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Electron transport in p-wave superconductor-normal metal junctions
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We study low-temperature electron transport in p-wave superconductor-insulator-normal metal junctions. In
diffusive metals, the p-wave component of the order parameter is strongly suppressed at distances greater than
the mean free path l. At the superconductor-normal metal boundary, due to spin-orbit interaction, there is a triplet
to singlet conversion of the superconducting order parameter. The singlet component survives at distances much
larger than l from the boundary. It is this component that controls the low-temperature resistance of the junctions.
As a result, the resistance of the system strongly depends on the angle between the insulating boundary and the d
vector characterizing the spin structure of the triplet superconducting order parameter. We also analyze the spatial
dependence of the electric potential in the presence of the current and show that the electric field is suppressed
in the insulating boundary as well as in the normal metal at distances of order of the coherence length away from
the boundary. This is very different from the case of the normal metal-insulator-normal metal junctions, where
the voltage drop takes place predominantly at the insulator.
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I. INTRODUCTION

Electron transport in superconducting systems is very
different from that in normal metals. Roughly speaking, the
characteristic size of wave packets that carry current in metals
is of the order of the Fermi wavelength �/pF , while their
charge is equal to the electron charge e. Here, pF is the Fermi
momentum. On the other hand, the quasiparticle wave packets
in superconductors are coherent superpositions of electrons
and holes. This results in a characteristic size of the wave
packets that is much larger than �/pF . The charge of the
packets depends on the energy and can be very different
from the electron charge e. This has important consequences
in electronic transport properties of superconductor-insulator-
normal metal junctions.

Transport properties of s-wave superconductor-insulator-
normal metal junctions have been the subject of intensive
experimental and theoretical research for decades, see, for
example, Refs. [1–6]. In this case, the Cooper pairs can
be constructed from the two single-particle wave functions
related by a time reversal operation. At low temperatures, the
characteristic size of wave packets, which carry current in the
metal near the boundary, is of the order of the normal metal
coherence length LT = √

D/T , which turns out to be much
larger than the elastic mean free path l. Here, D is the diffusion
coefficient, and T is the temperature. One of the consequences
of the large size of the wave packets is that, in the presence of
a current through the junction, the drop of the gauge-invariant
potential � is pushed to distances of order LT away from
the boundary, which is much larger than both the thickness
of the insulator and the elastic mean free path l. This is
quite different from the case of normal metal-insulator-normal
metal junctions, where most of the potential drop occurs at the
insulator.

In this paper, we develop a theory of electron transport
in p-wave superconductor-insulator-normal metal junctions.
The best known example of a p-wave superfluid is superfluid
3He. One of the leading candidates for p-wave pairing in
electronic systems is Sr2RuO4. There are numerous pieces of
experimental evidence that the superconducting state of this

material has odd parity, breaks time reversal symmetry, and
is fully gaped [7–12]. One of the simplest forms of the order
parameter, which satisfies these requirements, is the chiral
p-wave state �(p) ∼ px ± ipy , which has been suggested in
Ref. [13]. It is a two-dimensional analog of superfluid 3He-A
[14]. Another interesting scenario for the order parameter was
suggested in Ref. [15]. Chirality of the pairing wave function
leads to edge states and spontaneous surface currents. While
the quasiparticle tunneling spectroscopy[16–18] confirmed the
existence of the subgap states, the experiments in Ref. [19]
did not confirm the existence of the edge supercurrent. (See
Ref. [20] for a discussion about about consistency of the chiral
p-wave phase for Sr2RuO4.) We think that electron transport
experiments may clarify the situation.

In this paper, we consider a p-wave superconductor-
insulator-normal metal junction in the geometry in which the
insulating boundary (xy plane) is perpendicular to the c axis of
the layered chiral p-wave superconductor, as shown in Fig. 1.
Although for simplicity we take the order parameter in the
superconductor in the form[14,21]

�̂(n) = �(n)(d · σ )iσ2, �(n) = �0e
iϕn , (1)

our results also apply to more complicated forms of the order
parameter, such as, for example, that in Ref. [15]. Here,
n is a unit vector in the xy plane, which points along p,
and ϕn is the azimuthal angle characterizing its direction
n = (cos ϕn, sin ϕn).

At temperatures well below the gap, tunneling of single
electrons from the metal to the superconductor is forbidden.
Thus, similar to the s-wave case, the resistance of the junction
is determined by the tunneling of the electron pairs. Coherent
pair tunneling gives rise to coherence between electrons and
holes inside the normal metal. Electron-hole coherence in the
metal is characterized by the anomalous Green function. The
crucial difference between the s-wave and the p-wave cases is
the following. In the p-wave case, in the absence of spin-orbit
interaction, only the p-wave component is induced inside the
normal metal. The latter is strongly suppressed at distances
larger than l away from the superconductor-normal metal
boundary. As a result, in the diffusive regime, the conductance
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FIG. 1. (Color online) Schematic representation of the
superconductor-insulator-normal metal junction. The vector ẑ

is along the c axis of crystal, and ϑd denotes the angle between spin
vector d and ẑ. The dependence of the voltage inside the normal
metal on the distance from the boundary may be measured by a
scanning tunneling microscope (STM).

of the junction is significantly suppressed. In the presence
of the spin-orbit interaction, the p-wave order parameter
in the superconductor is partially converted to the s-wave
component inside the normal metal. At low temperatures, the
s-wave component propagates into the metal to large distances
from the boundary. Consequently, it is this component that
determines the low-temperature resistance of the system.

