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The paper presents a comprehensive characterization of well-developed vortex tangles in a turbulent
counterflow in quantum fluids (with a laminar normal fluid component). We perform and analyze extensive
numerical simulations using the vortex filament method, solving the full Biot-Savart equations for the vortex
dynamics in a wide range of temperatures and counterflow velocities. We start with the analysis of the macroscopic
characteristics of the quantum vortex tangle such as vortex line density, its mean anisotropic and curvature
parameters, the mean friction force between normal and superfluid components, the drift velocity of the vortex
tangle, etc. Next we proceed to the main goal of the paper and move from the traditional macroscopic approach in
terms of mean characteristics of the vortex tangle to the microscopic statistical and kinetic levels of description of
quantum turbulence. These include objects that are much less studied or even totally neglected such as the vortex
reconnection rates, the correlations and probability distribution functions (PDFs) of the vortex loop lengths, of
the line curvature, of the mean curvatures of individual loops, the cross-correlation function between the loop
length and its mean curvature, and the autocorrelation function of the vortex-line orientations. This detailed
statistical information is required for a deeper understanding of quantum turbulence and for the development of
its advanced theoretical description. In addition, we identify which of the studied properties are strongly affected
by the choice of the reconnection criteria that are traditionally used in the vortex filament method and which of
them are practically insensitive to the reconnection procedure. We conclude that the vortex filament method is
sufficiently robust and well-suited for the description of the steady-state vortex tangle in the quantum counterflow.
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I. INTRODUCTION

The term “quantum turbulence” or “superfluid turbulence”
refers to a tangle of interacting quantized vortex lines, which
are formed, for example, in superfluid 4He, *He, or in
Bose-Einstein condensates of ultracold atoms. The vorticity
in superfluids is restricted to a set of vortex lines around which
the circulation is quantized to multiples of the circulation
quantum « = h/m. Here, h is Plank’s constant and m is the
mass of either atoms with integer spin, like *He, or Cooper
pairs of 3He atoms. In *He, « &~ 9.97 x 10~* cmz/s. The
creation of sustained quantum turbulence can be achieved
by either mechanical excitations [1-8], or by heat currents
(so-called counterflow turbulence). Experimental studies of
thermal counterflow, initiated almost sixty years ago by
Vinen [9,10], became the most extensively studied forms of
quantum turbulence [11-16].

In the context of the popular two-fluid model of superfluids,
the phenomenon of thermal counterflow may be considered
as consisting of two interpenetrating fluid flows: a normal
viscous component flowing in the direction of the temperature
gradient and carrying the heat flux, and an inviscid superfluid
component flowing in the opposite direction to keep a zero
total mass transfer. These two components may have different
velocity and density fields: v,(r,1), vs(r,t) and p,(r,t), ps(r,1).
More sophisticated arrangements [17] allow one to realize
(mechanically driven) pure superflows in a relatively wide (7—
10 mm) channel, with the normal fluid component practically
at rest. In both arrangements, a dense vortex tangle is excited
under the influence of the velocity difference between the
two-component quantum turbulence.

Some statistical properties of quantum vortex tangles in
counter- and superflows were studied experimentally and
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numerically [9-24], Among the seminal contributions to these
studies we should mention pioneering works by Vinen [9,10]
and Schwarz [19]. In particular, in Refs. [9,10] Vinen sug-
gested a phenomenological description of space homogeneous
counterflow turbulence, Eq. (17), in terms of the vortex line
density per unit volume, £, sometimes referred as VLD.
Schwarz [19] analytically established some important bridge
relationships between the mean characteristics of the vortex
tangle, like the mean intervortex distance £ = 1/ \/Z, the mean
curvature of the vortex lines, etc. He also pioneered numerical
simulations of the counterflow turbulence, proposing to use
a vortex filament method (sometimes referred to as VFM)
in which minor core variations of the quantized vortices are
ignored and the vortices are approximated as directional lines
with a predefined core structure. If so, the time evolution
of these vortex lines is governed by the Biot-Savart equa-
tion (10a), according to which each point of the vortex line
is swept by the velocity field produced by the entire tangle.
Schwarz [19] used the so-called local induction approximation
to Eq. (10a) (see Sec. I1IA2), which accounts only for “local”
contribution to the vortex velocity at some point r, proportional
to vortex-line curvature at this point. Later Adachi, Fujiyama,
and Tsubota [22] demonstrated that for an adequate numerical
study of the counterflow turbulence one has to relax this
approximation and to use the full Biot-Savart equation (10a)
for the description of the vortex tangle evolution.

Notice that in the typical counterflow experiments, the
vortex tangle is dense in the sense that the intervortex distance ¢
is much smaller than the characteristic size of the experimental
cell H, which is about 1 cm. At the same time, the tangle
is sparse enough such that ¢ is much larger than the vortex
core radius aop &~ 1.3 x 1078 cm in *He. Therefore, in these
experiments, there is a large intermediate region of scales
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ap < £ < H in which the evolution of the vortex tangle can
be followed by the vortex filament method, as suggested by
Schwarz [18,19].

During temporal evolution, the vortex lines can collide and
reconnect changing the tangle’s topology. Thus vortex loops
can merge or break up into smaller loops. These reconnections
occur on scales comparable with the vortex core radius and
ignored by the Biot-Savart equation. They are included in
vortex filament methods as an additional artificial procedure
that changes the connectivity of pairs of points according to
some reconnection criterion. The reconnection criteria are
based on a physical intuition and the results of numerical
simulations.

The complementary information on the vortex tangle
dynamics, which is difficult or even impossible to get from
the vortex-filament method, may be obtained in the frame-
work of the Gross-Pitaevskii equations equation [29,30]. It
describes, in particular, the vortex reconnections [31-34], the
effect of finite amplitude Kelvin waves on the counterflow
dynamics [35], the interaction of noncondensed particles with
vortex rings [36], etc. By construction, the Gross-Pitaevskii
simulations have to resolve the structure of the vortex core,
therefore they are usually oriented towards small scale dy-
namics, while the vortex-filament method, on the other hand,
does not have to resolve the vortex core scale and thus may be
focused on studies of large vortex tangles.

Nowadays, powerful computers allow partial overlap of the
scales and total line lengths available to these two methods.
For example, energy spectra of large-scale quantum turbulence
were successfully studied within the Gross-Pitaevskii frame-
work [37—41] and by the vortex-filament method [42—44].

Notice that in the counterflow turbulence the main attention
was given to studies of the vortex line density and its
dependence on the counterflow velocity and the temperature.
The other mean characteristics of the vortex tangle, such as
mean tangle anisotropy and the vortex line curvature, the mean
friction force between normal and superfluid components,
and the drift velocity of the vortex tangle, were much less
studied, see, e.g., recent reviews [25-28]. Therefore our first
goal was to fill this gap, presenting in Sec. V results of
comprehensive studies of the above mentioned values in
counterflow turbulence for a wide range of parameters: at low,
medium, and high temperatures 7' (1.3, 1.6, and 1.9 K) and
the counterflow velocities V4 ranging from 0.3 to 1.2 cm/s.

This level of description is similar to the thermodynamical
approach to gases and fluids that deals with the mean
(macroscopic) characteristics of the continuous media such
as temperature, pressure, density, etc., averaged over finite
(physical) volume. A more advanced, microscopic description
of continuous media was reached in statistical physics and
kinetics in the framework of probability distribution functions,
PDFs, (e.g., Maxwell-Boltzmann PDF of atomic velocities)
and correlation functions (e.g., of atomic positions). Similarly,
the measurable mean characteristics of the vortex tangle
provide important but very limited information on the tangle
properties.

Therefore the main goal of this paper is to move from
macroscopic to microscopic level of description of counter-
flow quantum turbulence in terms of PDFs and correlation
functions. This statistical information is needed for deeper
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and more detailed understanding of quantum turbulence and
for development of its advanced theoretical models, see, e.g., a
recent review by Nemirovski [27]. Unfortunately, there is not
much chance that detailed statistical information on quantum
vortex tangle can be subject to experimental study. Therefore
the numerical characterization of detailed local vortex tangle
statistics is important and timely. Our corresponding results
are presented in the central Sec. VI of our paper. Because of
computer limitations, comprehensive statistical information
on large vortex tangles with global size essentially exceeding
the intervortex distance currently cannot be obtained by
the Gross-Pitaevsky simulations. Therefore we used for our
studies the vortex filament approach, solving full Biot-Savart
equations for the vortex dynamics.

On this way we faced an old problem of the possible depen-
dence of the numerical results within the vortex-filament simu-
lations on the choice reconnection criteria. The reconnections
of the vortex lines were recently visualized experimentally
[45]. Since the method introduction by Schwarz [18,19], a
number of different criteria [20,22,29,46—49] were introduced
and modified over time. Currently, three criteria are frequently
used to trigger the reconnections during the evolution of the
vortex tangle. These are based either on geometrical proxim-
ity [22,29,48] or on the dynamics of vortex filaments [49-51],
leading to a different number of reconnections and various
changes in the vortex tangle topology. The presence of
variety of artificial reconnection procedures in vortex filament
methods and the spread in values of basic characteristics
of the tangle, such as the vortex reconnection rates and
steady-state vortex line density £, resulted in the superfluid
community sharing an opinion that was made explicit recently
by Skrbek and Sreenivassan: [25] “while it is clear that the
full Biot-Savart approach is certainly better [than the local
induction approximation (LIA), see below], there are still other
aspects such as approach to vortex reconnections and influence
of possible normal fluid turbulence that make the predictive
power of these simulations limited at the best.”

Therefore, to justify our numerical results, we had to answer
the question: to what extent can one state that the statistical
properties of the developed vortex tangles obtained by vortex
filament methods (in a wide range of parameters) are robust
under changes of the reconnection procedures and other imple-
mentation details? To do this, we compared throughout the en-
tire study, results of vortex filament method with the three most
used reconnection criteria [22,32,51] and found which prop-
erties are strongly affected by the choice of the reconnection
criteria (e.g., the reconnection rate differs more than in order
of magnitude for different criteria), which properties only rel-
atively weakly depend on this choice (such as mean properties
of the tangle) and which are insensitive to it (such as probability
distribution functions of local properties). Our results partially
agree with preliminary observations by Baggaley [52] who
recently compared the values of the vortex line density calcu-
lated with a number of reconnection criteria for 7 = 1.6 K and
0.35 < Vs < 0.65 cm/s and concluded that the values of £ are
insensitive to the choice of the criterion for these parameters.

The paper is organized as follows. In Sec. II, we describe
mean and local statistical characteristics of vortex tangle,
studied in the paper. Section III is devoted to a brief overview
of the vortex filament method. In particular, in Sec. IIT A,
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we present the basic equation of the vortex line motion. In
Sec. III B, we discuss the reconnection criteria, and clarify in
Sec. III C the implementation details.

Our results are presented and discussed in Secs. IV-VL
In Sec. IV, we consider the dynamics of the vortex tangle,
including its evolution toward steady state and reconnection
dynamics with different reconnection criteria. Here, we also
show the typical tangle configurations for different reconnec-
tion criteria. In Sec. V, we describe the mean characteristics of
vortex tangle, starting in Sec. V A with a detailed discussion of
the vortex line density and its dependence on the temperature
and counterflow velocity in comparison with results of other
simulations and laboratory experiments. We also discuss
the mean tangle anisotropy, the mean and root-mean-square
(RMYS) vortex line curvatures, the mean friction force between
normal and superfluid components, the drift velocity of the
vortex tangle, and the mean and most probable loop lengths.
The central Sec. VI is devoted to the detailed microscopic
description of the quantum vortex tangle in terms of PDFs
and correlation functions. In particular, we have found that
the core of the PDF of vortex loop lengths, Eq. (22), and
the PDF of line curvature, Eq. (23), have an exponential
form with a linear prefactor [ocx exp (—x)], while the PDF
of the mean-loop curvature has a Gaussian form, Eq. (25)
[xexp (=x?)]. In addition, we demonstrate that the mean
loop length essentially (more than by an order of magnitude)
exceeds the most probable loop length because of the long tail
of the corresponding PDF, which accumulates about 70-80%
of the total probability. We also characterized the correlation
between the length of the loops and their mean curvature and
showed, in particular, that the mean radius of curvature of
short loop is about their length divided by 27, while that of
the long loops is about the intervortex distance. Finally, we
found the autocorrelation of the vortex line orientation, which
decays at separations about the mean intervortex distance.
These observations can be easily rationalized by understanding
that the short loops are nearly circular, while the long loops
may be approximated by random Gaussian ravel.

