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Domain-wall free energy in Heisenberg ferromagnets
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We consider Gaussian fluctuations about domain walls embedded in one- or two-dimensional spin lattices.
Analytic expressions for the free energy of one domain wall are obtained. From these, the temperature dependence
of experimentally relevant spatial scales—i.e., the correlation length for spin chains and the size of magnetic
domains for thin films magnetized out of plane—are deduced. Stability of chiral order inside domain walls against
thermal fluctuations is also discussed.
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I. INTRODUCTION

The physics of magnetic domain walls (DWs) has experi-
enced a sort of renaissance during the last decade. This was
triggered by the perspective of employing DWs in spintronic
devices [1–5] and by the improvement in spatial resolution
with which magnetic textures could be resolved [6,7]. A
lot of theoretical work has been done to investigate divers
physical properties of DWs in view of the novel applicative
and experimental scenario [8–13]. However, the effect of
thermal fluctuations within a DW as a single object—to our
knowledge—has scarcely been investigated [14–19]. The basic
theoretical formalism to tackle this problem analytically was
developed between the 70’s and the early 80’s. Then, the
thermodynamics of (not exactly solvable) one-dimensional
(1D) classical-spin models was described through a dilute
gas of noninteracting DWs, including their interplay with
spin waves [20–24]. Some results [25,26] have been recently
actualized in the context of magnonic applications [27–30].
Here, we focus on the free energy of a single DW, with
particular regard to its dependence on temperature and on
the system size. We discuss the implications on the physics
of molecular spin chains [31–35], ferromagnetic films, and
nanowires [36]. Remarkably, the profile of DWs embedded
in all these systems is commonly described by the very same
model at zero temperature: we consider the effect of thermally
excited spin waves, i.e., Gaussian fluctuations [37], about this
spin profile.

For the 1D case, the model is presented in Sec. II,
where all the assumptions and analytic results are checked
against numerical calculations on a discrete lattice (see also
the appendices). The strategy followed to compute the DW
free energy numerically is explained in details in Sec. III.
In Sec. IV, we extend the analytic part to 2D systems. A
central result is that Gaussian fluctuations suffice to explain
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the floating of magnetic-domain patterns and the decrease of
their characteristic period of modulation with increasing tem-
perature, both facts being observed experimentally [38–40].
Within the same approximation, we conjecture the absence
of chiral order within DWs interposed between saturated
magnetic domains.

II. THE MODEL

We consider the following classical Heisenberg Hamilto-
nian:

H = −
L∑

i=0

[
J �Si · �Si+1 + D

(
Sz

i

)2]− D
(
Sz

L+1

)2
, (1)

where D represents the anisotropy energy and J is the
exchange coupling. Each spin variable �Si is a three-component
unit vector associated with the ith site of the lattice. The two
spins at opposite boundaries are forced to lie along the easy
anisotropy axis either parallel (↑↑) or antiparallel (↑↓) to each
other (see the sketch in Fig. 1). By computing the partition
function for these two different boundary conditions (b.c.) the
free-energy increase associated with the creation of a DW from
a uniform ground state can be deduced. In this paper, we will
focus on broad DWs [34], obtained for J significantly larger
than D, so that the micromagnetic limit for Hamiltonian (1) is
meaningful:

H =
∫ L+1

0
dx

[
J

2
|∂x

�S|2 − D(Sz(x))2

]
+ const , (2)

(unitary lattice constant is assumed). Ferromagnetic b.c. (↑↑)
are obtained setting �S(x = 0) = �S(x = L + 1) = (0,0,1),
while antiferromagnetic b.c. (↑↓) correspond to �S(x = 0) =
(0,0,1) and �S(x = L + 1) = (0,0,−1). Following the proce-
dure presented in Refs. [34,41,42], �S(x) is decomposed in two
vector fields:

�S(x) = �n(x)
√

1 − �φ2 + �φ(x), (3)
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FIG. 1. (Color online) Sketch of the two boundary conditions
considered in the manuscript with the corresponding minimum-
energy profile �n(x). For ↑↑ b.c., we chose �n(x) = (0,0,1), while
for ↑↓ b.c., �n(x) is given by Eq. (19)—with arbitrary x0 and ϕ0—and
corresponds to the infinite-chain profile.