We show below that Rashba-type spin-orbit coupling at
the boundary between the normal metal and the p-wave
superconductor leads to strong dependence of the resistance
on the direction of the vector d, which characterizes the spin
structure of the order parameter in Eq. (1). Since the spin ori-
entation of the order parameter may be controlled by an
external magnetic field [22], our predictions may be tested in
experiment. Qualitatively, this dependence may be understood
as follows. In our geometry (with the z axis parallel to the
c axis of the crystal), the z component of the total (orbital
plus spin) angular momentum, Jz = Lz + sz, is conserved
during tunneling even in the presence of spin-orbit interaction.
Therefore the s-wave singlet proximity effect in the normal
metal is produced only by the pairs with Jz = 0 in the p-wave
superconductor. Since in our geometry the z component of the
orbital angular momentum in a px + ipy superconductor is
Lz = +1, we conclude that only the part of the condensate with
sz = −1 induces the s-wave proximity effect in the normal
metal. This condensate fraction corresponds to the components
of the vector d lying in the xy plane.

II. KINETIC SCHEME FOR DESCRIPTION OF
ELECTRON TRANSPORT IN p-WAVE

SUPERCONDUCTOR-NORMAL METAL JUNCTIONS.

The conventional description of the electronic transport in
superconductors based on the Boltzmann kinetic equation is
valid when all spatial scales in the problem, including the mean
free path l, are larger than the characteristic size of electron
wave packets. At low temperatures, LT � l, this condition is
violated, and this approach cannot be used for the description
of the effects mentioned above.

The set of equations describing the electronic transport in
s-wave superconductors in this situation has been derived in
Ref. [23]. Below, we review a modification of this approach
for the case where the superconducting part of the junction is
a p-wave superconductor. The central object of this approach
is the matrix Green function in the Keldysh space:

Ǧ(x1; x2) =
(

ĜR ĜK

0 ĜA

)
. (2)

The retarded, advanced, and Keldysh Green functions in this
equation can be written in the following form:

ĜR
��′(x1; x2) = −iθ (t1 − t2)〈{ψ�(x1),ψ†

�′(x2)}〉, (3)

ĜA
��′(x1; x2) = iθ (t2 − t1)〈{ψ�(x1),ψ†

�′(x2)}〉, (4)

ĜK
��′(x1; x2) = −i〈[ψ�(x1),ψ†

�′(x2)]〉. (5)

Here, x = (r,t) denotes the space-time coordinate, and the
indices �,�′ = 1, . . . ,4 label the four components of the
fermion operator in the Nambu/spin space; ψ1 = ψ↑, ψ2 =
ψ↓, ψ3 = ψ

†
↑, ψ4 = ψ

†
↓. Finally, the anticommutator and the

commutator of operators A and B are denoted by {A,B} and
[A,B], respectively.

Introducing the new variables, x = (r,t) = (x1 + x2)/2 and
x′ = (r′,t ′) = x1 − x2, we can define the quasiclassical Green
function by Fourier transforming Ǧ(x1; x2) with respect to x′
and integrating over ξp = εp − EF as

ǧ(x,n,ε) = i

π

∫
dξp

∫
d4x ′eiεt ′−ipr′

τ3Ǧ(x1; x2). (6)

Here, EF is the Fermi energy, εp is the electron energy
spectrum, and n is a unit vector labeling a location on the
Fermi surface (for example, for a spherical Fermi surface,
it can be chosen as n = p/|p|), and τ3 is the third Pauli
matrix. In this paper, we will denote the Pauli matrices in
the Nambu space by τi , and the Pauli matrices in spin space
by σi . The Keldysh space structure of the Green functions will
be indicated explicitly when necessary.

The quasiclassical Green’s function (6) satisfies the nor-
malization condition

ǧǧ = 1, (7)

which can be spelled out in terms of components in the Keldysh
space as

ĝ(R,A)ĝ(R,A) = 1, (8)

ĝRĝK + ĝK ĝA = 0. (9)

The normalization condition (9) is satisfied for any Keldysh
function of the form

ĝK = ĝRĥ − ĥĝA. (10)

The matrix ĥ may be parameterized as [23]

ĥ = f0τ̂0 + f1τ̂3. (11)
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Here, f0 and f1 are, respectively, the odd and even in ε parts
of the distribution function (see Ref. [24] for an alternative
treatment).

In this paper, we only consider stationary situations. In this
case, the Green functions depend on the energy ε but not on the
time t . If kF l � 1, the Gorkov equation for the Green function
in Eq. (2) can be reduced to the quasiclassical Eilenberger
equations for the Green functions defined in Eq. (6): [23]

ivF · ∇ǧ + [ετ̌3 − �̌(n) − �̌,ǧ] = 0. (12)

Here, �̌ is the self-energy associated with impurity scat-
tering. In the Born approximation, �̌ = −i〈ǧ〉/2τe, where
〈. . .〉 denotes average over the solid angle in momentum
space and τe is the elastic mean free time. The only dif-
ference of Eq. (12) from the conventional s-wave super-
conductor case is in the form (1) for the order parameter.

We neglect the electron-electron interactions in the normal
metal. As a result, in our approximation, the order parameter
vanishes inside the normal metal. This yields the following
equations for the retarded, advanced, and Keldysh Green
functions:

ivF · ∇ĝR,A + ε[τ̂3,ĝ
R,A] = [�̂R,A,ĝR,A], (13)

ivF · ∇ĝK + ε[τ3,ĝ
K ] = �̂RĝK + �̂KĝA − ĝR�̂K − ĝK�̂A.