The concluding Sec. VII summarizes our view and results
on the physical picture of “*He counterflow turbulence. It
begins in Sec. VIIA with a short discussion of standard
idealizations and their realizability that determine the set of
relevant physical parameters of the problem. In Sec. VIIB,
employing dimensional reasoning and (where required) some
simple physical arguments, we use the latter to describe the
dependence of the basic physical characteristics of the problem
on the counterflow velocity. Next, we present a detailed
summary of our numerical results and list the actual numerical
values of the corresponding dimensionless parameters which,
according to naive dimensional reasoning are expected to be
of the order of unity.

In the short Sec. VII C, we recall relations that stem from the
local induction approximation [19] that bridge the vortex line
density, the mutual friction force, and the tangle drift velocity
with the anisotropy and curvature parameters of the tangle. We
summarize our results on the realizability of these relations
in numerical simulation with the full Biot-Savart equations
and conclude that although the local induction approximation
to Eq. (12) fails to reproduce accurately the vortex tangle
properties in numerical studies [22], we demonstrate that the
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analytical relationships between different mean characteristics
of the vortex tangles, found in Ref. [19] within the LIA
framework, are well-obeyed in our Biot-Savart similatons.
Therefore we think that the local induction approximation
may be effectively used in the analytical theory of counterflow
turbulence.

In the next section, Sec. VII D, we summarize our results
on various PDFs that characterize different aspects of the
tangle statistics. The last, more technical section, Sec. VIIE,
overviews the dependence of our numerical results on the
reconnection criteria showing that the vortex filament method
in the framework of full Biot-Savart equation (12) provides
an adequate qualitative and a reasonably accurate quantitative
information on the quantum vortex dynamics in superfluid
turbulence. This information is required for the further de-
velopment of an adequate physical model of this intriguing
phenomenon.

II. STATISTICAL DESCRIPTION
OF THE VORTEX TANGLE

A. Statistical characteristics of the vortex tangle
1. Geometrical description of the vortex tangle

The geometry of the vortex tangle is presented in Fig. 1.
We denote by s(£) a Cartesian coordinate of the vortex line,
parameterized with the arc length &, by s'(§) = ds/d§ alocal
direction of the vortex line, and by s”(£) = d*s/d&? a local
curvature vector.

2. The vortex line density L and the parameter y

Denote the total vortex length in the tangle occupying a
volume V as L and the length of particular j loop as /;. Then
the vortex line density (VLD) £ and mean intervortex distance

f—](& at)

FIG. 1. The coordinate system. The origin of the Cartesian system
is placed at the center of the computational box. Each vortex line point
s; is defined by Cartesian coordinates x;, y;, z;, and alabel £ along the
line. Vectors §’, s”, and s’ x s” are the tangential, the local curvature
vector and the direction of the local induced velocity, associated with
the point s(&) of the vortex filament, respectively. Primes denote
differentiation with respect to the instantaneous arc length &.
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£ can be found as

N
Ltm=/d€=le, L=Ly/V, L=1/JL. (1)
C

j=1

Here, N is the total number of loops and the integral is taken
over the whole vortex configuration C.

Asserting that  ([k] = cm?/s) is the only relevant param-
eter in the problem and [£] = 1/cm™2, one can employ the
counterflow velocity Vs = V,, — V, in adimensional argument
to write /£ ~ Vhs/Kk Or

r r
NI Vs, ¥y = —. (2a)

K K

Here,V, and Vj are the mean normal and superfluid velocities
and I' is a dimensionless parameter, which in general is
temperature dependent. Naively, one expects that I" is of the
order of unity. Numerical and experimental studies (see, e.g.,
our Table III) give I' ~ 0.1.

It is customary to use in relation (2a) a dimensional
parameter y(7T) instead of I". The parameter y is the subject
of intensive experimental, numerical, and theoretical studies
and will be discussed in details in Sec. V A.

In practice, most experimental and numerical data of the
time averaged steady-state value of £ are approximated by a
slightly different form of this equation[13]:

L = y*(Vas — v0)%, (2b)

which includes an additional fitting parameter, the intercept
velocity vy.

3. Reconnection dynamics and parameter c,

The reconnections between vortex lines lead to the de-
velopment of a steady-state vortex tangle. The statistics of
the reconnections is therefore important for characterizing the
tangle. In a periodic box, only two kinds of reconnection are
possible: one vortex loop splits into two smaller loops, or two
loops merge into one larger loop. The ratio of the number
of reconnections of two types (in a unit volume), Ni/N, is
shown in Fig. 6.

The second important characteristic of the vortex dynamics
is the total reconnection rate dN./dt (N = N, + N,) in
a unit volume. In the steady state, the relation between
mean reconnection rate (dN;)/dt and L can be found by

a simple dimensional argument: [(dN;)/dt] = cm™3s~!' may
be uniquely expressed via [k] = cm?/s and [£] = cm™? as

[48,53-55]

dN,

T ek L2, 3)

Here, ¢, is a temperature dependent dimensionless coefficient.
One sees in Fig. 7 that the relation (3) is perfectly obeyed in our
simulations but the numerical values of c;, given in Table II,
crucially depend on the reconnection criteria. The reasons and
consequences of this fact for the final steady-state tangle are
discussed in Sec. IV C.
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4. Anisotropy of the vortex tangle and the indices I, 1, ,1;,1,,

The presence of the counterflow velocity creates a preferred
direction and the vortex tangle is anisotropic. To measure the
degree of anisotropy of the tangle, Schwarz [19] introduced
the anisotropy indices:

1
I = ™ fc [1—(s' - #)*1dE, (4a)
1
I=- /c [ — (s - #.)°1dE, (4b)
¢
I, = /i*” (5" x §")dE, (4¢)
Ltol C

where 7| and 7, are unit vectors in the direction parallel
and perpendicular to V., respectively. In the steady state,
these indices averaged over time obey the relation Ij /2 + I, =
1. The index I, measures the mean local velocity (in unites
k /) in the direction of the counterflow. In the isotropic case,
Iy=1=2/3,I, =0.

To test the isotropy of the velocity in the direction
perpendicular of the counterflow, we also measure

= 1 [[F 6 x o, (4a)
Lot Je

which is expected to vanish if the velocity is isotropic in the
plane perpendicular to the counterflow velocity, even if I, is
not small. Our results for the dimensionless anisotropy indices
are given in Table IV and discussed in Sec. V B.

5. Mean, RMS curvatures S and g, and parameters c, and c,

Other important global properties of the vortex tangle
are the mean and RMS curvatures S and S, which may be
expressed as an integral over the whole vortex configuration
C, occupying a volume V:

— 1
S=(s"]) = T /C|s//|d$, (5a)
tot

~ 1
3= (5" = 1 [ 15" (5b)
Lot C
These objects are expected to scale with the mean density
as [19]
§=C1\/Z, §=C2\/Z, (SC)

where ¢; and ¢, are dimensionless constants of the order of
unity (see Table IV).
Similarly, we can find the mean and RMS curvature s and

s7 of a particular vortex loop C; of length /; = [ c/_dé :

— 1
S}/ = (|s”|)j = l—/ |s”|dE, (6a)
Y
2 "2 1 2
s;i =717 = [ Is"I°dé. (6b)
. l/ Cj

The global (over the entire tangle) PDF of |s”| and the PDFs
of the vortex-loop length, /;, the mean-loop curvature, s}’ and
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the correlations between /; and s}’ are presented and discussed
in Sec. VL.

6. Drift velocity of the vortex tangle V., and parameter C,

The drift velocity of the vortex tangle with respect to the
superfluid rest frame is

L [ds®)
vw—Lmlzdtds V.. (Ta)

where the velocity of the vortex line point ds(§)/dt is given
below by Eq. (10b). It is natural to expect that V. is
proportional to the counterflow velocity Vs and to introduce
a dimensionless parameter C\, as their ratio:

Vvt = Clens- (7b)

The values of Cy are discussed in Sec. V D.

7. Friction force density and the Gorter-Mellink constant

In discussions of the mechanical balance in superfluid
turbulence, an important role is played by the mutual force
density exerted by the normal fluid on the superfluid. It may
be found from Eq. (10b) (the term proportional to &’ vanishes
by symmetry) [19]:

1
F=pkal, J= v / ' x [ x (Vs — Vi)]dE. (8a)
c

The integral J [with dimensions [J] = 1/(s cm)] may be
uniquely expressed via k and Vs as V) /k?. This leads to
the dimensional estimate for Fy:

ap

Fos = == (Cs Vo), (8b)
with a dimensionless temperature dependent constant C ;. This
agrees with the Gorter-Mellink [24] result that reads Fjs Vn35:

Fos = A5 0n Vr?s (8c)
Comparing Egs. (8b) and (8c), one finds the relationship
between C ¢ and the dimensional Gorter-Mellink constant Agy:

~

(24 ~
Aoy = C} Es o =ap/p. (8d)

As is known, the density p of *He varies only weakly with the
temperature in the relevant temperature range, while « varies
rapidly. It increases six times as 7" grows from 1.3 to 1.9 K,
see Table I. On the other hand, the temperature dependence
of the parameter «, that actually governs the temperature
dependence of Ay, is much weaker than «. Further discussion
of the friction force density is given below in Sec. VE.

8. Autocorrelation of the vortex orientations

To test the relative polarization of the vortex lines, we
measure an orientation correlation function

K(ri—r2) = (s'(r)) - s'(r2)c, C))

where r; and r, are the Cartesian coordinates of the two
line points and we average over all pairs of the line points
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TABLE 1. Friction parameters o and o’ used in simulations,
relative density of the normal component [60], combination «p/p,
[which weakly depends temperature and is responsible for the mutual
friction density in Eq. (8d)] and LIA parameter A calculated forc = 1.

T,K 1.3 1.6 1.9
o 0.036 0.098 0.210
o 0.014 0.016 0.0009
) 0.045 0.162 0.420
ap/pn 0.8 0.6 0.5
A= A/(4m) 1.05 1.03 1.02

in the tangle. K(r; — r;) measures the average angle between
line segments as a function of the distance between them.
Averaged over all distances it quantifies the polarization of the
tangle K .

III. VORTEX FILAMENT METHOD

The vortex filament method and the reconnection criteria
were presented in details, e.g., in Refs. [18-22,29,51,52,56].
Nevertheless, to keep the paper self-contained, and to introduce
notations and definitions, we review these criteria with
the focus on the underlying physical processes. The basic
equations are presented in Sec. III A and the criteria of vortex
reconnection are discussed in Sec. III B. A short description
of the implementation details is given in Sec. III C.

A. Basic equations and their implementation

1. Equations of motion of the vortex line

When no external forces act on the vortex core the vortex
line moves with the velocity V (s) defined by the entire vortex
tangle according to the Biot-Savart equation:

— d
n@ﬁtﬁfggjﬁ;ﬂ
C

10
Is1 — sI° (10a)

Here, the vortex line is presented in a parametric form s(&,1),
where £ is an arclength, ¢ is the time, and the integral is taken
over the entire vortex tangle configuration.