�φ(x) representing fluctuations and �n(x) assumed to vary
smoothly in space. If | �S(x)| = 1 and |�n(x)| = 1 are required,
�n(x) · �φ(x) = 0. Therefore �φ(x) can be expressed on a local,
two-dimensional basis orthogonal to �n(x):

�φ(x) =
∑

a

φa�ea , with |�ea(x)| = 1. (4)

Through the decomposition given in Eq. (3), the Hamilto-
nian (2) can be expanded for small φa(x). If the expansion is
truncated to quadratic terms, fluctuation amplitudes shall enter
the partition function in the form of Gaussian integrals. This
will be assumed in all the analytic derivations of the free energy
and referred to as the Gaussian approximation. With the same
meaning should be understood the expression Gaussian fluctu-
ations [43]. By construction, the whole formalism is expected
to hold only at low temperature. The original Hamiltonian thus
splits in two contributions: H = H[�n] + H[ �φ] + const. H[�n]
has the same form as Hamiltonian (2) provided that �S(x) is
substituted with �n(x). The fluctuation Hamiltonian reads

H[ �φ] =
∑

a

∫ L+1

0
dx φa(x)Ĥaφa(x) , (5)

in which Ĥa acts as a Schrödinger-like operator that takes a
different form depending on the chosen slow-varying profile
�n(x). After having solved the eigenvalue problem

Ĥaψ(x) = εψ(x) , (6)

each component (labeled by a) of the fluctuating field can be
expanded on eigenfunctions of Ĥa:

φa(x) =
∑

ν

aa,ν�a,ν(x) +
∑

q

aa,q	a,q(x) . (7)

In our notation, we associate the greek index ν with (possible)
bound states and q with free states. By free states we mean
functions that are delocalized throughout the spin chain, also
when L < ∞. As a consequence of the finite size and of
our choice of boundary conditions, such “free” states actually
correspond to the wave functions of a free particle in a box
when �n(x) is assumed uniform (lower sketch in Fig. 1). In
our vocabulary, there is no bound state in this case. When ↑↓

b.c. are assumed, instead, Eq. (6) admits one bound state per
component a. As it takes just one value, the label ν will be
dropped henceforth from eigenfunctions �a,ν(x), coefficients
aa,ν , and eigenvalues εa,ν (quantities associated with free states
will still be denoted by the label q). If �a(x) and 	a,q(x) are
normalized properly, the expansion (7) allows rewriting the
fluctuation Hamiltonian as

H[ �φ] =
∑

a

[
εa|aa|2 +

∑
q

εa,q |aa,q |2
]

, (8)

where εa and εa,q are the bound-state and free-state eigenvalues
of Eq. (6), respectively.

A partition function that depends parametrically on the
slow-varying field �n(x) is obtained integrating over fluctua-
tions, namely,

Z[�n] = e−βH[�n]
∫

D[ �φ] e−βH[ �φ], (9)

where
∫
D[φ] stands for functional integral and β = 1/T

(kB = 1 henceforth). This partition function can be rewritten
as product of Gaussian integrals by making use of Eqs. (7)
and (8):

Z[�n] = e−βH[�n]
[∫

�
a
daae−βεa |aa |2

]ndw

×
∫

�
a,q

daa,qe−βεa,q |aa,q |2 . (10)

For antiparallel b.c. (↑↓) ndw = 1, meaning that one DW is
present in the spin chain, while ndw = 0 for parallel b.c. (↑↑).
All the free states have positive energy, which makes their
Gaussian integrals convergent. After this integration, Eq. (10)
reads

Z[�n] = e−βH[�n]

[∫
�
a
daae−βεa |aa |2

]ndw

× exp

[
−1

2

∑
a,q

ln

(
βεa,q

π

)]
. (11)

The integration over bound-state amplitudes daa needs more
care. We will see that bound states are associated with
vanishing energy so that their contribution to the partition
function cannot be evaluated through a standard Gaussian
integration. The remedy to handle this divergence is presented
in details in Ref. [21]. As the explicit form of the bound-state
eigenfunctions �a(x) is required, we prefer to postpone this
discussion. Further on, we will approximate the summation
over free states