(14)

Multiplying Eq. (14) with τ3 and τ0 and taking the trace, and
using the fact that Tr(ĝR − ĝA) = 0, one obtains the following
equations for f1 and f0:

Tr[β̂]vF · ∇f1 = − 1

2τe

f0Tr(〈α̂〉α̂ − [〈ĝR〉,ĝR] + [〈ĝA〉,ĝA]) + 1

2τe

Tr[〈α̂f0〉α̂]

− 1

2τe

f1Tr(〈α̂〉β̂ − [〈ĝR〉,ĝR]τ̂3 + τ̂3[〈ĝA〉,ĝA]) + 1

2τe

Tr[〈β̂f1〉α̂], (15)

Tr[β̂]vF · ∇f0 = − 1

2τe

f0Tr(〈τ̂3β̂τ̂3〉α̂ − [〈ĝR〉,ĝR]τ̂3 + τ̂3[〈ĝA〉,ĝA]) + 1

2τe

Tr[〈α̂f0〉τ̂3β̂τ̂3]

− 1

2τe

f1Tr(〈ĝR〉β̂τ̂3 − τ̂3β̂〈ĝA〉 − [〈ĝR〉,ĝR] + [〈ĝA〉,ĝA]) + 1

2τe

Tr[〈β̂f1〉τ̂3β̂τ̂3]. (16)

Here, we defined α̂ = ĝR − ĝA and β̂ = ĝRτ̂3 − τ̂3ĝ
A.

The gauge-invariant potential and the electric current can be
expressed in terms of quasiclassical Keldysh Green functions
as

�(r) = 1

4e

∫
dε

∫
d2nTr{ĝK (r,n,ε)}, (17)

J (r) = −eν0

4

∫
dε

∫
d2nvF Tr{τ̂3ĝ

K (r,n,ε)}. (18)

Here, the integral over n denotes averaging over the Fermi
surface, d2n = d�n/4π . We discuss the boundary conditions
for the quasiclassical transport equations (12)–(16) in Sec. II A.

A. Boundary conditions for p-wave superconductor-normal
metal interface

The p-wave superconductivity is destroyed by elastic scat-
tering processes when l < ξ0, where ξ0 is the zero-temperature
coherence length in a clean superconductor, see- for example-
Ref. [25]. Therefore we consider the case where the p-wave
superconductor is relatively clean and l � ξ . For the same
reason, the p-wave proximity effect is strongly suppressed
in the metal at distances larger than l from the boundary.
On the other hand, in a spatially inhomogeneous system
in the presence of spin-orbit interaction, the p- and s-wave
components of the anomalous Green functions are mixed. At
low temperatures, the s-wave component induced by spin-orbit
coupling extends into the metal to distances much larger than

l, and determines the low-temperature transport properties of
the junction. Therefore spin-orbit coupling plays a crucial role
in low-temperature electron transport in normal metal–p-wave
superconductor junctions.

Though our results have a general character, in this paper,
we assume that a Rashba-type spin-orbit coupling is present
only at the boundary. Since the interface between two different
materials is not symmetric with respect to reflection in the xy

plane (z → −z) such coupling is allowed by symmetry and
thus generally present. The corresponding potential energy
at the boundary may be modeled by the form V = (u0σ0 +
u1ẑ × p‖ · σ )δ(z), where p‖ is the component of the electron
momentum parallel to the boundary, and ẑ is the unit vector
normal to the boundary. We assume that u1 � u0, and consider
a disorder free boundary, so that p‖ is conserved.

The boundary conditions for quasiclassical Green functions
in superconductors were obtained in Refs. [26–28]. In the case
of a spin active boundary [27], they may be expressed in terms
of the p‖-dependent scattering matrix of the insulating barrier.
The latter relates the spinor amplitudes of the outgoing (ψo)
and incident (ψi) electron waves:

(
ψS

o

ψN
o

)
=

(
S11 S12

S21 S22

) (
ψS

i

ψN
i

)
. (19)

Here, the superscripts N and S denote, respectively, the normal
metal and the superconductor side of the barrier. The presence
of spin-orbit interaction at the boundary results in a spin-
dependent transmission amplitude S12, which may be written
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in the form

S12 = t0 + tsγ (ϕn), (20)

γ (ϕn) = cos ϕnσy − sin ϕnσx. (21)

Here, we introduced the azimuthal angle ϕn as p‖ =
|p‖|(x̂ cos ϕn + ŷ sin ϕn). The spin-dependent and spin-
independent transmission amplitudes ts and t0, are scalar func-
tions of |p‖|. To lowest order in the transmission amplitude,
the boundary condition for the quasiclassical Green functions
may be written as [27]

ǧ(rN,nN
o ) = − 1

2

[
Š21

(
ǧ(rS,nS

i ) − 1
)
Š
†
21,ǧ(rN,nN

o )
]

+ Š22ǧ(rN,nN
i )Š−1

22 , (22)

ǧ(rS,nS
i ) = − 1

2

[
ǧ(rS,nS

i ),Š†
21

(
ǧ(rN,nN

o ) − 1
)
Š21

]
+ Š−1

11 ǧ(rS,nS
o )Š11. (23)

Here, nS
i,o and nN

i,o are the unit vectors indicating positions on
the Fermi surface in the superconductor (S) and the normal
metal (N ) for the incident (i) and outgoing (o) waves. By
momentum conservation they correspond to the same p‖ and
thus are characterized by the same azimuthal angle ϕn. For
simplicity, we assume the Fermi surface in the superconductor
to be a corrugated cylinder with the symmetry axis along ẑ,
and that in the normal metal to be a sphere. The Fermi surface
points corresponding to the incident and reflected waves are
illustrated in Fig. 2. The coordinates rN and rS correspond,
respectively, to the normal metal—and the superconductor—
sides of the insulating boundary. For brevity, the obvious ε

dependence of Green functions has been dropped. Finally, the
matrices Šαβ are defined following Ref. [27] as

Šαβ = Sαβ(p‖)
1 + τ3

2
+ Sβα(−p‖)T

1 − τ3

2
, (24)

where Sαβ is defined in Eq. (20) and the superscript T denotes
the matrix transposition in the spin space. At weak tunneling,

