this relatively
more manageable problem in models with long-range e-ph
interactions [43–45]. One of the main differences between
the Holstein model, which has only on-site e-ph interactions,
and models with nonlocal or long-range e-ph interaction
is that in the latter models the mass of the bipolaron is
reduced considerably [43–45] with the possible enhancement
of superconductivity. If these results translate to the many-
electron problem, then one should expect nonlocal e-ph
interactions to enhance the possibility of superconductivity
and lead to dominant superconducting fluctuations in a large
region of parameter space. It is worth noting that a very recent
quantum Monte Carlo study demonstrated that including long
range electron-phonon coupling leads to a closer competition
between the pairing correlation and charge density correla-
tion [46]. Accordingly, in the ensuing sections, we study a
model—the “extended Holstein–extended Hubbard” (EHEH)
model—which includes both non-local e-ph interactions and
the e-e interactions of the extended Hubbard model. We

shall see that this model does indeed allow for dominant SC
fluctuations in a substantial portion of the U -V plane.

II. THE EHEH MODEL AND THE MFRG METHOD

The explicit form of the extended Holstein–extended
Hubbard (EHEH) model is given by the Hamiltonian

HEHEH = −t
∑
i,σ

(c†i+1,σ ci,σ + H.c.) + ω0

∑
i

a
†
i ai

+U
∑

i

ni,↑ni,↓ + V
∑

i

nini+1

+ gep

∑
i,σ

[(a†
i + ai) + (a†

i+1 + ai+1)]ni,σ , (2)

The notation is the same as in Eq. (1). In the remainder
of the paper, we will measure all energies in units of t .
Lattice constant a between two sites is set to 1. The electron-
phonon coupling of this model is the same as that in the
“extended Holstein-Hubbard” model studied in the case of
bipolarons [43]; and the electron-electron coupling is the same
as that in the “extended Hubbard model” with on-site and
nearest-neighbors density-density interaction [47]. In Eq. (2)
we have taken the strength of the on-site and nearest-neighbor
e-ph interactions to be the same value, gep. There are two
reasons for this choice. First, this choice is the simplest and
provides a proof in principle of the potential importance of
longer-range e-ph interactions. Second, and more importantly
physically, following the work of Bonča and Trugman [43], one
can define the operators a

†
i and ai as residing at the midpoint

between lattice sites i − 1 and i (and operators a
†
i+1 and ai+1

residing midpoint between sites i and i + 1), thus interpreting
this model as having ions placed in interstitial sites between
two electron sites. In this case, it is natural to have the same
e-ph coupling for the two terms. Further, on physical grounds,
having every phonon site coupled to its two nearest-neighbor
electron sites should be appealing. In fact, it has been suggested
that this form of electron-phonon coupling in the Hamiltonian
is related to certain oxides [48].

Working in the path-integral representation and tracing out
the phonon fields, we can express the action of the EHEH
model as

S =
∫

σ,k

ψ
†
k [iω − ε(k)]ψσ,k

+
∫

σ,σ ′,{k}
g(k1,k2,k3,k4)ψ†

σ
′
,k1

ψ
†
σ,k2

ψσ,k3ψσ
′
,k4

, (3)

where kj = (kj ,iωj ) and
∫
σ,k

is defined as summation over
the spin index σ , and integration over the momentum k and
the frequency ω. ε(k) is the bare dispersion and the coupling
function g is given by

g(k1,k2,k3,k4) = U + 2V cos(k3 − k2) − 2g2
epω0[

ω2
0 + (ω2 − ω3)2

]
× [1 + cos(k3 − k2)]. (4)

To analyze this Hamiltonian, we will use our version of
the multiscale functional renormalization group (MFRG)
method [49,50]. This method has been used successfully to
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study a number of problems [7,8,17] in models involving
both e-ph and e-e interactions because it captures not only the
electron correlation effects but also the coupling of different
energy scales induced by phonon retardation effects. In its
simplest form, the MFRG can be used to follow the flows of
the various couplings as the energy cutoff is lowered. However,
it has been shown that retardation can modify the various scal-
ings between different correlation functions for the Luttinger
liquid [8,51,52]. Therefore, instead of studying the couplings,
we use the MFRG to study directly the various susceptibilities
which take the contributions from different energy scales into
account [17]. The dominant order can be inferred from the
flows of the susceptibilities corresponding to different order
parameters as the cutoff is lowered. In the present paper, we
use the energy as the cutoff parameter. We parametrize the
cutoff as � = �0 exp(−l), where �0 = 2t .