∑
a,q in Eq. (11) with an integral. This approx-

imation requires the knowledge of the density of states [44],
which also needs to be determined previously by solving the
eigenvalue problem in Eq. (6). From Z[�n], the free energy
corresponding the to the b.c. ↑↑ and ↑↓ sketched in Fig. 1 can
be computed. We will focus on the difference between those
free energies F = F↑↓ − F↑↑ = −T ln(Z↑↓/Z↑↑), which
we identify with one DW free energy. A similar problem
is discussed for a bulk magnet in Ref. [17]; there, a good
qualitative agreement between Langevin simulations and
mean-field approach is found. A crucial difference with respect
to the case investigated here is the occurrence of long-range

014429-2



DOMAIN-WALL FREE ENERGY IN HEISENBERG . . . PHYSICAL REVIEW B 89, 014429 (2014)

order. Though the Mermin-Wagner theorem [45] does not
apply to the 1D model considered by us—because of the
presence of uniaxial anisotropy—magnetic order is anyway
destroyed by thermally-excited DWs in the thermodynamic
limit. Still in this limit, physics should be independent of the
boundaries. However, as long as the system size is smaller
than the correlation length, physics does depend on boundary
conditions; specifically those sketched in Fig. 1 mimic the
situation described for a bulk magnet in Ref. [17]. Since
the correlation length typically decreases as temperature is
increased, choosing ↑↑ boundary conditions does not warrant
the absence of DWs. More precisely, we expect that DWs start
forming spontaneously only when F approaches zero. So
we can reasonably think that F is a good estimate for the
free energy of one DW as long as it is positive.

A. Schrödinger-like eigenvalue problem

Using the decomposition in Eq. (3), the terms entering
Hamiltonian (2) can be expanded to second order in φa(x),
which gives

[∂x
�S(x)]2 = (1 − �φ2)[∂x �n(x)]2 +

∑
a

(∂xφa)2 +
∑

a

c2
aφ

2
a,

(12)
[Sz(x)]2 = [nz(x)]2(1 − �φ2) +

∑
a

φ2
a

(
ez
a

)2
.

ca are the components of ∂x �n on the basis �ea (remember that
|�n(x)| = 1 so that ∂x �n ⊥ �n). The fluctuation Hamiltonian reads

Ĥa = −J

2
∂2
x + Va(x) , with

(13)

Va(x) = J

2

[
c2
a − (∂x �n)2]+ D

[
(nz)2 − (

ez
a

)2]
.

With our choice of boundaries, one has the equivalence∫ L+1

0
dx (∂xφ)2 = −

∫ L+1

0
dx φ ∂2

xφ , (14)

which yields the second derivative in Eq. (13). The “potential”
Va(x) will be specified by the choice of profile �n(x). The latter
will be chosen as the minimal-energy profile consistent with
ferromagnetic and antiferromagnetic b.c. These two cases are
discussed separately in the following.

1. Uniform profile

When ferromagnetic (↑↑) b.c. are chosen, the ground state
is given by a uniform profile. Thus we set �n(x) = (0,0,1)
or, equivalently, �n = �ez and �ea given by the two vectors �ex,y

(a = x,y for this case). Accordingly, the potential Va(x) takes
the form

Va = D +
{

0, x ∈ (0,L + 1),

∞, else,
(15)

so that the eigenvalue problem is formally equivalent to that of
a particle in a box whose normalized eigenfunctions are given
by

	a,q(x) =
√

2

L + 1
sin(qx) , with a = x,y, (16)

q = l π/(L + 1), l = 1,2,3, . . ., and eigenvalues

εa,q = J

2
q2 + D . (17)

2. Domain-wall profile

In the case of antiferromagnetic (↑↓) b.c., �n is chosen to be

nx(x) = cos ϕ0 sech[c(x − x0)],

ny(x) = sin ϕ0 sech[c(x − x0)], (18)

nz(x) = − tanh[c(x − x0)],

where c = √
2D/J is the inverse DW width. Rigorously, the

spin profile in Eq. (18) minimizes the energy of an infinite
chain with ↑↓ b.c., but here we will use it to build the
Schrödinger-like equation for a finite chain (see Appendix F for
further details). As we set no anisotropy in the hard plane (xy),
nor we consider magnetostatic interaction, DWs parametrized
by different angles ϕ0 have the same energy (e.g., Bloch and
Néel DWs). One of the two vectors �ea is the tangent vector �ex0 :

ex
x0

(x) = cos ϕ0 tanh[c(x − x0)],

ey
x0

(x) = sin ϕ0 tanh[c(x − x0)], (19)

ez
x0

(x) = sech[c(x − x0)],

that is proportional to ∂x �n:

∂x �n = −c sech[c(x − x0)] �ex0 , with

cx0 = −c sech [c(x − x0)].
(20)

The other one can be found from the vector product of �ex0 and
�n: �eϕ0 = �ex0 × �n = (− sin ϕ0 , cos ϕ0 , 0) (note that cϕ0 = 0).
For our choice of profile and b.c., this vector coincides with
the DW chirality [46], that is,

1

π

∫ L+1

0
�n × ∂x �n dx = −�eϕ0 . (21)

The motivation for labeling the vectors �ea with a = x0, ϕ0

will be clear at the end of this paragraph and—we believe—
will facilitate reading what follows. The components of the
fluctuation field �φ(x) on the basis vectors �ex0 and �eϕ0 will
be labeled accordingly: φx0 and φϕ0 . The spatial dependence
of �n(x) and �ex0 (x) propagates to the potentials entering the
Schrödinger-like equation associated with the two independent
components of �φ(x):

Vx0 (x) = Vϕ0 (x) = D{2 tanh2[c(x − x0)] − 1}. (22)

In the general case in which an intermediate anisotropy axis is
present, which breaks the ϕ0 degeneracy in the xy plane, the
potentials Vx0 (x) and Vϕ0 (x) are different. When the potentials
in Eq. (22) are inserted into the eigenvalue problem (6), one
obtains an equation that is a special case of the more general
one:

Ĥmψ(x) = ε̃ψ(x) , with
(23)

Ĥm = −∂2
η + m(m + 1) tanh2 η,

where the change of variable η = c(x − x0) has been per-
formed, the energy ε̃ is adimensional in units of D, and m ∈ N.
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In terms of the lowering and raising operators

âm = ∂η + m tanh η,
(24)

â†
m = −∂η + m tanh η,

one has Ĥm = â
†
mâm + m. In Appendix A, we recall a

demonstration [37] that if |ψ〉m is an eigenstate of Ĥm then
â
†
m+1|ψ〉m is an eigenstate of Ĥm+1. This property allows

us to construct the eigenstates of Ĥ1—which corresponds to
the case treated in this paragraph (↑↓)—from the knowledge
of the eigenstates of Ĥ0 = −∂2

η . Operatively, this means
that we can obtain the solution to the eigenvalue problem
associated with the potentials in Eq. (22) by applying the
raising operator â

†
1 to the eigenfunctions of a free-particle

in a box ψ0(q,x) = A cos(qx) + B sin(qx), A and B being
constants to be specified by b.c. Details of the calculations are
reported in Appendix B. To proceed in the derivation of the
DW free energy, we only need to know the density of states
ρ(q) and the eigenvalues εa,q . The last few have the same
dependence on q as in Eq. (17) but the allowed values of q are
different, which eventually yields a different ρ(q) with respect
to the case of ferromagnetic (↑↑) b.c. In addition to these free
states, the Schrödinger-like Eq. (6) [with the potentials given
in Eq. (22)] also admits one bound state [20,25,27,37]:

�a(x) =
√

c

2
sech[c(x − x0)] (25)

with eigenvalue εa = 0 (remember that we drop the index ν be-
cause there is just one bound state per component a = x0, ϕ0).
When an intermediate-anisotropy term −Dx(Sx

i )2 is added to
Hamiltonian (1), the energy of the bound state �ϕ0 (x) becomes
positive. This suggests that the vanishing of εϕ0 be related to the
degeneracy of the profile in Eq. (18) with respect to the angle
ϕ0, when Dx = 0. In fact, ∂ϕ0 �n = sech[c(x − x0)] �eϕ0 , meaning
that the vector �eϕ0 indicates the direction along which the
minimum-energy profile is deformed in response to a variation
δϕ0. In other words, any rotation on the xy plane of the chiral
(vector) degree of freedom—defined in Eq. (21)—does not
affect the DW energy if Dx = 0; while only reflections of the
chirality vector, ϕ0 → ϕ0 + π , leave the energy unchanged
when Dx �= 0 (e.g., left- and right-handed Bloch DWs are
degenerate). On the contrary, the energy εx0 remains zero
also when an intermediate-anisotropy axis exists (Dx �= 0).
This is related to the degeneracy [21,37] with respect to x0,
as confirmed by the equivalence ∂x0 �n = c sech[c(x − x0)] �ex0 ,
obtained from Eq. (20) with the substitution x ↔ x0.