FIG. 2. (Color online) Fermi surface topologies of the supercon-
ductor (corrugated cylinder at left) and the normal metal (sphere at
right). The vectors ni and no correspond to, respectively, incident and
outgoing waves. The superscripts N and S denote the superconductor
and the normal metal sides of the insulating barrier. The vectors nN

and nS correspond to the same parallel momentum, as shown by the
green lines. The momentum domain where tunneling is possible is
bounded by the angles ϑ0 and ϑ1. These angles define the integration
limits in Eqs. (50) and (53).

we may approximate Š11 ≈ Š22 ≈ 1 and

Š12 = t01̌ + ts γ̌ . (25)

Here, we introduced

γ̌ =
(

γ̂ 0

0 γ̂

)
, γ̂ =

(
γ (ϕn) 0

0 −γ (ϕn)T

)
(26)

with γ (ϕn) defined in Eq. (21).
For the purpose of studying electron transport at low

temperatures, T � �, we only need the Green functions with
energies ε well below the gap �. The Green functions inside
the superconductor are practically unaffected by tunneling.
Therefore the boundary condition for the normal metal Green
function is given by Eq. (22), where the superconductor Green
functions are replaced by their value in the bulk. Since the
latter do not depend on pz, we have ǧ(rS,nS

i ) = ǧ(rS,nS
o ) ≡

ǧ(rS,nS). It is useful to define symmetric and antisymmetric
Green functions as [26,28]

ǧs,a(r,n) = 1
2 [ǧ(r,ni) ± ǧ(r,no)]. (27)

With this notation Eq. (22) may be written as follows:

ǧa(rN,nN ) = − t2
0

4
[ǧ(rS,nS),ǧs(rN,nN )]

− t0ts

4
[{γ̌ ,ǧ(rS,nS)},ǧs(rN,nN )]

+ t0ts

2
[γ̌ ,ǧs(rN,nN )]. (28)

Here, we, for simplicity, assume that due to weakness of
spin-orbit coupling, the electron tunneling amplitude with
spin flip is smaller than that without, ts � t0 � 1. The first
term in Eq. (28) arises from the spin-conserving tunneling and
coincides with that in Ref. [26] at small transparency. This term
dominates the electron transport properties of the junction in
the high temperature regime. The second term comes from the
spin-orbit coupling. Although it is smaller than the first one,
it generates the s-wave component of the proximity effect in
the normal metal and thus determines the electron transport at
low temperatures. Finally, the last term is odd in the parallel
momentum. Therefore it vanishes upon averaging over the
Fermi surface and does not contribute to electron transport in
the diffusive regime.

B. Kinetic scheme in the diffusive regime

In the low-temperature regime, T � vF /l, the proximity
effect extends to distances of order LT = √

D/T � l into the
normal metal (here, D is the electron diffusion constant). At
such length scales the transport properties of the junction may
be described in terms of the Usadel Green functions Ǧ(r).
The latter correspond to coincident coordinates of the electron
operators in Eq. (2), r = r′, and may be expressed in terms of
the Eilenberger Green functions (6) by averaging them over
the Fermi surface:

Ǧ(r) =
∫

d2n ǧ(r,n), d2n = 1

4π
d cos ϑndϕn, (29)

where the polar and azimuthal angles ϑn and
ϕn characterize the unit vector n = (nx,ny,nz) =
(sin ϑn cos ϕn, sin ϑn sin ϕn, cos ϑn).
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We neglect the spin-orbit interaction in the normal metal
and assume that the electrons in the normal lead are not spin
polarized. The triplet component of the anomalous Green
function is strongly suppressed at distances larger than l from
the boundary with the superconductor. The singlet component,
on the other hand, survives even at distances much larger than
l. Therefore it dominates the electron transport in the junction
at low temperatures. Below, we focus on the singlet component
of the Usadel Green function Ĝ(r), which is a 4 × 4 matrix
in the Keldysh and Nambu space. Its various components
α = R,A,K in the Keldysh space have the following form:

Ĝα(r) =
(

Gα −iF α

iF̃ α −G̃α

)
. (30)

The corresponding spin structure of the full 8 × 8 Green
function in Eq. (29) is given by

Ǧα(r) =
(

Gασ0 −iF αiσ2

iF̃ αiσ2 −G̃ασ0

)
. (31)

At length scales greater than l, the singlet component of the
Usadel Green function satisfies the differential equation

D∇ · [Ĝ(r)∇Ĝ(r)] + iε[τ̂3,Ĝ(r)] = 0. (32)

Expanding in the Keldysh space, this equation gives

D∇ · (Ĝ(R,A)∇Ĝ(R,A)) + iε[τ̂3,Ĝ
(R,A)] = 0, (33)

D∇ · (ĜR∇ĜK + ĜK∇ĜA) + iε[τ̂3,Ĝ
K ] = 0. (34)

The first equation, Eq. (33), is the Usadel equation, which
describes the equilibrium properties of the system. The second
equation, Eq. (34), describes the Keldysh Green function. The
Usadel Green function satisfies the normalization conditions
(8) and (9). The condition (9) is satisfied by any matrix of the
form (10). In the normal metal, the matrix ĥ may be expressed
in terms of the symmetric and antisymmetric distribution
functions f0 and f1 using Eq. (11) [23].