In the ensuing section, we calculate the susceptibilities
corresponding to the charge density wave (CDW), the spin
density wave (SDW), and both the singlet (SS) and the
triplet (TS) superconducting order parameters. The dominant
instability among them is determined by the most divergent
susceptibility as the cutoff, �, is lowered. For completeness,
we present in the Appendix a short summary of the MFRG
method and the scaling equations for the susceptibilities.
For further details, readers are referred to several previous
articles [7,17,49,50]. In the next section, we turn directly to
the results of our MFRG study.

III. RESULTS FOR THE SUSCEPTIBILITY FLOWS

In Fig. 1 we show the susceptibility flows for three different
sets of e-e interaction parameters, for fixed e-ph coupling
and phonon frequency. In the top panel of Fig. 1, we choose
values of U (=1.00) and V (=0.60) which are in the region
where, for the extended Hubbard model without phonons, the
dominant susceptibility is known to be of CDW type [17]. Our
calculations show that this result is unchanged by the inclusion
of phonons for the values of gep and ω0 shown in the figure.

In the middle panel, we show the flows for U = 1.00 and
V = 0.20 in the region where, for the extended Hubbard model
without phonons, the dominant susceptibility is known to be
of SDW type [17]. Again, we find that this result is unchanged
by the inclusion of phonons for the values of gep and ω0 shown
in the figure.

Finally, in the bottom panel of Fig. 1, we tune down the
e-e interaction to U = 0.20 and V = 0.20. In the extended
Hubbard model without phonons, this would be in the CDW
region. Instead, we find that, for the values of the phonon
parameters in Fig. 1, the superconducting susceptibility clearly
becomes dominant. This provides an in-principle proof that
nonlocal e-ph interactions are able to drive a pairing instability
even at half-filling.

In Fig. 2 we display the “phase diagram” in the U -V
plane for e-ph coupling, gep = 0.5 with ω0 = 1.0. The phase
diagrams show that three possible phases—CDW, SDW, and
SS—are present, with the SS phase being restricted to small
values of U and V , as one would expect. For larger values
of U and V and for these values of the phonon parameters,
the model exhibits physics similar to that of the conventional
extended Hubbard model [17]. We note that the delicate BOW
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FIG. 1. (Color online) Susceptibility flows for ω0 = 1.0, gep =
0.5 with various electron-electron interactions U and V . U =
1.0,V = 0.6 for the top panel, U = 1.0,V = 0.2 for the middle panel,
and U = 0.2,V = 0.2 for the bottom panel. The horizontal axis, l, is
related to the cutoff as � = 2t exp(−l).

phase mentioned in the introduction that occurs between the
CDW and the SDW in the extended Hubbard model is not
shown in our Fig. 2. From our previous studies [17] we know
that this phase is not captured by the MFRG with Nk = 2 (see
Appendix), so we do not expect it to appear in our calculation.
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FIG. 2. (Color online) Phase diagram for gep = 0.5 with ω0 = 1.0.
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This choice was made deliberately to allow us to focus on the
effects of e-ph interactions and phonon retardation, which are
the phenomena that drive the superconducting fluctuations. As
one would expect intuitively, the most interesting regime for
SC is at weak e-e repulsion. In this region, we find the SS
susceptibility unambiguously dominates. This is not what we
see in the usual models with local e-ph interactions and this
arises from the nonlocal nature of the e-ph interactions.

IV. ANALYTIC INSIGHT INTO THE GAPLESS
SC PHASE IN THE EHEH MODEL

In order to gain insight into the mechanism driving the
dominant superconducting fluctuations in more detail, we next
undertake an essentially analytic study that uses a standard
renormalization group (RG) approach to the bosonized form
of the EHEH model. For ease of presentation and comparison
to the prior literature, we use the RG formulation of Yonemitsu
and Imada [39] to write the EHEH Hamiltonian entirely in
terms of bosonic fields. Here we will keep only the lowest
energy electrons—those around the Fermi points at kf and
−kf —and the single phonon excitations that couple to the
electrons (so the 2kf and 0 momentum phonons). Because the
difference between the EHEH model and previously studied
models lies entirely in the electron-phonon interactions, we
will focus first on their effects. Explicitly, this means that
we ignore the back scattering and the Umklapp scattering
from the direct e-e interactions and incorporate the remaining
forward scattering into the Luttinger parameters. The purely
electronic part is given by the standard free boson Hamiltonian,
which we do not need here. With these simplifications, the e-ph
interaction can be written as [53]