In addition to the self-induced velocity of the superfluid
component, we have to account for the interaction with
the normal component via mutual friction, characterized by
two dimensionless temperature dependent parameters o and
o' [18,19]:

ds

E =V;+Vsi+ as’ x (Vas — Vi)

—Ol,S/ X [S/ X (Vns - Vsi)] + Ube-

Here, V is the macroscopic superfluid velocity, and the
counterflow velocity V,, =V, — Vy is the relative velocity
of the superfluid component. In the reference frame comoving
with the superfluid component, V; = 0 and the relative velocity
equals to the velocity of normal fluid V3=V, in this
reference frame. In our simulations, V . is oriented towards
the positive z direction. The prime in s’ denotes derivative with
respect to the instantaneous arc length §, e.g., 8" = ds/d&. The

(10b)
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mean velocities obey a mass conservation law p, Vi + 0, V,, =
0, where p, and p; are the densities of normal and superfluid
components, respectively. The density p = p, + p, refers to
the density of 4He. The term v}, describes the influence of the
boundary conditions. For the periodic boundary conditions
used in this work, the line points leaving the box from one
side were algorithmically brought back to the computational
volume by appropriately shifting their coordinates without
changing their velocity s(z) = s(z + H), s(y) = s(y + H),
and s(x) = s(x + H), where H is the size of the computational
domain.

2. Local induction approximation

Equation (10a) implies that the vortex line is infinitely thin.
Attempting to calculate the velocity at a particular point s
on the vortex line, one finds that the integral logarithmically
diverges as s; — s. To resolve this difficulty, one has either
to cut the integral at |s; — s| =ap or to account for the
particular form of the vortex core structure. Physically, it
means that V (s) in the integral (10a) is dominated by the local
contributions from the vortex line for which ay < |s; — 5| <
cR. The upper limit of integration is about the mean curvature
of the tangle R determined up to a dimensionless constant ¢
of the order of unity. Neglecting nonlocal contribution one
arrives to the local induction approximation (LIA)[57,58]:

LIA ’ "
Vi =Bs x5,

cR £
A=In{—)~In|—).
ao ap

The value of the ratio of mean local to mean nonlocal
contributions to the velocity is about A. Besides the traditional
parameter A, we introduce also a frequently used combination
A. The values of A found numerically are very close to unity,
see Table I.

Notice that Eq. (11a) is integrable, having an infinite
number of integrals of motion, including the total line length.
Therefore numerical simulations with the full BSE (10a) are
not a question of accounting for a small (about 10%) nonlocal
contributions to the line velocity but are required by necessity
to account for the violation of infinitely many conservation
laws.

Nevertheless one can exploit the fact that the local contri-
bution (11a) to the vortex velocity does dominate the nonlocal
one and to use the simple local relation (11a) in analytical
studies of the vortex tangle characteristics, for example, in the
way developed by Schwarz [19]. He established a set of bridge
relations between different mean characteristics of the vortex
tangle. In Secs. VA4,V D, and V E, we demonstrate that these
relations are well-obeyed by the mean vortex characteristics
found directly from numerical simulations in the framework
of the VFM with full Biot-Savart equations.

~ A
A= —,
JT

B = kA, (11a)

(11b)

3. Implementation of the full Biot-Savart velocity

To implement the Biot-Savart equations in the vortex
filament methods, we discretized the parametric curve by a
large and variable number of points s;,i = 1, ..., N at initial
space resolution A&, see Fig 1. Then, the velocity of the
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point s is given by Eq. (10a) and desingularized according
to Schwarz [18]:

K §1 —8)xds
Vii(s) = ﬁVFMs/ x s+ — / Ms
4 Jo  |s1 — s
(12)
_ K 1 2«/14,17
Byvm = E n W .

The integral accounts for the influence of the whole vortex
configuration C, excluding the segments adjacent to s. Here,
s1 is a the point on the filament. The contribution of the line
elements adjacent to s is accounted for by the local term
Byrus’ x s”. Here, I are the lengths of two line elements
connected to s, e = 2.71 ... is the base of natural logarithm
and e!/* corresponds to the arbitrary chosen Rankine model of
the vortex core [59].

The distances between adjacent line points change during
evolution. The space resolution affects the accuracy of the
derivatives s’ and s” [56]. To keep I+ of the same order
of magnitude we remove a line point whenever two points
come closer than A&, and add a point by a circular
interpolation [19] if the distance between two adjacent points
become larger than A&.«x. Here, &nin and &,.x are the chosen
smallest and largest interpoint distances.

B. Criteria of vortex reconnection

In vortex filament methods, the reconnections are intro-
duced algorithmically. When some criterion is satisfied, the
vortex line topology is changed as shown in Fig. 2. These cri-
teria are based on numerous studies of the vortex reconnections
in the framework of the Biot-Savart and the Gross-Pitaevskii
equations and on the resulting physical intuition.

1. Schwartz’s geometrical criterion in LIA

Historically, the first criterion was suggested by
Schwarz [18,19] in the context of the local induction ap-
proximation. He noticed that when two vortices approach
each other closer than 2 R/A [the distance at which the
self-induced velocity, given by Eq. (11), is of the order
of the nonlocal contribution] the vortex-vortex interaction
dominates the local contribution, which in the framework
of Eq. (10a) leads to a local instability. During this process,
the velocity field of each vortex deforms the other in such a
way that the vortices are moved toward each other and finally
reconnect. Clearly, all this dynamics cannot be captured by the
local induction approximation, which completely ignores the
intervortex interactions. Thus Schwarz suggested a criterion
that can be referred to as a “geometric criterion” for the
local induction approximation, or LIA-GC: the vortices are
reconnected when they approach each other closer than the
minimal distance 8, gc:

8 < duace = 2R/A, (13)

i.e., the distance at which the nonlocal interactions exceed the
local interactions.

2. Other geometric criteria for full Biot-Savart equations

In the framework of Biot-Savart equations, the LIA-GC
criterion leads to many spurious reconnections. On the other
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FIG. 2. (Color online) Topology change for the geometric (GC) and geometric-energetic reconnection criteria (GEC) (a) and dynamical
reconnection criterion (DC) (b). The GC requires [, ;7 < A& regardless the value of other distances, while GEC requires [, ; < A§ and, in
addition, /3 + ls7 > l»7 4+ l36. The DC requires that the segments (2,3) and (6,7), moving with constant speed, will cross in space during next

time step.

hand, conceptually these equations provide an adequate de-
scription of the vortex dynamics in the reconnection processes
up to the stage when & ~ ag. Therefore the vortex filament
method with the full Biot-Savart equations describes the
vortex line motion for distances limited by its resolution
5 > AE.

During the last decade, several reconnection criteria were
proposed in which the closeness of the reconnecting points
was related to the space resolution with or without additional
physical requirements. Similar to Ref. [52], we consider here
two such criteria.

A natural extension of LIA-GC (13) was suggested in
Refs. [22,48]:

8 < dpspoc = A§. (14)

By analogy with the LIA-GC criterion (13), we call this rule
“BSE-geometrical criterion” (BSE-GC), see Fig. 2(a).

Unfortunately, the simple BSE-GC (14) ignores the energy
dissipation during reconnection events, e.g., due to phonon
emission. Since the vortex length approximates the kinetic
energy of the tangle, it cannot increase during reconnections.
A more restrictive criterion was suggested in Ref. [29],
requiring a total vortex line length reduction in addition to
the geometrical proximity, see Eq. (14). We will refer to this
criterion as to the Biot-Savart equation (BSE) “geometric-
energetic” criterion (BSE-GEC). In the present work, we deal
only with full Biot-Savart simulations and therefore we skip
hereafter the notation “BSE-" from the reconnection names
and abbreviate them shortly as GC and GEC (or G criterion
and GE criterion).

3. Dynamical criterion

The authors of Refs. [49-51] approached the problem of
reconnection criterion completely differently, by considering
the dynamics of vortex line points. Their approach is equally
applicable to the local induction approximation as well as the
Biot-Davart dynamics. Under the assumption that both ends
of a line segment are moving at the same velocity during a
time step, the reconnection is carried out if the reconnecting
line segments cross in space during the next time step. We will
refer to this criterion as the “dynamical” criterion (DC or D
criterion). Note that unlike GC and GEC, the DC involves
reconnecting segments and not points. The assumption of

the same velocity of the two ends of a segment implies
sufficiently high space resolution (small values of A§), see
Fig. 2(b).

To find whether the line segments will meet during the next
time step, the set of equations

i+ V()T +H(Sip1 — 500 =5, + V(s))T + (541 — 5,)¢
(15)

is solved for 0 <O <1,0<¢p<l,and0O <7 < A If
such a solution is found, the segments will collide. Here,
Si = (X, ¥i,2i)s Siv1 = (Xig1,Yit+1,2i+1) and §; = (x;,y;,2;),
Si+1 = (Xj41,Yj+1,2+1) (in Cartesian coordinates) denote the
first and the second reconnecting pairs of points and At is the
time step. The velocities V (s;) and V (s ;) remain the velocities
of the line points s; and s;. Alternatively, the velocities of the
midpoint of the segments (7,7 + 1) and (j,j + 1) may be used.

C. Implementation details

The simulations were carried out in the cubic box H =
0.1 cm for temperatures 7 = 1.3, 1.6, and 1.9 K and counter-
flow velocities V;s from 0.3 to 1.2 cm/s. The parameters « and
«’ are given in Table I. The initial condition consisted of 20
circular rings of radius Ry = 9 x 10~* cm oriented such that
the total momentum of the system vanished. The radius of the
rings was chosen to exceed the critical radius of the surviving
loop[18,20] R, & 3 x 1073 cm for the weakest thermal flow
(T =13K, V4 =0.3cm/s).

The initial space resolution A& =8 x 107* cm for D
criterion and 1.6 x 10~° cm for GC and GEC was used. At
these values, the results were insensitive to the resolution as
was verified by simulations with larger and smaller values of
AE&. As it was mentioned above, the line points were removed
or added during evolution to keep A§/1.8 < IL < 1.8AE.

We use the fourth-order Runge Kutta method for the time
marching with the time step related by the stability condition
to the line resolution. For simulations with GC and GEC At =
3.8 x 10™* s, while for DC, A = 9.5 x 1073 s was used. The
time evolution was followed for 150 seconds for GC and GEC
and for 75 seconds for DC.

The directionality of the vortex lines is conserved during
the reconnection procedure. The candidate points for recon-
nections are sought within 1.1A¢ distance for GC and GEC
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and within the distance defined by a maximum velocity in the
tangle at the reconnection time 2At Vi« for DC. Note that in
Ref. [52], the candidate pairs for similar criterion were sought
within distance A&.

Similar to Ref. [22], we remove the small loops and loop
fragments with three or less line segments that are expected to
disappear due to the mutual friction. The maximum length of
the removed loops is 8.6 x 1073 cmforDCand 1.7 x 1072 cm
for GC and GEC, which is smaller than the length of the loop
of the critical size 1.88 x 10~2 cm. This procedure was applied
in all simulations.

An additional requirement that the angle between recon-
necting segments is at least 10° [cos(s;,s;) < 0.9848], applied
to GEC, was introduced similar to Ref. [52]. We performed
simulations without this additional requirement as well and
did not find any difference in the results.

In BSE simulations under periodic boundary conditions, a
particular care should be taken in calculation of the nonlocal
part of the velocity. The line points, that are separated by
the size of the computational box due the periodic boundary
conditions, are in fact nearest neighbors for the calculation
of the Biot-Savart integral. To account for the influence of
every filament of the tangle at a proper distance, the main
computational domain is surrounded by 26 replicas. The
contribution of the distant filaments falls off quickly with
increasing distance. We have verified that in our simulations
the influence of the replica domains touching the cube edges
and corners is negligible. The influence of the replica domains
bordering the faces of the main domain was studied and
discussed below. All results below are calculated using only
the main computation domain. We should stress, however, that
this approximation is valid only when the vortex tangles are
not very dense and the vortex lines are highly curved (as in
the counterflow). In this case, the local contribution to the
velocity field dominates the nonlocal. This may not be the true
in other systems. For example, in quasiclassical systems, the
vortices are expected to form bundles, and here the nonlocal
contribution will be more important. Therefore the one-domain
approximation should be tested in any computational setting
to ensure that the Biot-Savart integral is calculated properly
and periodic wrapping can be safely neglected.

A: T=16K, Vos = 1cm/s

B: T = 13K, different Vis
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At each time step, we propagate the line points, adjust
the space resolution, perform the reconnections, remove small
loops and then adjust the resolution again. Unlike Ref. [52],
we reconnect all pairs of points and segments that satisfy
the reconnection criterion, and not just the closest ones. This
may lead to slightly larger number of reconnection than in
Ref. [52].