In a normal metal, in contact with a single superconducting
lead, Eq. (34) can be used to obtain the following equations
for distribution functions by using Eqs. (10) and (11):

∇ · (Tr[1 − ĜR(r)ĜA(r)]∇f0(r,ε)) = 0, (35)

∇ · (Tr[1 − τ3Ĝ
R(r)τ3Ĝ

A(r)]∇f1(r,ε)) = 0. (36)

The expressions for the density of states, electrochemical
potential, and current density in terms of the Usadel Green
functions are

ν(r,ε) = ν0Re(GR(r,ε)), (37)

�(r) = 1

eν0

∫
dεν(r,ε)f1(r,ε), (38)

J (r) = eν0D

∫
dε�(r,ε)∇f1(r,ε). (39)

Here, �(r,ε) = 1 + |GR(r,ε)|2 + |FR(r,ε)|2, ν0 = mpF /π2

is the density of states of the normal metal in the absence
of the proximity effect.

Using Eq. (8), one can write the retarded Usadel Green
function in terms of the complex angles θ (r) and χ (r) as

ĜR(r) =
(

cos θ (r) −i sin θ (r)eiχ(r)

i sin θ (r)e−iχ(r) − cos θ (r)

)
. (40)

The corresponding parametrization for advanced Green func-
tion can be obtained by using ĜA(r) = −τ3[ĜR(r)]†τ3.

For the system of interest, where the normal metal is
connected to a single superconductor, the phase χ (r) is
independent of coordinates and is set by the phase of the order
parameter in the superconductor. In this case [∇χ (r) = 0],
the Usadel equation in Eq. (33) reduces to the following
second-order differential equation for the complex function
θ (r):

D

2
∇2θ (r) + iε sin θ (r) = 0, (41)

which is the well-known sine-Gordon equation.
The equations for the distribution functions in Eqs. (35) and

(36) take the following forms in this parametrization:

D∇ · [cos2 θR(r)∇f0(r)] = 0, (42)

D∇ · [cosh2 θI (r)∇f1(r)] = 0. (43)

Here, we introduced the real and imaginary parts of θ (r) =
θR(r) + iθI (r).

Finally, using Eqs. (38), (39), and (40), we get the following
expressions for the electric current and potential:

Jn(r) = eDν0

∫
dε cosh2 θI (r)∇f1(r), (44)

�(r) = 1

e

∫
dε cos θR(r) cosh θI (r)f1(r). (45)

Below, we will be interested only in linear in the external
electric field effects, in which case f0 = tanh(ε/2T ) has its
equilibrium form.

Equations (33) and (34) or (41)–(43) must be supplemented
with the boundary conditions. In Sec. II B 1, we obtain such
conditions for a boundary between the normal metal and the
p-wave superconductor in the geometry of our device.

1. Diffusive boundary conditions in the vertical geometry

The boundary conditions for the Usadel Green function
Ĝ(r) may be found by solving the Eilenberger equations (12)
with boundary conditions (28) at distances of the order of the
mean free path l from the boundary. This can be done using the
method of Ref. [28]. A key observation is that the Eilenberger
equations (in which one may set ε → 0 for distances less than
the mean free path from the boundary) conserve the matrix
current normal to the boundary,

ǰ (r) =
∫

d2nǧ(r,n)vF · ẑ = vF

∫ ′
d2nǧa(r,n)n · ẑ. (46)
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The prime in the second expression indicates the fact that the
integral must be taken over half the Fermi surface, n · ẑ � 0.

At weak tunneling, the singlet component ĵ of the matrix
current at the boundary may be expressed in terms of the
Usadel Green function Ĝ(r) as[28]

ĵ (rN ) = DĜ(r)ẑ · ∇Ĝ(r)|r=rN . (47)

On the other hand, the matrix current may be evaluated by
multiplying Eq. (28) with vF nN · ẑ and integrating the result
over half the Fermi surface, nN · ẑ � 0. In doing so, it is
important to keep in mind that at weak tunneling the symmetric
part of Green function in the normal metal is independent of
nN , ǧs(rN,nN ) = Ǧ(rN ) and that the superconductor Green
function ǧs(rS,nS) may be replaced by its bulk value at ε = 0.
The latter is given by

ǧ(n) = −
[

0 eiϕn d · σ iσ2

e−iϕn iσ2d∗ · σ 0

]
. (48)

Here, we used Eq. (1). We consider unitary states, d × d∗ = 0,
and parametrize the vector d by an overall phase χ0 and the
spherical angles ϑd, and ϕd as

dT = eiχ0 (sin ϑd cos ϕd, sin ϑd sin ϕd, cos ϑd). (49)

It is easy to see that only the second term in the right-hand side
of Eq. (28) contributes to the matrix current. The contributions
of the other two terms vanish upon the integration over
n because both γ̌ and the superconductor Green function
ǧ(rS,nS) depend on the azimuthal angle ϕn as e±iϕn , see
Eqs. (21), (26), and (48). We thus obtain

ǰ (r) = −vF

4

∫ ϑ1

ϑ0

d cos ϑn

2
ts t0ẑ · n[ ˇ̄G(rS),Ǧ(rN )]. (50)

Here, vF is Fermi velocity in the normal metal, and the
integration limits ϑ0 and ϑ1 define the domain where tunneling
is possible. This domain corresponds to the projection of the
corrugated cylindrical Fermi surface in the superconductor to
the Fermi surface in the metal, see Fig. 2. Finally, ˇ̄G(rS) is
given by

ˇ̄G(rS) ≡
∫

dϕS
p

2π

{
ǧ
(
rS,nS

i

)
,γ̌

}
=

[
0 ei(ϕd+χ0)iσ2

e−i(ϕd+χ0)iσ2 0

]
. (51)

Comparing Eqs. (47) and (50), we obtain the following
boundary condition for the Usadel Green function:

DǦ(r)∂zǦ(r)|r=rN = t[Ǧ(rN ), ˇ̄G(rS)], (52)

where

t = 1

4
| sin ϑd|

∫ ϑ1

ϑ0

d cos ϑn

2
(ts t0vF cos ϑn). (53)

Note that the boundary condition in Eq. (52) has the same
structure as that for a boundary between an normal metal and
an s-wave superconductor. The reason is that only the s-wave
component of the anomalous Green function survives in the
normal metal at distances larger than l from the boundary.
The difference however is that in our case the effective barrier
transparency t in Eq. (53) depends on the spin-flip tunneling

amplitude ts , and on the vector d characterizing the spin
orientation of the triplet order parameter. The phase of the
effective s-wave anomalous Green function (51), χ0 + ϕd, also
depends on the orientation of the spin vector d in the xy plane.