H ep = H
ep
1 + H

ep
2 ,

H
ep
1 =

∫
dx

1

πα
{γ1 exp[

√
2i
ρ(x)] cos[

√
2
σ (x)]

(5)
× φ2kf

(x) + H.c.}

H
ep
2 = γ2

∫
dx[ρ+(x) + ρ−(x)]φ0(x),

Here γ1 = [1 + exp(i2kf )]gep, γ2 = 2gep; φ0 and φ2kf
are

the k = 0 and the k = 2kf components of the phonon fields
respectively; 
ρ and 
σ are the bosonized fields for the
charge part and the spin parts respectively; ρ+ and ρ− are
the charge densities at k = kf and k = −kf respectively; and
α is the long-distance cutoff. Note that, in the HEH model,
γ1 = γ2 = gep. At this point, it is clear that at half-filling where
kf = π/2 the e-ph interaction contributes only to the linear
forward scattering, H2. The contribution from the nonlinear
term, H1, vanishes exactly at half-filling. This result reflects
the same physics as contained in Eq. (4).

Intuitively, this implies that the zero wave vector ordering
benefits from the forward scattering, but the 2kf ordering,
like that of the charge ordering, does not. Therefore, a charge
gapless SC ordering is preferred to the charge gapped CDW
ordering. The vanishing of H1 at half-filling also means that
the charge part and the spin parts are decoupled in the absence
of direct e-e interactions. As a result of these peculiar features,

this model can be diagonalized exactly, and it can be shown
that the charge gap is zero [51].

When we include direct e-e interactions, the bosonized
Hamiltonian is no longer solvable. But the special feature of
this model—namely, the spin-charge separation—is preserved.
Thus the spin part of the Hamiltonian will not be affected by the
e-ph interaction which couples solely to the charge. In addition,
as shown in Ref. [39], since the operator (proportional to V )
for the spin-charge coupling in the extended Hubbard model
has scaling dimension 4, the charge part can be understood
independently from the spin part for small coupling. Hence, to
illustrate the nature of the gapless phase under the influence of
both e-e and e-ph interactions, we employ the RG equations in
the form used by Yonemitsu and Imada [39] and focus solely on
the flows of the charge couplings. As shown in Ref. [39], these
coupled flows are described by variables Xρ = 2(1 − κ−1

ρ ),
where κρ is the usual Luttinger liquid charge exponent and
Yρ = g3/(πvf ), where g3 is the usual Umklapp coupling in
g-ology [53]. From the general form of Eqs. (3.11) and (3.12)
in Ref. [39], we consider the special case of half-filling and
vanishing backward scattering from the phonons [see Eq. (5)].
In this case, the equations in Ref. [39] simplify considerably
and become

dXρ(l)

dl
= −Y 2

ρ (l) + 2Y2(l)D0(l),

(6)
dYρ(l)

dl
= −Xρ(l)Yρ(l).

Here the phonon propagator at momentum 0 is D0 =
ω0

E(l) exp(− ω0
E(l) ), with E(l) = Ef exp(−l). Ef is the Fermi

energy and vf is the Fermi velocity. The initial conditions are
Xρ(0) = −(U + 6V )/(πvf ), Yρ(0) = (U − 2V )/(πvf ), and
Y2(0) = 2g2

ep/(πvf ω2
0). Notice that Y2, being the phonon-

assisted forward scattering, does not flow with l [39]. These
equations are the renormalization group equations for the
sine-Gordon model, with the addition of a drift term from the
forward scattering of the e-ph interaction scaled by the phonon
propagator. The effect from the phonon propagator exists only
roughly above the phonon energy. If one momentarily ignores
the e-ph interaction term in the first equation, these equations
can be integrated exactly to give (X2