IV. DYNAMICS OF THE VORTEX TANGLE

A. Evolution of the tangle toward steady state

A typical time evolution of the vortex tangle is shown in
Fig. 3. Panel A illustrates that the steady state is independent
of the initial conditions: the evolutionat 7 = 1.6 Kand V., =
1 cm/s, started from the 20-ring configuration (blue solid line)
as well as from the steady state configurations for 7 = 1.3 and
1.9 K, (green dashed and red dot-dashed lines, respectively) all
give the same steady-state vortex line density. This (expected)
result allows us to perform all the simulations starting from
the same simple 20-ring configuration.

As one sees in Fig. 3(a), the transient time 7, it took for
the initial configuration to reach the steady state is the shortest
for the most dense initial configuration (steady state at 7 =
1.9 K, red dashed line) and the longest for the most sparse one
(20-rings, blue solid line). This can be easily rationalized by a
dimensional reasoning according to which

e ~ 1/(k L) = % /k. (16)

This dependence also agrees with our observations that 7
is longer for low temperatures (for which the resulting £
is smaller), and shorter for large 7', at which the tangle is
more dense. For moderate values of £~ 3 x 10* cm™ the
estimate (16) gives 7, ~ 0.3 s. This is slightly shorter than the
values observed numerically.

The values of 7, deduced from Fig. 3(a), agree surprisingly
well with the experimental results of Vinen [10] [see Fig. 2(d)]
for T = 1.6 K. At this temperature, the transient time de-
screases continuously with the inscreasing amount of initially
present turbulence. When helium was not excited initially, the
time to reach the steady state was about 1.9 s. It decreased

C: Vas = 0.5 cm/s, different T

4
)('104 % 10° O.8X10
Vns=1 .2cm/s T=1.9K
0.6
50.4 T=1.6K
:
0.2 v '
V_=0.4cmis WWW
ns 0
20 40 60 80 100 0 50 100 150
t[s] ts] t[s]

FIG. 3. (Color online) (a) Transient regime (with GEC) started from 20-ring configuration (blue solid line), from the steady-state
configuration obtained at 7 = 1.3 K and V,; = 1 cm/c (green dashed line) and from the steady-state configuration obtained at 7 = 1.9 K and
Vas = 1 cm/c (red dot-dashed line). (b) VLD evolution 7 = 1.3 K for counterflow velocities 0.4, 0.6, 0.8, 1.0, and 1.2 cm/s (from bottom to

top). (¢) VLD evolution for different temperatures and V,, = 0.5 cm/s.
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FIG. 4. (Color online) Typical tangle configurations for different reconnection criteria at 7 = 1.9 K and V,,; = 1 cm/s. Different loops are

marked by different colors for clarity.

to about 1 s for moderately excited and to less than 0.5 s for
strongly excited helium, similar to our results.

Another important characteristic of the vortex dynamics,
clearly seen in Figs. 3(b) and 3(c), is the large amplitude
of fluctuations in density in the steady state, which reach
up to 12% of the steady-state vortex line density for weak
counterflow velocities. One sees also that the mean line density
increases both with V5 and temperature, such that the same line
density may be obtained at lower temperatures and stronger
counterflow velocity or at higher 7' and smaller V.

B. Tangle visualization and intervortex distance

The typical dense steady-state tangles obtained with differ-
ent reconnection criteria are shown in Fig. 4 for 7 = 1.9 K and
Vas = 1 cm/s. At these parameters the difference in density is
visible to the naked eye: the most dense tangle is obtained with
DC and the most sparse with GC. An important characteristic
of the developed tangle is the intervortex distance ¢ that
quantifies the typical distance between the vortex lines. As
seen from Fig. 5, the vortex lines come closer with increasing
both counterflow velocity and temperature and £ becomes
comparable with the space resolution A& at 7 = 1.9 K and
the largest V; used in our simulations.

T=1.9K

0.2 0.4 0.6 0.8
Vns [em/s]

FIG. 5. (Color online) The intervortex distance £ = £7'/? as a
function of V, for different temperatures (with GEC).

C. Reconnection dynamics

As said above, periodic boundary conditions allow only
two types of reconnections: the merging of two loops into one
(2 — 1) and one loop splitting into two (1 — 2). We denote
below the reconnection rate per unit volume of the first type
as N; and of the second type as N, and plot the ratio N;/N,
as a function of V2 in Fig. 6 for different conditions. The
reconnections leading to splitting one loop into two are more
frequent in all cases. For GC, the ratio is almost independent of
Vis and the merging of loops is even less frequentat 7 = 1.9 K.
For DC, the ratio is temperature independent, but the first
type of reconnection becomes more frequent with increasing
Vas. For GEC, the loops merging becomes less frequent with
increasing both the temperature and the counterflow velocity.
On the average only about 35-45% of reconnections lead to
loops merging.

0.9
=08
= 07
06 ——T-1.3K
0.5 L L e -T— -
0 05 1 e-T=1.6K '/ 5
-0~ T=1.9K
0.9r GE A A
AR A ——a——a——a 4
208 AB/TN ’_:_ A--A A A___A
= 07t A A A Ae A
0.6f
05 1 1 J
0 0.5 1 1.5
0.9F
o 0.8f
S-0.7r DW * ¥ —X
0.6F X ‘
0.5F ‘ ‘ ‘
0 0.5 V2 1 15
ns

FIG. 6. (Color online) Ratio of reconnection rates of two types
for different conditions. Circles denote DC, up-triangles are GEC,
and crosses are DC. Solid lines correspond to 7 = 1.3 K, dashed
lines to T = 1.6 K and dot-dashed lines to 7 = 1.9 K. Lines serve to
guide the eye only.
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FIG. 7. (Color online) The mean reconnection rate d N, /dt as a
function of £%/2. The symbols with error bars are data, the lines are

linear fit according to Eq. (3) (the fit passes through £3/? = 0).

In Fig. 7, we show the mean reconnection rate d N, /dt as
a function of £3/2. One sees that the linear relation (3) is well
obeyed throughout the parameter range and for all three criteria
of reconnections. The values of the coefficient ¢, are given in
Table II. Note that for all temperatures the reconnection rate
for GC is several times higher than for GEC and DC, which
are close to each other and their scaling coefficients fall within
the range 0.1 < ¢; < 0.5, as predicted by Nemirovskii [54].
The much larger number of reconnections for GC is in
agreement with the results of Baggaley [52] who found that
the time between reconnections for this criterion was much
shorter than for GEC. We conclude that geometric-energetic
and dynamic criteria give reliable values of the reconnection
rates, while a pure geometric criterion overestimates it by an
order of magnitude.

Previously, the scaling coefficient ¢, was calculated in
Refs. [50,51] using DC within the local induction approxi-
mation. They found ¢; =2.47 for T = 1.6 K and V5, = 6, 8§,
and 12 cm/s. This is much larger than our current result. The
counterflow velocity in their case was much stronger than we
use, and their vortex line density was also much larger. Thus
the difference may stem from the usage of the local induction
approximation, which is doubtful for these values of L.

TABLE II. The reconnection rate scaling coefficient. The error
bars were calculated from standard deviations of d N, /dt(t) and L.

Recon. crit. T =13K T =16K T=19K

GC 8.0+1.0 6.80 + 0.5 6.0+0.3
fen GEC 0.39 +0.05 0.45 £+ 0.03 0.57 +0.03

DC 0.34 + 0.05 0.34 £ 0.03 0.40 +£0.13

PHYSICAL REVIEW B 89, 014502 (2014)

V. MEAN CHARACTERISTICS OF THE TANGLE
A. Vortex line density £

1. Numerical results for L versus counterflow velocity

The steady-state value of £ was obtained by averaging £(¢)
over the plateau values for 10-150 s for 7 = 1.3 K and for
5-150 s for T = 1.6 and 1.9 K for GC and GEC and up to
75 s for DC. The error bars in the figures were calculated by
the standard deviation over the same time period. In Fig. 8,
we present £ as a function of the counterflow velocity and
the fit according to Eq. (2b). Clearly, the data follow this
linear relation faithfully and the corresponding y and vy are
given in Table III. A measurable difference between the results
with only the main computational domain and with additional
six replicas touching its faces was found only for 7 = 1.9 K
and V,s > 0.5 cm/s, resulting in y = (146.2 +0.2) s/cm?
compared to y = (148.0 £ 0.2) s/cm? (for GE criterion) for
the main domain (about 1% difference). Similar corrections
were obtained for the other criteria. We therefore conclude
that for the parameter range used in our work it is sufficient to
calculate the Biot-Savart velocities in the main domain only.

The values of y, which were calculated in Ref. [52],
were obtained for counterflow velocities 0.35 < Vs <
0.6 cm/s at T = 1.6 K, while in Ref. [22] a similar range of
Vas < 0.6 cm/s was used for T = 1.9 K. For these parameters,
we found that the difference in the computed value of £ for dif-
ferent reconnection criteria was relatively small. Our simula-
tions with a wider range of counterflow velocities demonstrate
that the values of L for three reconnection criteria are close
only for 7 = 1.3 K, whilefor 7 = 1.6 and 1.9 K, they progres-
sively deviate from each other, leading to different values of y,
see Fig. 8 and Table III. Quantifying the spread of the values as
adifference between the largest and the smallest y at each tem-
perature divided by the mean value, we get about 7% for T =
1.3K, about 13% for T = 1.6 K and about 28% for T = 1.9 K.

2. Comparison of numerical and experimental results

In Fig. 9, we compare the values of y obtained in
simulations with the experimental results. This is an issue that
requires careful analysis of particular experimental conditions
including the dependence on the channel width, the roughness
of the walls, the finite value of the temperature difference
with respect to the mean temperature, and problems with
temperature stabilization.

Additional uncertainty arises from the fact that the thermal
counterflow turbulence in square channels of width smaller
than 1 mm may exist in two turbulent regimes[ 13]. The regime
TI immediately follows the laminar state. The regime TII
is found above some critical line density, usually at higher
counterflow velocities. In both regimes, £'/? = y(Vys — v9)
with y in TII state larger than that in TL.

All these problems lead to a wide spread of experimental
values of y, see lines 1, 2, 3, 4 in Fig. 9. The values of y for
pure superflow (thin lines with open symbols, lines 1 and 2) are
significantly larger than those for counterflows in TI state (thin
lines with filled symbols, lines 3 and 4). As was discussed in
Ref. [17], the values of y in superflows are close to the results
of counterflow in TII state.
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FIG. 8. (Color online) /L as a function of V, for (a) T = 1.3, (b) 1.6, and (c) 1.9 K. Symbols with error bars are the numerical results,
lines are fits according to Eq. (2b). Three sets of symbols and lines correspond to different reconnection criteria as shown in the legend in (a).

Ignoring these differences in the experimental conditions,
we note that (i) the spread of numerical results (ours and from
Ref. [22]) is smaller than that of the experimental data and
(i1) the numerical results lie within the spread of experimental
values of y. More experimental work is needed to better
measure the values of y and more numerical simulations are
required to account, for example, for the boundary conditions
with strong vortex pinning and laminar velocity profile
of the normal components, which is not expected to be a
constant even for pure superflow. Nevertheless, numerical and
experimental results demonstrate qualitatively the same kind
of behavior that allows us to hope that the main characteristics
of turbulent counterflow are adequately reflected in the
numerical simulations.

3. Dependence of numerical results for vortex line density on
reconnection criteria

As we showed above, the values of y for three different
reconnection criteria increasingly differ with increasing tem-
perature. These differences may be related to larger values of
L, i.e., to smaller intervortex distance £ = 1/ VL. A possible
explanation is that the vortex filament method with any

TABLE III. The values of y (in s/cm?) and 10%v, (in cm/s)
obtained from Eq. (2b) and approximate values of I' = y« for GE
criterion. The error bars for y and vy, were calculated from the
standard deviation of £ by textbook relations [61]. The values of
y from numerical simulations of Refs. [22,52], from Eq. (18) and the
estimate (19) with ¢, from Ref. [19] are given for comparison.