The aforementioned analogy enables one to treat the
proximity effect in normal metal- p-wave superconductor
systems in the diffusive regime as proximity effect in an
effective s-wave superconductor problem, in which the phase
of the s-wave order parameter and the barrier transparency
depend on the spin orientation of the p-wave condensate.

The mechanism of the s-wave proximity effect in diffusive
metals considered here is quite different from that at bound-
aries with d-wave superconductors [29,30]. The latter does
not require spin-orbit coupling because of the singlet nature of
d-wave superconductivity and arises because tunneling across
the barrier is dominated by electrons with momenta nearly
normal to the boundary. As a result, the phase of the s-wave
proximity effect is determined by the lobes of the d-wave
order parameter that are nearest to the interface normal. In
contrast, in our geometry, the phase of the p-wave order
parameter does not depend on the momentum normal to the
boundary, but only on the parallel momentum p‖. Therefore the
naive Fermi surface average of the induced anomalous Green
function vanishes, and the s-wave proximity effect arises only
due to the presence of spin-orbit coupling at the boundary.

It is convenient to recast the boundary condition Eq. (52) in
terms of the parametrization in Eq. (40). In our setup, see Fig. 1,
the phase χ (r) of the anomalous Usadel Green function (40) is
uniform in space and equal to the phase of the effective s-wave
order parameter, χ (r) = ϕn + χ0. The boundary condition for
the angle θ (rN ) becomes

D∂zθ (r)
∣∣
r=rN = 2t cos θ (rN ). (54)

The Keldysh component of the boundary condition in Eq. (52)
gives the following boundary condition for the even part of the
distribution function:

D cosh2 θI (r)∂zf1(r)|r=rN = 2t�εf1(rN ). (55)

Here, we assumed that f1(rS) = 0 is zero inside superconduc-
tor and introduced the notation

�ε = cosh θI (rN ) sin θR(rN ). (56)

The set of equations (41) and (43) along with the boundary
conditions (54) and (55) gives a description of electron
transport in diffusive metal–p-wave superconductor systems.
Below we apply these equations to our device geometry.

III. RESISTANCE OF p-WAVE SUPERCONDUCTOR-
NORMAL METAL JUNCTION

We consider the geometry in which the superconductor fills
the z < 0 half-space and the normal metal occupies the z > 0
half space, see Fig. 1. At weak tunneling, the Green function
in the superconductor is practically unaffected by the presence
of the tunneling barrier. On the other hand, the low-energy
properties of the normal metal are significantly affected by the
proximity effect. The singlet Usadel Green function (30) in the
normal metal is described by the set of equations (40), (41),
(43) with the boundary conditions (54) and (55).
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The solution of Eq. (41) satisfying the condition
limz→∞ θ (z) = 0, has the form

θ (ε,z) = 4 arctan

[
exp

{
βε + (i − 1)

z

Lε

]}
. (57)

Here, βε is an energy-dependent integration constant. Its value
is determined from the boundary condition in Eq. (54), which
gives

cosh βε − 2

cosh βε

= (1 − i)
Lt

Lε

, (58)

where

Lt = D

t
, Lε =

√
D

ε
. (59)

The algebraic equation (58) has multiple solutions for the
integration constant βε . The physical solution must satisfy
the condition limε→0 θ (ε,z = 0+) = π/2, which gives

eβε = α + √
α2 + 8

2
− 1

2

√
(α +

√
α2 + 8)2 − 4, (60)

where we introduced the notation α = (1 − i)Lt/Lε .
An important aspect of the solution (57) is that in the normal

metal, at small values of ε and at small distances from the
boundary, θ (z) ≈ π/2, which is the same as in the bulk of the
superconductor. In particular, it means that at small energies,
the density of states in metal is strongly suppressed at distances
smaller than Lε . The full spatial dependence of the density of
states ν(ε,z) may be obtained by substituting the solution (57),
(60) of the Usadel equation into Eqs. (37) and (40). In Fig. 3,
we have plotted the result as a function of z/Lε for different
values of Lt/Lε .

Note that the effective diffusion constant for the distribution
function f1 is determined by the imaginary part of θ , see
Eq. (43). From the solution (57) it follows that the imaginary
part θI is close to zero both at z � Lε and z � Lε and has a
maximum at z ∼ Lε whose value depends on Lε/Lt . Therefore
the effective diffusion coefficient in Eq. (43) approaches to its

FIG. 3. (Color online) Density of states in the normal metal as
a function of the distance from the superconductor-normal metal
boundary for different temperatures: Lt/Lε = 0.01 (blue), Lt/Lε =
0.5 (green), and Lt/Lε = 1.2 (red).

normal metal value at z � Lε and z � Lε . In the intermediate
region z ∼ Lε , the diffusion coefficient exceeds the Drude
value.