ρ − Y 2
ρ ) = C, which shows

that the RG trajectories are hyperbolas in the Xρ-Yρ plane.
Further, there is a line of fixed points at Yρ = 0 which are
attractive (stable) for Xρ > 0 and repulsive (unstable) for
Xρ < 0. Hence the RG flows are as shown in the upper
panel of Fig. 3. In the quadrant bounded by Xρ = ±Yρ and
Xρ > 0, the flows go to a fixed point along the line Yρ = 0,
which corresponds to the gapless phase in the sine-Gordon
model and to the regime of dominant SC fluctuations in the
EHEH model. Outside this region, the equations always flow
to strong coupling, reflecting instabilities toward the SDW
(Yρ → ∞,Xρ → −∞) and CDW (Yρ → −∞,Xρ → −∞)
phases in the EHEH model [11,53]. In the lower panel of Fig. 3,
the results of including the e-ph coupling are shown. Since the
RG equation is now explicitly “time” (that is, scale) dependent
from the phonon propagator, the RG flows not only depend on
the initial values of the Xρ and Yρ , but also on the initial scale,
l = l0. Therefore, we cannot draw the RG trajectories as in
the case without e-ph interaction, and we cannot solve the
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FIG. 3. (Color online) The flows of the charge coupling, Xρ , and
Yρ without (the upper panel) and with electron-phonon couplings (the
lower panel). See Sec. IV for a detailed description.

problem analytically. Instead, we use numerics and illustrate
some typical flows near the boundary between the gapless and
gapped phases as functions of gep, with ω0 set to 1. The effect
of the e-ph interaction is to “pull” the flows towards a larger
value of Xρ . If Xρ is pulled far enough, it will eventually flow
to a finite fixed point, while Yρ will flow to zero (see Fig. 3), and
the system will be in the region of dominant SC fluctuations.
Thus initial values that, for small e-ph coupling flow to one of
the density wave phases, for larger e-ph coupling flow instead
to the superconducting phase. These approximate (mostly)
analytic results thus corroborate our MFRG study which shows
that a charge gapless phase with dominant superconducting
fluctuations can be obtained in the EHEH model even with all
repulsive e-e interactions where both U and V are positive.

V. CONCLUSIONS

We have shown that by incorporating nonlocal electron-
phonon interactions we can find a 1D Hamiltonian—the
EHEH model—that exhibits a gapless metallic phase with
dominant superconducting fluctuations over a wide range
of parameters. This contrasts with the results for models
involving local electron-phonon interactions, where a gapless
metallic phase, if it exists, does not appear to have dominant
superconducting fluctuations and occurs over a limited pa-
rameter range. Although a true superconducting phase cannot
exist in 1D, our results suggest that the inclusion of nonlocal
e-ph interaction may be crucial to understanding the behavior
of the quasi-two-dimensional high-Tc materials [54] and
organic superconductors [3,4]. Indeed, the recent experimental
evidence that bosonic modes, very likely related to phonons,
play a crucial role in some of the most interesting features
of the high-Tc cuprate superconductors [54] provides further

motivation for studying models with both e-e and nonlocal
e-ph interactions. It has long been suggested that the Hubbard
model on a two-dimensional square lattice exhibits d-wave
superconductivity. This suggestion has been supported by
several different types of calculations, notably including
various functional renormalization group analyses [55–61].
However, due to the effects of nesting, density wave ordering
generally dominates at half-filling. In this regard, we point
out the recent study of the two-dimensional case for e-ph
interactions beyond the local Holstein coupling, where it
has been shown that superconductivity does exist with some
anisotropic nonlocal coupling even at half-filling with the nest-
ing channel considered. Moreover, for this two-dimensional
system, there is very likely to be a true long-range SC order at
zero temperature [62].
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APPENDIX: THE MFRG METHOD AND EQUATIONS FOR
THE FLOWS OF SUSCEPTIBILITIES

The functional renormalization group for electron-electron
coupled systems has been discussed extensively in the
literature [55–58,63–67]. The MFRG approach imple-
mented [49,50] at one-loop level yields the following RG
flow equations for the coupling functions, g(k1,k2,k3,k4), with
initial conditions as given by Eq. 4:

dg(k1,k2,k3)

d�

= −
∫

dp
d

d�
[G�(p)G�(k)]g(k1,k2,k)g(p,k,k3)