Recon. criterion 7 =13K T =16K T =19K

GC 68.6 0.1 105.8£0.2 128.6+0.7
y,s/cm®>  GEC 72.1+£0.2 115.7+£0.1 148.0£0.2
DC 67.1+£0.4 1202+£0.7 171.2+2.6
I~ GEC 0.07 0.12 0.15
GC 31+£0.1 -08+£0.1 —-54+0.3
10%vy, cm/s GEC 6.6+03 33+£0.1 02+£0.1
DC 1.6+04 43+£05 43+04
y, Ref. [22] GC 53.1 109.6 140.1
GC 116.9
v, Ref. [52] GE 114.35
DC 112.3
v, Eq. (18) 82 151 266
¥s, Eq. (19) Ref. [19] 80 130 198

reconnection criterion deteriorates when ¢ approaches the
interpoint distance A&, but the degree to which the dynamics
of the tangle is affected depends on the reconnection criterion.
We performed several control simulations with higher V5 (not
shown). Simulations at T = 1.3 K and V,,; = 2 cm/s resulted
in £ similar to that for 7 = 1.9 K and Vs, = 0.9 cm/s and
followed the same line as all other results for 7 = 1.3 K.
On the other hand, at T = 1.9 K and Vs, =2 cm/s, Aé & ¢
and the value of £ was strongly underestimated. In all our
simulations, the ratio A&/¢ < 0.2 and we have checked that
with twice larger ratio we got practically the same results.
We should stress that the steady state value of L is a result
of a delicate balance of all the dynamical processes that are
effected by the reconnections, explicitly and implicitly, via
details of the resulting tangle characteristics. The final steady-
state value of £ may be counterintuitive. For instance, there

2501
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v [slem?]

1501

100}

FIG. 9. (Color online) The numerical and experimental values of
the parameter y (7). Thick solid lines with open symbols, marked with
letters D (blue line with crosses), GE (green line with up-triangles),
and G (red line with circles) are the results of our simulations with
different reconnection criteria (DC, GEC, and GC, respectively). Line
5, black open circles with dashed line are the simulations of Adachi
et al. [22], G criterion. Thin lines with open symbols are the results of
experiments in pure superflow: (line 1) Babuin e al. [17], 7 x 7-mm
channel and (line 2) Ashton et al. [23], 0.13-mm diameter glass
channel. Thin lines with filled symbols are the results of experiments
in counterflow: (line 3) Childers and Tough[12], TI state, 0.13-mm
diameter glass channels and (line 4) Martin and Tough [62], TI state,
1-mm diameter glass channel.
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exists an apparent contradiction: the only difference between
GC and GEC is that in GC the reconnections increasing the
length of the vortex line are allowed. Given a much larger
number of reconnections in this case, one expects that the
vortex line density should be larger for GC than for GEC, while
in fact it is smaller. To resolve this contradiction, we analyzed
the change in the length of the vortex tangle during transient
evolution, before the steady-state tangle was formed. It turns
out that the reconnection procedure for GC produce a large
number of small loops and loops fragments with a number of
segments not exceeding three. The number of these small loops
increases as the tangle develops. Since in our procedure such
small loops are removed from the configuration only after
all the reconnections were made, only truly separate loops
that did not merge back into larger loops are removed. The
number of such small loops in GEC is about 10 times smaller,
while with DC they are hardly created at all. Removal of these
small rings slows down the growth of the length of the vortex
tangle, in particular for GC, and results in smaller steady-state
vortex line density in this case. For DC, on the other hand, no
such mechanism exists and the vortex line density grows more
before reaching the steady-state value.

In the developed tangle, the total length change due to
reconnections, small loops removal and remeshing is small
compared to the total line length and in a self-consistent
manner helps to maintain the density of the tangle around
its steady state value. At this stage, the difference between the
reconnection criteria is not significant.

4. Phenomenological analysis of y(T)

The naive dimensional estimate I' ~1 gives y ~
1000 s/cm?. Much better estimates were obtained by using
macroscopic properties of the vortex tangle.

In 1957 Vinen [9], suggested a phenomenological evolution
equation for the L:

dL(t)  x1Bp. L v xor L?

dt — 2p [Vas| 2r

It includes the vortex generation and vortex decay terms

on its right-hand side (RHS). Here, B(T) is the Hall-Vinen

temperature dependent dimensionless coefficient, describing

the interaction between the line and the normal fluid, while

x1(T) and x»(T) are additional dimensionless phenomeno-

logical parameters. In the steady state, Eq. (17) results in the
relation (2a) with

a7

_ 7T Bon X1
Kp X2

Estimates of the coefficient y, with experimental values for B
(for Vs = lecm/s) and x1, x2 [9,12,60] are shown in Table III.
These values are close to the experimental y measured in
superflow[17,23].

Another estimate was obtained by Schwarz [19], who
derived the equation of motion for the line density similar
to Vinen’s equation (17) from local induction approximation
and balanced in the steady-state tangle the mean anisotropy
of the self-induced velocity s’ x s” in the Eq. (11) against its
magnitude:

(18)

Ys=c /B, o =1I/ca. (19)
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TABLE IV. Anisotropy indices and mean curvature scaling
coefficients. The values and error bars for anisotropy indices are the
time averages (same time interval as for £) and the standard deviation
over the same period of time, respectively. The error bars for ¢; and
¢, were calculated from standard deviations of |s”| and |s”|?.

Recon. criterion T =13K T =16K T =19K
GC 0.73+0.03 0.76 £0.02 0.80=+0.01
I, GEC 0.73+0.03 0.76£0.02 0.81+£0.01
Eq. (4a) DC 0.74 +0.03 0.77+£0.02 0.82+0.02
GC 0.86 +=0.06 0.81+£0.04 0.74+0.02
I,/I, GEC 0.86 +0.05 0.80+0.03 0.72+0.02
Eq. (4b) DC 0.854+0.07 0.79£0.03 0.71 £0.02
GC 0.50+0.09 0.52+0.02 0.53+0.03
I, GEC 0.50+0.08 0.53+0.03 0.54+0.02
Eq. (4c) DC 0.51 +£0.09 0.53£0.03 0.52+0.02
I, GC [22] 0.738 0.771 0.820
I,/I, exp[ll] 0.85+0.05 0.8+0.1 0.7+0.1
GC 2.26 +0.01 1.85+0.003 1.68 & 0.002
i GEC 2.09 +0.01 1.68 £0.003 1.48 £ 0.001
Eq. (5¢) DC 2.28 £0.01 1.64 £0.003 1.48 +0.004
GC 2.70£0.10 2.19+£0.05 1.9640.03
c GEC 2.60+0.10 2.04+0.04 1.784+0.02
Eq. (5¢) DC 2.804+0.20 2.11+0.05 1.90+0.07

Recall that 8 = « A and the values of A are very close to unity,
such that ys ~ 103¢,.

The parameter ¢, relating the V,; dependence of L to the
tangle anisotropy and RMS curvature, is one of the most
important parameters of Schwarz’s theory [19]. It defines,
among other properties, the tangle drift velocity and the mutual
friction force, discussed later in Secs. VD and V E. We can
calculate ¢, using I, and ¢, given in Table IV, and see how
well the theory based on the local induction approximation
works for the vortex tangles, obtained with full Biot-Savart
simulations.

As we discuss in Secs. VB and V C, the anisotropy index
I, is almost independent of both the temperature and the
reconnection criterion, while ¢, changes with T and is different
for different reconnection criteria. Therefore the T dependence
of ¢, (and consequently, that of y;) is defined by the RMS
curvature scaling coefficient c;.

In Fig. 10, we show the parameter ¢, for three reconnection
criteria and the results of Schwarz [19], obtained with local
induction approximation simulations. The overall trend is very
similar to that of y, shown in Fig. 9, except that in this case it
is the GE criterion that gives the largest values and not DC, as
for y. As could be expected, the results for the three criteria
differ most at 7 = 1.9 K and the estimates for y, ~ 103c, give
values slightly larger than y, see Table III. The values of ¢,
obtained by Schwarz from the local induction approximation
simulations, are even larger. We therefore conclude that the
nonlocal corrections to the line velocity affect the mean tangle
properties by decreasing the vortex line density for stronger
counterflow velocities.

Schwarz [19] also related the phenomenological coeffi-
cients x; and x, to the properties of the steady-state tangle as
X1 = Iy, xo = 2maBly/kc.. Indeed, substituting these defini-
tions to Eq. (18) and recalling that « = Bp, /2p, we find that
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FIG. 10. (Color online) The coefficient ¢, found in our VFM
simulations with full Biot-Savart equations for different reconnection
criteria and the LIA-VFM simulations of Schwarz [19].

within the local induction approximation y, = y;. However,
the values of y; obtained with Schwarz’s values of ¢, are
smaller than y.

Comparing Egs. (22) and (19), we find that both I' and
c./ A relate the counterflow velocity to the vortex line denisity.
Therefore we can expect that the numerical smallness of
I' ~ ¢ ~ 0.1 as well as their temperature dependence have
similar origin. For ¢, = I,/ c%, it is the RMS curvature scaling
coefficient ¢, that mostly defines the value and 7" dependence.
Some discrepancy in the behavior of ¢, and y, calculated
from our tangles with different reconnection criteria suggests
that there is no one-to-one correspondence between these two
parameters. More than one mean property of the tangle is
responsible for the value of steady-state vortex line density
in Biot-Savart simulations. However, for low and moderate
temperatures (or low values of £), the estimates of y via mean
tangle properties are quite accurate.
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5. Intercept velocity

The values of vy found in our simulations are shown in
Table III. The values are quite small, about 0.03-0.06 cm/s,
but definitely nonzero within our accuracy of measurement.
The values of vy are very different for different reconnection
criteria, including some negative values for GC. Therefore we
tend to consider nonzero values of vy not as a solid prediction
of our simulations, but rather as an artefact stemming from the
approximate character of the reconnection criteria. As for the
larger values of vy * ~ 0.1 cm/s observed in experiments [17],
they may be related to the strong pinning of quantized vortices
on rough wall surfaces. This effect was not accounted for in
our simulations. Arguments in favor of this statement may by
found in Fig. 8 of Ref. [17], which shows that the experimental
values of vy monotonically decrease for wider and wider
channels. Overall, we tend to think that the finiteness of the
intercept velocity vy is a finite size effect.

B. Mean tangle anisotropy

The counterflow velocity defines the preferred direction in
the tangle. The tangle anisotropy index /), and the ratio 1, /1
are shown in Fig. 11. The temperature dependence [Fig. 11(a)]
is consistent with the known picture [19,22] that the tangle
becomes more oriented in the direction perpendicular to the
counterflow velocity with increasing temperature. This may be
understood as an interplay of two contributions to Eq. (10b):
the term proportional to « is oriented in the plane perpendicular
to Vs, while the term proportional to «’ is locally parallel to
the counterflow velocity and leads to isotropization of the loop
orientation. The ratio '/« diminishes upon increasing the
temperature and so does the relative contribution of the this
term, and the tangle become more oblate.

In our simulations, the DC systematically gives the most
anisotropic tangle, while GC gives the most isotropic tangle.
For all simulations, 1}, is almost independent of V,,, however,
for both GC and GEC, a slight dependence on Vs exceeding
the error bars was observed [see Fig. 11(b)] for T = 1.6 K (not
shown) and 7 = 1.9 K. This is at variance with the results
of Ref. [22] where no such dependence was observed (for

0.861 1
0.841
0.82f

0.8

0.4 0.6 0.8 1 1.2 1.4
Vns [em/s]

FIG. 11. (Color online) (a) The temperature dependence of the anisotropy indices /| and the ratio 1, /1|, Eqs. (4a) and (4b). Blue crosses
(x) stand for DC, green triangles (A) for GEC, and red circles for GC. (b) The anisotropy index I} vs V;,. For T = 1.3 and 1.6 K, only D

results are shown (see text). The lines serve to guide the eye.
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Vas < 0.6 cm/s), while the values of /) and of the ratio 1, /1
agree well with their results, as well as with the numerical
results of Schwarz[19] and the experimental data by Wang et
al. [11].