The differential equation (43) for the nonequilibrium part
of the distribution function has the first integral, which has
the meaning of the conserved partial current density at a given
energy ε:

Jε ≡ eDν0 cosh2 θI (z)∂zf1(ε,z). (61)

The energy dependence of the partial current Jε can be
obtained by noticing that far away form the boundary the
distribution function should have the form

f1(ε,z) = 1

cosh2 ε
2T

eJ0

2T σD

(z − z0), (62)

where σD = e2ν0D is the Drude conductivity of the normal
metal, and we introduced the current density,

J0 =
∫ ∞

−∞
dεJε. (63)

Substituting Eq. (62) into Eq. (61), we obtain the following
expression for the partial current:

Jε = J0

4T

1

cosh2 ε
2T

. (64)

Using Eqs. (61) and (64), the solution of Eq. (43), which
satisfies the boundary condition (55) and the asymptotic form
(62) at large distances, may be written in the form

f1(ε,z) = eJ0

2T σD cosh2 ε
2T

[
Lt

2�ε

+
∫ z

0

dz′

cosh2 θI (ε,z′)

]
.

(65)

Here, θI (z′) is given by Eqs. (57) and (60), and �ε was defined
in Eq. (56).

Substituting this result in Eq. (45), we get the following
expression for the gauge invariant potential:

�(z) = J0

σD

∫ ∞

0

dε

2T

cos θR(ε,z) cosh θI (ε,z)

cosh2 ε
2T

×
(

Lt

2�ε

+
∫ z

0

dz′

cosh2 θI (ε,z′)

)
. (66)

In Fig. 4, we plotted the dependence of the gauge invariant po-
tential on the dimensionless distance from the boundary, z/LT ,
for different values of the dimensionless barrier transparency
parameter, Lt/LT .

One of the important features of the transport through the
junction is that at low temperatures, the gauge invariant poten-
tial �(z) is significantly suppressed near the superconductor-
normal metal boundary, and is a nonlinear functions of z. In
particular, the voltage drop across the insulator, �(z = 0), goes
to zero in the low-temperature limit.

Because of the nontrivial spatial distribution of the electric
field in the junction its resistive properties may be charac-
terized in different ways. One measure of the resistance can
be defined in terms of the voltage drop across the insulating
barrier. We define the resistance of the insulating boundary per
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FIG. 4. (Color online) The spatial variation of the gauge-
invariant potential � (solid lines) and the compensating voltage Vstm

at the STM tip (dashed lines) on the dimensionless distance z/LT

from the boundary is plotted at different temperatures; Lt/LT = 0.01
(blue), Lt/LT = 1 (green), and Lt/LT = 5 (red). The solid grey
lines represent the large distance asymptotes of the gauge invariant
potential. Their intercepts with the vertical axis for the three values
of Lt/LT are marked by �0 in the corresponding color. The value of
�0 defines the junction resistance R∞ in Eq. (70).

unit area as

R0 = �(z = +0)

J0
. (67)

Using Eq. (66), one can express the boundary resistance R0

per unit area in the form

R0 = 1

e2ν0t

Lt

LT

A

(
Lt

LT

)
, (68)

where the dimensionless function A (Lt/LT ) is defined by the
following integral:

A

(
Lt

LT

)
= LT

Lt

∫ ∞

0

dε

4T

cot θR(ε,0)

cosh2 ε
2T

. (69)

This function is plotted in Fig. 5. In the low- and high-
temperature limits, this expression tends to the following
constants: A(0) ≈ 0.37 and A(∞) ≈ 0.53. As a result, in the
high- and low-temperature regimes, the boundary resistance
R0 ∝ √

T .
Note that at low temperatures, LT � Lt , the magnitude of

the jump of �(z) at the insulator boundary approaches zero at
T → 0. This is very different from the resistance of the normal
metal-insulator-normal metal junctions where in the presence
of a current though the junction RNIN = 1/e2ν0 t̃ , where t̃ ∼ t2

0
is the transmission coefficient of the insulator.

Another measure of the junction resistance may be obtained
by extrapolating the linear dependence of �(z) at large

FIG. 5. (Color online) Plot of the function A(Lt/LT ) in Eqs. (68)
and (69).

distances, �(z) = J0z/σD + �0 to the location of the barrier,
z = 0. This is shown by grey solid lines in Fig. 4. The value
of the intercept with the vertical axis, �0, defines the total
resistance per unit area of the junction:

R∞ = �0

J0
. (70)

Using Eq. (66), we obtain

R∞ = 1

e2tν0
B

(
Lt

LT

)
, (71)

where the function B(Lt/LT ) is given by the following
integral:

B =
∫ ∞

0

dε

2T

1

cosh2 ε
2T

[
1

2�ε

−
∫ ∞

0

dz′

Lt

tanh2 θI (ε,z′)
]

.

(72)

The first term in the brackets is positive and represents the
contribution of the insulating boundary. The second term is
negative. It describes the reduction of the resistance of the
normal metal due to the proximity effect.

FIG. 6. (Color online) The junction resistance R∞ per unit area
(in units of 1/e2ν0t) is plotted as a function of Lt/LT .

014505-8



ELECTRON TRANSPORT IN p-WAVE . . . PHYSICAL REVIEW B 89, 014505 (2014)

The junction resistance R∞ is plotted in Fig. 6 as a function
of Lt/LT . At relatively high temperatures Lt/LT � 1, the
junction resistance R∞ is dominated by the contribution from
the insulating boundary [first term in Eq. (72)]. In this case,
B(Lt/LT ) ≈ 0.53 Lt/LT , in agreement with the discussion
below Eq. (69). In the low-temperature regime, Lt � LT , the
junction resistance is dominated by the change in the resistance
of the normal metal due to the proximity effect (second term
in Eq. (72) and becomes negative. In this case, the junction
resistance reduces to

R∞ = − b

e2tν0

LT

Lt

, (73)

where the constant b is given by

b =
∫ ∞

0

dλ

2

λ−1/2

cosh2 λ
2

×
∫ ∞

0
dζ tanh2{4 Im arctan[(

√
2 − 1)e(i−1)ζ ]}

≈ 0.39. (74)

A. Probing the spatial distribution of the gauge-invariant
potential �(r)

Let us now discuss the possibility of experimental observa-
tion of the suppression of �(x) near the junction’s boundary
by using a scanning tunneling probe. We consider the setup
illustrated in Fig. 1.