−
∫

dp
d

d�
[G�(p)G�(q1)]g(p,k2,q1)g(k1,q1,k3)

−
∫

dp
d

d�
[G�(p)G�(q2)][−2g(k1,p,q2)g(q2,k2,k3)

+ g(p,k1,q2)g(q2,k2,k3) + g(k1,p,q2)g(k2,q2,k3)],

(A1)

where k = k1 + k2 − p, q1 = p + k3 − k1, q2 = p + k3 − k2,∫
dp = ∫

dp
∑

ω 1/(2πβ), and G� is the self-energy cor-
rected propagator at energy cutoff �. Since the interaction
vertices are frequency dependent, there are also self-energy
corrections. At the one-loop level, the self-energy MFRG
equation is

d�(k)

d�
= −

∫
dp

d

d�
[G�(p)][2g(p,k,k) − g(k,p,k)].

(A2)
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FIG. 4. (Color online) Discretization of the momenta in the
Brillouin zone and frequencies in the frequencies axis. This figure
shows the case Nk = 2,Nw = 15.

We use energy cutoff, the initial cutoff value, �0 = 2t .
In Fig. 1, we parametrize the cutoff � = �0 exp(−l). A
sharp cutoff scheme is used in the scale-dependent Green’s
function, G�(p), that is G�(p) = �(|ε(p)|−�)

iωp−ε(p)−��(p) , where � is

a step function. d
d�

��(p) is set to zero, when calculating
d

d�
G�(p), that is the self-energy is held constant when taking

the derivative of the Green’s function.
We have solved the coupled integral-differential equa-

tions, (A1) and (A2), numerically with two Fermi points
(Nk = 2) and by dividing the frequency axis into fifteen
segments (Nω = 15). Figure 4 shows the discretization scheme
for Nk = 2 and Nω = 15.

We next calculate within the MFRG approach the RG
flow of susceptibilities in the static (zero frequency) and
long-wavelength limit. The static susceptibilities for singlet
superconductivity (SS) and triplet superconductivity (TS) are
given by

χδ
� =

∫
D(1,2)f (p1)f (p2)〈cp1,↓c−p1,↑c

†
−p2,↑c

†
p2,↓〉. (A3)

For δ = SS, f (p) = 1, whereas for δ = TS, f (p) =
sin(p).

The static 2kf charge density wave (CDW) and spin density
wave (SDW) susceptibilities can be written as [7]

χδ
� =

∫
D(1,2)

∑
σ1,σ2

sσ1sσ2〈c†p1,σ1
cp1+π,σ1c

†
p2+π,σ2

cp2,σ2〉.

(A4)

For δ = SDW: s↑ = 1,s↓ = −1; and for δ = CDW: s↑ =
1,s↓ = 1.

In the above equations, pi is the momentum at energy
ξi ,

∫
D(1,2) ≡ ∫

|ξ1|>�
dξ1J (ξ1)

∫
|ξ2|>�

dξ2J (ξ2), and J (ξ ) is
the Jacobian for the coordinate transformation from k to ξk .
The dominant instability is determined by the most divergent
susceptibility as the cutoff � is lowered.

The RG flows for the SS and TS susceptibilities are

dχδ
�(0,0)

d�
=

∫
dp

d

d�
[G�(p)G�(−p)][Zδ

�(p)]2, (A5)

dZδ
�(p)

d�
= −

∫
dp′ d

d�
[G�(p′)G�(−p′)]Zδ

�(p′)gδ(p′,p),

(A6)

where gδ(p′,p) = g(p′,−p′,−p) for both δ =
SS and TS.

The RG flows for the SDW and CDW susceptibilities are

dχδ
�(π,0)

d�
= −

∫
dp

d

d�
[G�(p)G�(p + Q)]

[
Zδ

�(p)
]2

,

(A7)

dZδ
�(p)

d�
=

∫
dp′ d

d�
[G�(p′)G�(p′ + Q)]Zδ

�(p′)gδ(p′,p),

(A8)

where Q = (Q = π,0). For δ = SDW: gδ(p′,p) = −g(p +
Q,p′,p); and for δ = CDW: gδ(p′,p) = 2g(p′,p + Q,p) −
g(p + Q,p′,p). The function Zδ(p) is the effective vertex in
the definition of the susceptibility χδ [55].
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