The values in Fig. 11(b) are the time averaged values and
the error bars are defined by the standard deviation of I} for
I); and as a sum of standard deviations of /|; and I, for I, /I,
over the same time period. The values in Fig. 11(a) are the
average values for a given temperature and the error bars are
the largest error bars for V3 > 0.4 cm/s.

The anisotropy indices I, and I,, are practically indepen-
dent of V) for all temperatures and all criteria. I, is close
to zero in all the simulations indicating that the tangles are
isotropic in the direction perpendicular to the counterflow
velocity. I; ~ 0.5 and slightly increases with temperature (see
Table IV). No measurable difference for different reconnection
criteria was observed.

C. Mean and RMS vortex line curvature

Next important mean characteristic of the tangle is its RMS
curvature S = V{Is”12), plotted in Fig. 12(a), as a function of
the £ for different temperatures. One sees that the curvature S
is increasing with tangle density as ~/£ according to Eq. (5¢)
with the numerical prefactor ¢, that decreases as temperature
grows. In other words, for the same density of the vortex lines
the tangle is more curved at lower temperatures. Table IV
shows that the scaling is well-obeyed in simulations with all
reconnection criteria and the coefficients ¢; and ¢, are quite
close. The value of ¢, calculated at T = 1.9 K with GC agrees
well with the result of Ref. [63] (¢, = 1.99 £ 0.38).

However, some differences in the fine structure may be
seen in Fig. 12(b), showing the ratio of the mean radius of
curvature R = 1/S to the intervortex distance £. In this way, we
compensate the NI dependence of the curvature and the lines
are almost flat. This ratio is distinctly different for different
temperatures: the mean radius of curvature is about a third of
the intervortex distance at 7 = 1.3 K and it grows to more than
ahalfof £ for T = 1.9K.

The strongest change in the structure is for DC; it has
the smallest R/¢ at T = 1.3 K, while for T =1.9 K, it
appears smoother and the ratio coincides with that for GEC.
For moderate and high temperatures, the DC local structure
appears the most sinuous.

The ratio R /¢, shown in Fig. 12(b), gives interesting global
information about the relation between the RMS curvature and
the mean intervortex distance. However, it does not allow to
distinguish whether the small values of R are due to dominant
contributions of small loops with large curvature, while the
large loops are smooth, or because the large loops are fractal.
To answer this and similar questions, we need to have more
detailed information on the vortex tangle, not only its mean
characteristics.

D. Drift velocity of the vortex tangle V,

In some physical problems, like the evolution of neutron-
initiated micro-Big-Bang in superfluid *He-B [64], an impor-
tant role is played by the drift velocity Vi, of the tangle with
respect to the superfluid rest frame. The natural expectation is
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FIG. 12. (Color online) (a) The mean curvature of the tangle vs
the tangle density (GEC). Symbols with error bars are data, lines
are linear fit according to Eq. (5c). (b) Ratio of the mean radius of
curvature to the intervortex distance. Red circles denote data for GC,
green triangles for GEC, and blue crosses for DC. Lines serve to
guide the eye only.

that V,, is proportional to and oriented along V. In Fig. 13(a),
we plot V,, calculated according to Eq. (7a). We see that
the linear relation (7b) is well-obeyed. The value of Vi is
fully defined by its z-component, parallel to the direction of
counterflow velocity, while two other components are zero
within our accuracy of measurement.

As in case of ¢, the coefficient Cy; may be analytically
related to the structural parameters of the tangle in the local
induction approximation by plugging ds/dt, Eq. (10b), with
V;IA into (7a) and by considering different contributions to the

integral [19]:
C.l A~ el — o)l +a' I, (20)

The superscript “LIA” stresses the fact that this relation is
not exact but obtained in the local induction approximation.
The terms proportional to « are vanished in this equation by
symmetry. Note that o’ = 0(1072) and therefore CiiA ~ cLly,
which is the value plotted in Fig. 31 of Ref. [19].
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FIG. 13. (Color online) (a) Drift velocity vs V,, for three temperatures. The symbols with error bars are data, the lines are the fit according
to Eq. (7b). GE criterion. (b) The drift velocity coefficient Cy, as a function of temperature for different reconnection criteria and their LIA
estimates Eq. (20). Thick solid lines with open symbols are C,, obtained by fit Eq. (7b) (red cicles: GC, green triangles: GEC, blue squares:
DC). Thin dashed lines with filled symbols are the LIA estimates CttIA Eq. (20) (the symbols and colors are the same as for C,,). The thick

dashed line with open diamonds are the results of Schwarz[19].

As we mentioned, the local contribution (11a) provides up
to 90% of the total vortex velocity. Therefore we can expect
that Eq. (20) will be valid with accuracy about 10%. To check
this we compare in Fig. 13(b) the coefficients Cy,, obtained
directly by fitting plots Vi, versus Vs, presented in Fig. 13(a),
and coefficients C,,, given by Eq. (20), in the RHS of which
we used mean vortex parameters, found in our full Biot-Savart
simulations. First of all, we note that the drift coefficients for
different criteria are close at T = 1.3 K but differ significantly
at T = 1.9 K with C; for DC being almost twice larger than
that for GC. Also, for DC, the coefficients increase almost
linearly with temperature, while for both GEC and GC the
growth slows down at 7 = 1.9 K. One sees that Cy and

C.. are very close for GC and GEC, except for T = 1.9 K,

vt
where C,, is larger. Surprisingly, CﬁA for DC is smaller than
Biot-Savart results for all temperatures, and in fact, smaller
than most of the other values. The possible reason is that the
drift velocity is very sensitive to the nonlocal effects on the
local tangle structure for more dense tangles (DC always gives
denser tangles).

The Schwarz’s CtiA found from Eq. (20) in the RHS of
which the mean vortex parameters are found by simulations in
the LIA [19] is very close to the GC results (both Cy, and CtiA)
for T = 1.3 and 1.6 K, but is somewhat larger than CtiA for
T = 1.9 K. Comparing with Fig. 10, we see that the difference
in the tangle structure (I, in this case) between Biot-Savart
and LIA simulations is important: for ¢, , the GEC results were
closer to Schwarz’s values. Therefore the particular closeness
of different Schwarz’s results to our results with different
reconnection criteria is not systematic and should be taken
with caution.

The main and well-expected physical message is that Cy,
is small (below upper limit of Vi /V,s = 0.2, suggested in
Ref. [65] and in accord with results of Ref. [11]). This means
that the tangle velocity is close to the superfluid velocity and
its slippage is about 5% at T = 1.3 K and close to 10% at
T=19K.

E. Mutual friction force F,

The scaling of the mutual friction force Fjs Vn3S is
well-obeyed in all simulations with all three criteria, as we
illustrate in Fig. 14(a) for GE criterion. Their fit allows to find
coefficients Cr plotted in Fig. 14(b).

Notice that an analytical expression for C; can be found
by considering different contributions to the integral J in
Eq. (8a) with the only local-induction contribution to the vortex
velocity VSLiIA[19]:

c\2/3
i~ (XL) Iy — e Ip)' . @21)

Like in Eq. (20), we have added here superscript “LIA” to
stress the approximated character of the relation obtained in
the local induction approximation.

In Fig. 14(b), we compared the coefficients C¢ and CIJ;]A
for different reconnection criteria. One sees that they almost
coincide for T = 1.3 K. At T =1.9 K, our results show
significant spread of about 25% with C¢ = 0.22 for GC and
0.29 for DC. There is again a discrepancy in the behavior
of C;[A; while for GC and GEC, C;[A > Cy, especially for
T = 1.9 K, the LIA estimate is smaller than Cr for DC at all
temperatures. The results of Schwarz[19] are larger than our
values of C; and their LIA estimates. Interestingly, here the
results for DC are the closest to Schwarz’s results, including
linear in 7 behavior, albeit the largest VLD and, therefore,
worst conditions for comparison with LIA results. This again
confirms that the closeness of LIA and Biot-Savart results
should not be taken too seriously.

The coefficient C; is directly related by Eq. (8d) to the
more experimentally used Gorter-Mellink constant Agy. We
plot in Fig. 15 the values of Agy obtained as a fit according to
Eq. (8c) as well as some experimental data. The experimentally
measured values of Agy, summarized by Arp [66], show
significant spread. We only plot the results of Vinen [9] and
Kramers et al. [67] (as cited by Arp [66]). As itis clearly seen,
all our values (except for GC at T = 1.9 K) fall between the
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FIG. 14. (Color online) (a) The friction force density (8a) vs counterflow velocity V,;s. The symbols with error bars are data, the lines are
fit according to Eq. (8b), GE criterion. (b) The friction force coefficients Cy as a function of temperature for different reconnection criteria and
their LIA estimates. Thick solid lines with open symbols are Cy obtained by a fit according to Eq. (8b) (red cicles GC, green triangles GEC,
blue squares DC). Thin dashed lines with filled symbols are the LIA estimates CfL " see Eq. (21) (the symbols and colors are the same as for
Cy). The thick dashed line with open diamonds are the results of Schwarz [19].

representative experimental results. This means that (i) we get
the correct order of magnitude and correct 7 dependence of the
Gorter-Mellink coefficient [68], and (ii) the direct comparison
with particular experimental results is complicated and subject
to the same difficulties as for y.

F. Mean and most probable loop lengths

The temperature and V;s dependence of the mean loop
length L are shown in Fig. 16. One sees that at T = 1.3 K,
L ~0.33 cm for both V,s =0.5 and 1 cm/s but their T
dependence is different: L increases with T for Vpg = 0.5 cm/s
and decreases for Vg =1 cm/s. Remarkably, the most
probable loop length defined in Eq. (22) and also shown in

Fig. 16, is essentially smaller, falling below 0.015 cm for the
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FIG. 15. (Color online) The Gorter-Mellink coefficients Agy as
a function of temperature for different reconnection criteria. Solid
lines with open symbols are Agy obtained by fit according to Eq. (8c).
The dashed lines with filled symbols are the experimental results of
Vinen [9] and Kramers, Wiarda, and van Groenou [67].

most dense tangle (T = 1.9 K and Vs = 1 cm/s). We return
to this fact below in Sec. VI A.

VI. DETAILED STATISTICS OF THE VORTEX TANGLE

As we mentioned in Introduction, the mean characteristics
of the vortex tangle, studied in the previous section, Sec. V,
provide important but very limited information on the tangle
properties. Much more detailed statistical information on
local tangle properties is required for a better understanding
of basic physics of counterflow turbulence as well as for
further advance in its analytical studies. This information may
be obtained from probability distribution functions of local
tangle properties (like line curvature), of global vortex-loop
characteristics (e.g., their lengths) and from corresponding

0.5F ]
0.4f ]
0.3f il
'g' 0.2f 1
= L
0.1 . 1
11 \
ol L e i
0.02 *s /
—=V =0.5cm/s R
0.015 K.
-t - VnS=1 cm/s RPN
0.01
1.3 1.6 1.9
13 1.6 1.9
TIK]

FIG. 16. (Color online) Comparison of the mean loop length
L ~ (0.3 = 0.5) cm and the most probable loop length L, ~ (0.08 +
0.01) cm at different temperatures and values of V. Inset shows
details of L, for V,, = 1 cm/s. GEC.
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FIG. 17. (Color online) PDF of the vortex-loop length I, P(l). (a) T = 1.9 K, V,, = 1 cm/s, three reconnection criteria. Blue dashed line
shows exponential core of the PDF (22). (b) Vs, = 1 cm/s, for T = 1.3, 1.6, 1.9 K, GEC. (¢) V,s = 0.5 cm/s, for T = 1.3, 1.6, 1.9 K, GEC.

Insets show the same PDFs in log-log scale.

(cross)-correlation functions (e.g., of vortex line orientations,
of loop length versus mean curvature). Bearing in mind that
this information will not be available from experiments in
foreseeable future, the only way to get it today is from
numerical simulations. This is the motivation and the subject
of the present section.

The probability distribution functions discussed in this
section were calculated over all the steady-state tangle con-
figurations, computed for a particular 7" and V.