The electron transport between the STM tip and the metal
can be described with the aid of the tunneling Hamiltonian

HT =
∑
kp

(tkpc
†
kcp + t∗kpc

†
pck). (75)

Here, c† is an electron creation operator, and k labels the states
in the STM tip and p labels the states in the wire. In the
tunneling approximation, the STM current can be written in
the form

Istm(z) = gn

2e

∫ ∞

−∞
dε cos θR(ε,z) cosh θI (ε,z)

×[
f stm

1 (ε) − f1(ε,z)
]
, (76)

where gn is the conductance of the tunneling contact in the
normal state. The nonequilibrium distribution function in
the STM is given by f stm

1 (ε) = eVstm/2T cosh2(ε/2T ), where
Vstm is the STM voltage measured relative to that in the
superconductor.

Using Eq. (45) we can rewrite Eq. (76) in the form

Istm(z) = gn�(z) − gt (T ,z)Vstm, (77)

where

gt (T ,z) = gn

∫ ∞

0

dε

2T

cos θR(ε,z) cosh θI (ε,z)

cosh2 ε
2T

(78)

is the conductance of the tunneling contact.
In the case where the voltage Vstm at the tip vanishes, the

value of the tunneling current through the STM contact is
proportional to �(z),

Istm(z) = gn�(z). (79)

In particular, Istm(z) is significantly suppressed near the
superconductor-normal metal boundary, reflecting corre-
sponding suppression of �(x).

On the other hand, if Istm = 0, we get

Vstm(z) = gn

gt (T ,z)
�(z), (80)

where �(z) is given by Eq. (66). The graph of Vstm(z) is plotted
in Fig. 4 by dashed lines for several temperatures. It is inter-
esting to note that, in contrast to the gauge invariant potential,
Eq. (79), the compensating STM voltage in Eq. (80) does not
exhibit the aforementioned suppression near the boundary at
low temperatures, LT � Lt . The slope dVstm(z)/dz remains
practically the same as in the normal metal in the absence of
superconductor, both at z � LT and at z � LT . The reason
is that the conductance of the tunneling barrier between the
STM and the metal, gt (T ,z), reflects the suppression of the
single-particle density of states in the metal, as described
by Eq. (78). This nearly cancels the suppression of �(z) in
Eq. (80).

IV. CONCLUSIONS

We show that the low-temperature resistance of the p-wave
superconductor-diffusive normal metal junctions is controlled
by the spin-orbit interaction. As a result, the junction re-
sistance, tunneling density of states in the metal and other
transport properties of the device exhibit a strong dependence
on the angle between the vector d characterizing the spin part
of the superconducting wave function, and the normal to the
surface of the junction. In particular, the s-wave component of
the proximity effect in metal vanishes when d is parallel to the
c axis.

The absence of the corresponding dependence of the Knight
shift on the angle between d and the c axis in Sr2RuO4 crystals
is one of the problems in the interpretation of Sr2RuO4 as a
conventional p-wave superconductor. This fact was attributed
to weakness of the spin-orbit interaction in Sr2RuO4 [22].
We would like to point out that the resistance of the junction
should be strongly dependent on the angle between d and z
even in the case of weak spin-orbit interaction. Therefore the
measurement of this effect could clarify the situation.

Another consequence of the sensitivity of the proximity
effect to the orientation of the condensate spin is that a
current passing across such a junction leads to spin accu-
mulation inside the p-wave superconductor (although inside
the proximity region no spin accumulation occurs). We also
would like to mention that the boundary conditions (52)
can be used to describe the Josephson effect in junctions
consisting of two p-wave superconductors separated by a
diffusive normal metal. The structure of boundary conditions
(52) is similar to those of for s-wave superconductor-normal
metal junction. Therefore the supercurrent for the p-wave case
may be obtained from the conventional formulas for the s-wave
case if we substitute the phase difference in the s-wave case
with ϕd + χ0, see Eqs. (51) and (49), and the transmission
coefficient with t .

An important consequence of the proximity effect near the
superconductor-normal metal boundary is the suppression of
the Hall effect in the metal near the superconducting boundary.
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Qualitatively, this suppression is related to the fact that, due
to proximity effect, at low energies, the quasiparticle wave
functions in a metal are a coherent superposition of electron
and hole wave functions, and the effective charge of the
quasiparticles approaches zero at ε → 0. The presented above
scheme of calculation of the electronic transport was derived in
zeroth order in ωcτ , where ωc is the cyclotron frequency and τ

is the elastic mean free time. In this approximation, the electron
wave functions near the Fermi surface are electron-hole
symmetric, which yields a vanishing Hall effect. To describe
Hall effect one has to add to the expression for the current a
term linear in ωcτ [31],

JH ∝ ωcτb ×
∫

dε cos θR cosh3 θI∇f1, (81)

here ωc is the cyclotron frequency, and b is the unit vector
in the direction of the magnetic field. Since the magnitude of

the proximity effect is controlled by t , which is proportional
to sin ϑd, the Hall conductance is expected to have a strong
dependence on the orientation of the order parameter, d.
Since the latter may be oriented by the external magnetic
field, both the magnetoresistance of the junction and the Hall
resistance are expected to be strongly anisotropic with respect
to orientation of the magnetic field. Finally, note that our results
hold for more general realizations of px + ipy order parameter
in superconductors with complicated topology of the Fermi
surface, such as the one proposed in Refs. [15,32].
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