A. Probability density function (PDF) of vortex-loop lengths

Turning to a more detailed description of the tangle
structure we plot in Fig. 17 the PDF of the vortex-loop length,
P forT =1.3,1.6,1.9Kand V3 = 0.5, 1.0cm/s. Panel (a)
shows that P([) is practically independent of the reconnection
criterion at least for cases with moderate to large line density.

The second observation is that the core of the PDF P(I)
may be approximated by a simple formula:

l l
P =y Po), Poll)= —exp (—L—> , 22)

L2 *
shown in Fig. 17(a), left, by the blue dashed line. The
function Py(/) is normalized to unity: fooo Pol)dl = 1. The
fitting parameter L, corresponds to the maximum of the core
function (22) and simultaneously to the maximum of P(I).
Therefore we called it the most probable length as plotted in
Fig. 16. The second fitting parameter 1 shows the fraction of
loops that belong to the core and define L,. The value of ¢ ~
0.2 for Vs = 0.5cm/s and ¢ ~ 0.3 for V3 = 1 cm/s is only
very weakly dependent on 7. We conclude that the majority
of loops belongs to the long tail, which is clearly seen in the
insets in Fig. 17. For loop lengths slightly exceeding 0.1 cm,
the PDF tails exhibit a power-law-like behavior over an interval
of lengths about half a decade with a nonuniversal exponent
ranging between —2 and —3 for different V,,s and temperatures.
The mean value of the loop length L is determined by the tails
and, as we have shown in Fig. 16, is much larger than L,.
Panels (b) and (c) of Figs. 17 show how P(I) varies with
temperature and V;s. As we know, with increasing 7" and Vi
the VLD increases, the intervortex distance becomes smaller
and the reconnection rate increases. All that shifts the PDF
‘P(l) toward shorter loops. For the least dense case (T = 1.3 K

and Vs = 0.5 cm/s), the PDF looks very indented, probably
because of the lack of statistics.

B. PDF of the line curvature

The next object of interest is the PDF of local curvatures
P(|s"]), shown in Fig. 18 for T'=1.3, 1.6, 1.9 K and
Vas = 1 cm/s. These PDFs linearly vanish for [s”| < S and
exponentially vanish for |s”| > S. We suggest an interpolation
formula between these two asymptotes, which is very similar

to Eq. (22).
\/_6 |S /|
CXI) - ~ .

Notice that Eq. (23) has no fitting parameters, it just involves
the RMS curvature S. As one sees in an inset in Fig. 18, this
equation describes reasonably well the entire form of P(|s”|).
Accepting Eq. (23), we can find the ratio §/S = \/2/3.
Correspondingly, the ratio c¢;/c, defined by Eq. (5¢) is also
+/2/3. This prediction agrees well with our numerical results

w018
Ps™D = o

(23)
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FIG. 18. (Color online) PDF of local line curvature for three
temperatures and V,s =1 cm/s, GEC. Vertical lines near the
horizontal axis show 1/¢ at given conditions. (Inset) PDF(s) for
T = 1.3 K (blue solid line) and the fit by Eq. (23) (purple crosses).
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FIG. 19. (Color online) Diagrams of RMS of loop-curvature 5"7
vs loop-length /; for V;; = 1 cm/s with GEC for two temperatures.
The plus sign(+) denote data for 7' = 1.3 K, the squares are for
T = 1.9 K. Light blue lines correspond to the mean curvature of

loops vs their length. The intervortex distances are denoted by vertical
dashed lines: for 7 = 1.9 (left) and 1.3 K (right).

for ¢; and ¢; given in Table IV. For example, for GEC, the
ratio ﬁcﬂﬁq is equal to 0.985, 1.009, and 1.018 (instead
of the predicted value of unity) for 7 = 1.3, 1.6, and 1.9 K,
respectively.

This equation also allows us to find the most probable cur-
vature S, =~ S /~/6 >~ §/2. All three characteristic curvatures
are determined by the exponential PDF (23) and therefore
they are of the same order of magnitude. This is different from
the characteristic loop lengths, where L, is determined by the
exponential core of the PDF (22), while L > L, is determined
by the long power-law tail of the PDF.

C. Correlation between loop length /; and RMS of the
loop curvature ¥

Knowing the PDFs (22) and (23), of the loop length and
line curvature separately we now come to the next question:
how are these objects correlated? In particular, do all loops
(long and short) _have more or less the same RMS and
mean curvatures s;/ and s” [defined by Eq. (6)] or do short
loops have larger values of s” ? To resolve this question,

we plot numerous (s}/,l ) points belonging to all loops
in the statistical set of the tangle configurations, computed
for particular T and V. These points form a (s” —1;)
diagram shown in Fig. 19 for T =1.3 and 1.9 K w1th
Vs = 1 cm/s.

The majority of points are located to the left of /; = 0.1 cm
according to the PDFs P(/;) shown in Fig. 17. Next, for small
[; below 0.1 cm, one sees a sharp boundary that restricts
from below the available S; at given [;. This boundary
corresponds to the minimal possible RMS loop curvature
s} =2m/l;, realized for an ideal circle of radius 1/s7 with

l; =2m /s}/ . Some points below this line for small /; are the
result of the finite space resolution in the continuous vortex
line presentation via a discreet set of points: the smallest
loops, displayed in Fig. 19 are parameterized by only three
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points. Long loops have curvatures well-concentrated around
the conditional (with fixed /) RMS value

Sty = (@)z =1’ 24

shown in Fig. 19 by blue lines (upper line for 7 = 1.9 K and by
the lower line for 7 = 1.3 K). One sees that S(/) is practically
independent of / for / that exceeds substantially the intervortex
distance ¢, denoted by vertical lines. This is an evidence in
favor of the natural expectation that local properties of long
loops are independent of their total length.

D. PDFs of the mean and RMS loop curvature

Full information about the statistical distribution of s” i ! for
loops with given length / can be found from the conditional
PDF, P(s}’,l ; =1). In particular, this PDF would describe the
difference in properties of short and long loops. Nevertheless,
in the beginning, we will restrict ourselves to an analysis
of less detailed information: the unconditional PDFs of the
mean and the RMS loop curvature, P(s”) and P(s”) shown in
Figs. 20(a), 20(b), 20(d), and 20(e). In panels (a) and (d), we
compare these PDFs for the three reconnection criteria with
T =13 K and Vs = 1 cm/s. They look similar, at least on
a semiquantitative level. Therefore, to clarify how these PDFs
vary with T and V), it would be sufficient to analyze the
results for GEC only, as shown in panels (d) and (e). One sees
that these PDFs agree with the fact that the mean and RMS
curvatures of the tangle increase with density (or Vi) for a
given temperature and are smaller for higher temperatures for
the same density (Fig. 12, top).

Both PDFs, P(s”) and P(s”), may be roughly approximated
as a narrow peak of some width o, which is much smaller
than the position of its maximum. PDF of the mean curvature
looks more regular. Its core is approximated well enough by a

Gaussian,
v (s" = )2
-, 25
2ro xp 202 (25)

with three fitting parameters: the position of the maximum
s_jF’ (the most probable mean-loop curvature), the width o,
and the total amount ¥ of s, described by the core of
PDF (25): [P(s”)ds” = . This allows us to quantify the
differences between curvature distributions in a Wider range
of parameters. The temperature dependencies of s/, o, and
Y are shown in Figs. 20(c) and 20(f) for V,s = 0.5 and
1.0 cm/s, respectively. One sees that i is quite close to unity:
Y > 09atV,y, =0.5cm/sand > 0.8at Vs = 1 cm/s forall
three reconnection criteria. This means that Eq. (25) describes
reasonably well the entire PDF and not only its core. Therefore,
at our level of description, the contribution of nonexponential
tail can be ignored.

Notice that on a semiquantitative level there are no
differences in the values and behaviors of s/ and o for the three
reconnection criteria. Therefore in Figs. 20(c) and 20(f), we
presented these parameters only for GEC. In addition, we show
(by blue dashed lines) in the same panels the overall (over the
entire tangle) mean value of the curvature S, which, by defini-
tion, has to coincide with the mean (over different loops) of the
mean-loop curvature: S f s"P(s")ds". We see that the mean

P(s") ~
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FIG. 20. (Color online) Comparison of PDFs of the mean (a) and RMS (d) loop curvature for three reconnection criteria (7 = 1.3 K
and V,, = 1 cm/s). The lines serve to guide the eye only. Temperature and V,; dependence of the PDF of the mean (b) and RMS (e) loop
curvature (for GEC). Parameters of the Gaussian fit (25) for the PDF of the mean curvature are shown in (c) for (Vs = 0.5 cm/s) and (f) for

(Vas = 1 cm/s).

tangle curvature S practically coincides with the most probable
mean-loop value s7. This means that the role of the PDF tail
can be ignored, as we stated above on the basis that ¢ ~ 1.
The next observation is that S_Z (and S) increases with
temperature and counterflow velocity, i.e., with the tangle
density. This agrees with the well-known fact of S o VL. A
less expected observation is that o decreases with increasing
T and V, i.e., in the denser tangle, the mean-loop curvatures
are less spread around their mean (or most probable) value.

E. Autocorrelation of the vortex orientation

It was recognized by Schwarz [58] that the structure of the
vortex lines is reminiscent of random walks. As the vortex
segments get further apart, their relative orientation becomes
more random. To find out at which distances the correlation
between the segment orientation is lost, we plot in Figs. 21(a)
and 21(b), the orientation correlation function K(r; — r»),
defined by Eq. (9).

A crucial observation is that the correlation falls off
very fast being almost zero at the intervortex distance.
This result supports Nemorivskii’s Gaussian model of “He-
vortex tangle [69], in which correlation of the orientations
disappears at intervortex distance ¢ and the mean loop
length L > ¢.

Interestingly, for weak counterflow velocities Vi, =
0.5 cm/s, there is a distinct negative correlation (the segments
are antiparallel) at distances just beyond ¢. This can be related

with the tendency of close vortex lines to become antiparallel
on the way to reconnection. For stronger Vs = 1 cm/s, i.e., in
more dense tangles, this tendency is masked by the influence of
other neighboring vortex lines. Therefore such an antiparallel
orientation is not observed.

Averaging these correlation functions over all distances,
we find that on average the tangle is slightly polarized and
this polarization K depends on the intervortex distance ¢, but
not on the temperature: see Fig. 21(c) where we plot K as a
function of £ for three temperatures. The value of £ at given
T was varied by the counterflow velocity. Here again, there
is no noticeable difference in the values and dependencies of
K(ry — ry) and K for different reconnection criteria, therefore
only GEC case is displayed.

The most important observation in Fig. 21(c) is that K ~
1073, i.e., it is vanishingly small with respect to unity. This
means that there is no coherent contribution (of many vortex
lines) to the velocity field at large scales (much above ¢).
Therefore the energy spectrum of the turbulent vortex tangle,
E(k), has to be determined by contributions of individual
vortex lines even for k¢ < 1, up to the box size.

VIL. ON THE PHYSICS OF ‘He COUNTERFLOW
TURBULENCE

In this section, we present a summary of the results obtained
here and in other studies of counterflow turbulence.
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FIG. 21. (Color online) (a) and (b) The orientation correlation function for different temperatures and two counterflow velocities. (Inset)
details of long distance tail. The distance is measured in units of intervortex distance. (c) The mean polarization of the tangle as a function of

the intervortex distance. GEC.

A. Idealizations and relevant parameters

1. Spatial homogeneity

In analogy to classical hydrodynamic turbulence, the basic
models of counterflow turbulence are based on the assump-
tion of spatial homogeneity of the problem. In laboratory
experiments on counterflow in “He, this can be realized
to some extent in a wide channel or a pipe of transverse
size H that significantly exceeds the intervortex distance £.
For example, in the superflow experiments of Ref. [17], the
largest H = 1 cm, while ¢ varies (approximately) from 0.1 to
4 x 10~*cm (for Vs =~ 20 cm/s).

In numerical simulations (like ours), the homogeneity can
be simply reached with periodic boundary conditions. Again,
the size of the box H (cube in our case) should be larger than £.
In our simulations, H = 0.1 cm, while £ varies from 0.005 cm
to 0.04, as seen in Fig. 5.

One additional simplifying assumption made in our study
(and many others) is that the flow of the normal component
is laminar. In numerical simulations (including ours), this
simply requires V;, = const. In experiments, this is achieved
to some extent in a core of a wide-channel counterflow,
when V, is below some critical value V., above which the
normal fluid flow is expected to become turbulent. Probably
a better realization of the laminarity assumption in laboratory
experiments is achieved in the “pure” superflow, where normal
fluid flow is prevented by superleaks, a kind of (e.g., silver)
porous medium with submicrometer size pores to prevent a net
flow of the viscous normal component through the channel on
any experimentally relevant flow time scale, see, e.g., Ref. [17].
Now, if one neglects the V, dependence on the (transverse)
distance to the wall, the entire problem can be approximated
as spatially homogeneous.

In order to relax the assumption of space homogeneity,
one has to develop a theory (or a model) of superfluid
wall-bounded flow, which will find and account for an actual
laminar super- and normal-fluid velocity profiles across a
channel. This is still an open problem. Even more sophisticated
and challenging open problem is a superfluid wall-bounded
turbulence at large counterflow velocities, when both the
normal and the superfluid components are turbulent and their
mean-velocity and turbulent-energy profiles have to be found
self-consistently, accounting for the mutual friction between

the components. Detailed information about the vortex tangle
structure, found and analyzed in this paper, is required to
successfully approach this problem. This was one of the
important motivations for the present study.

2. No isotropy, just axial symmetry

It is generally accepted that the classical hydrodynamic
turbulence is almost isotropic at small scales [ << H due to
the isotropization effect that is observed going from the outer
scale H toward the small scales /. The theory of small scale
turbulence then simplifies. In the counterflow case, there is
no energy cascade and the superfluid counterfow turbulence
is inherently anisotropic due to the builtin direction of the
counterflow velocity V. This anisotropy is of principal
importance and cannot be ignored at all. Indeed, in the
isotropic case, there is no friction force between the normal
and superfluid components and the counterflow does not
create a vortex tangle. One can formally see this from the
following argument: consider the parameter Cy that quantifies
the mutual friction and y that determines the vortex tangle
density (Secs. VA4 and VE). Both are proportional to the
anisotropy parameter /Iy, which is equal to zero in the isotropic
tangle.

Nevertheless, in a spatially homogeneous case, with the
only relevant direction V 5, one expects to see axial symmetry
around V. Indeed, in our simulations, the coefficient I,
[defined by Eq. (4d)], which is responsible for the axial
asymmetry, is close to zero.

3. The physical parameters of the problem

(1) The main parameter in the problem of quantum
turbulence is the circulation quantum x ~ 1073 cm/s 2.

(2) The second parameter is the vortex core radius ag. In
‘He, ap ~ 1078 cm. In the theory of counterflow turbulence,
ap appears in combination with the intervortex distance ¢
as a dimensionless parameter A =~ In(¢/aj). More accurate
definition of A is given by Eq. (11), where we also introduced
A = A/(4m). The parameter A naturally appears in the
equations of motion for the vortex line in the local induction
approximation. Table I shows that in actual experimental
situations A is very close to unity.
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(3) Additional dimensionless parameters are « and o/,
which determine the mutual friction force [according to
Eq. (10b)]. Of the two « is more important, being responsible
for the dissipative part. As one sees in Table I, o varies in
the relevant temperature range by a factor of 8, being much
smaller than unity (o« = 0.036) at 7 = 1.3 and approaching
unity, when T is close to T3, see Table 1.

(4) We have also to mention the ratio of normal and
superfluid densities ps/p,. Having in mind that the total *He
density p = ps + p, in the problem at hands can be considered
as temperature independent, we can use the ratio p,/p instead
of ps/pn. It varies about ten times (from 0.045 to 0.42, see
Table I) in the studied temperature range.

Having so many dimensionless parameters that essentially
deviate from unity and vary significantly with temperature, one
may think that dimensional reasonings are useless in our prob-
lem. However, as we have shown in the paper, they are still use-
ful. Being supplemented with simple physical arguments they
give quite reasonable results, for example, to determine the V4
dependence of the basic tangle characteristics, see below.

B. V,s dependence of the vortex-tangle characteristics

Using dimensional reasoning with only parameter « we
reproduced a set of relationships that determined the Vi
dependence of the main characteristics of the vortex tangle. For
concreteness, we list them in the order of increasing powers
of Vi and remind the values of corresponding dimensionless
parameters:

(1) the mean and RMS vortex line curvature, S=c /€ x
Vi, S=cy/t x V!, see Egs. (5), Fig. 12, and Table 1V;
) = \/m cp ~2+3.

(2) The anisotropy indices I}, I, I, and I, | are practically
independent of Vi, i.e., VI?S, see Egs. (4), Fig. 11, and
Table IV; I, I, ~0.7+0.9, I, ~ 0.5, I;; ~ 0 (because of
the axial symmetry).

(3) The drift velocity Vi = CyVys, see Eq. (7b), Fig. 13;
Cyt ~ 0.05 = 0.08.

Vortex line density £ = «? (I'Vi,)?, see Eq. (2a), Fig. 8, and
Table III; I" ~ 0.07 = 0.16.

(4) The mutual friction force density, Fps =
o psk " (CrVis)®, see Eq. (8b), Fig. 14. The derivation
of Eq. (8b) was based not only on dimensions of Fs but
also on its explicit expression (8a) via configuration of the
vortex tangle, Cr 2~ 0.15 <~ 0.25. (5) The reconnection rate
dN,/dt = ¢,k L>* o V3, see Egs. (3) and (2a), Fig. 7, and
Table II; ¢, >~ 0.4 = 0.6.

As one sees in the figures mentioned above, the results of
our numerical simulations agree well with all these expected
Vhs dependencies. Notice that the numerical values of the
corresponding dimensionless parameters (presented above)
are not always of the order of unity but often smaller by an
order of magnitude. Some understanding of the reason for that
can be obtained with the explicit form of the bridge relations of
Schwartz’s obtained using the local interaction approximation
as discussed next.

C. Schwartz’s bridge relations

Using the equation of motion (11) in the local interaction
approximation, Schwartz [19] analytically derived the bridge
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relations that connect some of the parameters mentioned
above. In our dimensionless notations, these are (1) ['s =
I

Kys & X2 [by comparing Egs. (2a) and (19)]; (2) Eq. (20)

2
for CtiA, which quantifies the tangle drift velocity Vi [see

Eq. (7b)]; and (3) Eq. (21) for C ;IA , which quantifies the mutual
friction force density F;s [see Eq. (8b)]. These equations bridge
Iy, CtiA, and CfLIA with the tangle anisotropy parameters I, Iy,
defined by Eq. (4) and tangle RMS curvature parameter c;,
defined by Eq. (5).

These bridge relations are fulfilled with reasonable accu-
racy in our simulations (with the full Biot-Savart equation),
especially for low temperatures. For higher temperatures, the
discrepancy increases, but overall the order of magnitude of
these coefficients is close to those calculated by Schwarz
(with Iy, I;, and ¢, obtained by LIA simulations) and agree
with available experimental data. This allows us to believe
that the LIA may be successfully used in analytical studies
of counterflow turbulence in spite of the fact that it fails in
numerical simulations.

D. Probability distribution and correlation functions in the
vortex tangle

Many of the mean parameters discussed above can be mea-
sured experimentally, at least in principle. However, detailed
statistical information of the random vortex tangle statistics
is hardly expected in foreseeable experiments. Because of
their importance for better understanding the basic physics
of counterflow turbulence, we put some efforts to clarify it
numerically. In particular, we studied:

(1) the PDF of the vortex-loop length P (/) and showed that
its core (which contains about 20 - 30% of the total loops)
can be described by a simple exponential form (22) as seen in
Fig. 17(a). It has a peak at some L, ~ 0.01 = 0.02 cm, which
is much smaller than the mean loop length L ~ 0.3 = 0.5 cm,
defined by the tail of the PDF, see Fig. 16.

(2) The correlation between the length /; and the RMS
curvature 5" ; of loops with a given [; is demonstrated in
Fig. 19. We show that for long loops, s j is practically
independent of their length and close to the overall RMS
curvature S, while for short loops its bounded from below
by (and concentrated close to) the curvature of a circle with a
given length.

(3) The PDF of the line curvature P(|s”]). We show that
P(|s”]) may be well-described by an exponential form, see
Eq. (23), without fitting parameters, just involving the RMS
curvature S. This allowed us to find the ratio between the
structural parameters ¢ /¢, ~ /2/3.

(4) The PDFs of the mean and the RMS loop curvature. We
show that more that 90% of the PDF are close to a Gaussian
form (25) and studied in Sec. VI D the temperature dependence
of their maxima and widths.

(5) Last but not least, the characteristics of the vortex tangle
in the form of the autocorrelation function of the vortex orienta-
tion K (r), defined by Eq. (9). Figure 21 shows that K (r) practi-
cally vanishes at distances about £. This means that vortex lines
are reminiscent of a random walk with a correlation length
of the order of the intervortex distance. This fact has many
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important consequences, €.g., for the energy spectra in coun-
terflow turbulence.

E. Dynamical and statistical characteristics versus
reconnection criteria

We carried out full Biot-Savart simulations of the evolution
of the vortex tangle within the vortex filament method in
a wide range of parameters. We compared the statistical
and geometrical properties of the dense tangles using three
different reconnection criteria (geometrical G, geometrical-
energetic GEm and dynamical D) and identified which
properties are robust and which are sensitive to the choice
of the criterion. We found the following: (1) the reconnection
rate is a property directly related to the choice of the criterion.
We concluded that the reconnection rate is similar for GE and
D criteria albeit their different physical interpretations. On
the other hand, in simulations with GC, the reconnection rate
is significantly higher. The detailed analysis shows that most
of the reconnections according to GC lead to an increase of
the total length and to the creation of a very large number
of small loops and loop fragments. The small loops removal
procedure is therefore an essential part of the algorithm for
this criterion. (2) One of the main parameters, £, depends on
the choice of the reconnection criterion for high temperature
and strong counterflow velocities, when the tangle become
dense. GC lead to sparser tangle, while DC gives the most
dense tangle for the same 7 and V;,. As a consequence, the
coefficient y differs beyond measurement errors. Our results
for y agree well with available data. Thus the sensitivity of £ to
the choice of the reconnection criterion may explain the spread
of the results for y as found in literature. (3) In agreement with
previous studies, we found that the vortex tangle is oblate and
isotropic in the direction perpendicular to the counterflow. We
observed a slight Vs dependence of /| for T = 1.6 and 1.9 K
for G and GE criteria. For all temperatures, the tangle was
most oblate for GC and least oblate for DC. (4) The tangle
drift velocity and the mutual friction force density depend on
the choice of the reconnection criterion at moderate and high
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temperatures, with the corresponding coefficients being largest
for DC and smallest for GC. This is similar to the behavior
of the vortex line density. (5) The local tangle structure—the
mean and RMS curvature of the tangle as well as PDFs of
the loops length and curvatures—are only slightly dependent
on the reconnection criterion. (6) The autocorrelation of the
vortex orientation is practically independent of the choice of
the reconnection criterion. Despite some clear differences in
some results obtained with different reconnection criteria,
the vortex filament method may be considered robust and
well-suited for the description of the steady-state vortex tangle
in the counterflow provided the results are interpreted having
in mind the found values of the spread due to particular details
of implementation.

We believe that the numerical results obtained in this paper
at low, medium, and high temperatures 7 (1.3, 1.6, and 1.9 K)
and their analysis will help in further studies of counterflow
turbulence. In a very interesting zero-temperature regime
(below 0.5-0.8 K), one should account for a set of additional
effects caused by Kelvin waves: the energy cascade toward
small scales [70-83], the damping of Kelvin waves, excited by
reconnections due to mutual friction [84], and the slowdown
of vortex rings, caused by thermally exited Kelvin waves [35].
The description of the Kelvin-wave effects requires either
much higher spatial resolution within the vortex-filament
method or the Gross-Pitaevskii approach. This is beyond the
scope of this paper.
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