B. Domain-wall free energy

In the case in which �n(x) represents a DW profile (↑↓ b.c.),
the considerations exposed above furnish a recipe to replace
the integration over the amplitudes dax0 and daϕ0 by integrals
over the DW center x0 and the angle ϕ0, respectively. This
makes it possible to evaluate the contribution of bound states
to the partition function (11). From the relations between �ex0,ϕ0 ,
∂x0 �n, and ∂ϕ0 �n, the required Jacobian can be deduced [20,21]:∣∣∂x0 �n

∣∣ dx0 = �x0 (x)dax0∣∣∂ϕ0 �n
∣∣ dϕ0 = �ϕ0 (x)daϕ0

⇒
dax0 = dx0

√
2c,

daϕ0 = dϕ0

√
2/c.

(26)

The integrals we are interested in reduce to∫
�

a=x0,ϕ0

daa = 2
∫ L

0
dx0

∫ 2π

0
dϕ0 = 4πL , (27)

where the fact that εx0 = εϕ0 = 0 has been used and the factor
2 comes from the Jacobian deduced in Eq. (26). Strictly
speaking, it would be more appropriate to let the integral over
dx0 range from 1/(2c) to L + 1 − 1/(2c). However, since this
numerical factors do not affect the results significantly, we
prefer to keep analytic expressions as simple as possible.

When a uniform �n(x) is assumed (↑↑ b.c.), the eigenvalue
problem in Eq. (6) does not admit bound-state solutions, thus
we can formally set the integral in Eq. (27) equal to one. We
approximate the remaining summation on the free states in
Eq. (11) with an integral:

∑
q

→ 1

2

∫ ∞

−∞
ρ(q) dq . (28)

The density of states has the form ρ(q) = ρ↑↑ − γ (q), with

γ (q) = 2c tanh[c(L + 1)/2]

π{c2 tanh2[c(L + 1)/2] + q2} (29)

and ρ↑↑ = (L + 1)/π . The density of states for these linear
excitations superimposed to a DW profile �n(x) is derived in
Appendix B. As defined in Eq. (29), γ (q) corresponds to
placing one DW in the middle of the chain [x0 = (L + 1)/2].
The general formula would depend parametrically on the
coordinate of the DW center [see Eq. (B9)], which renders
the calculation of the partition function unnecessarily
complicated. In the limit L � 1/c, Eq. (29) can be further
simplified setting tanh2[c(L + 1)/2] ≈ 1 [see Eq. (B13)].
The resulting expression of ρ(q) is plotted in Fig. 2 as a
(blue) short-dashed line, finding good agreement with the
same quantity determined numerically (red squares). Details
about the numerical calculation are also given in Appendix B.
For large values of q, ρ(q) approaches the density of states
obtained with uniform b.c. ρ↑↑ = (L + 1)/π (green, solid
line). Consistently with Eq. (29), the partition functions for

27

28

29

30

31

32

33

34

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ρ
(q

)

q

Uniform
Numerical
Eq. (B13)

FIG. 2. (Color online) Density of states ρ(q) = ∂n/∂q obtained
analytically (blue, short-dashed line) and numerically (red squares)
for D/J = 0.01 and L = 99. For small values of q, the density is
decreased with respect to ρ↑↑ = 100/π , expected for a uniform �n,
due to DW-spin wave interaction.
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the two b.c. sketched in Fig. 1 read

Z↑↑ = exp

[
−1

2

∫ ∞

−∞
ln

(
βεa,q

π

)
ρ↑↑ dq

]
,

Z↑↓ = 4πL e−βEdw

× exp

[
−1

2

∫ ∞

−∞
ln

(
βεa,q

π

)
(ρ↑↑ − γ (q))dq

]
, (30)

where Edw = 2
√

2JD represents the DW energy with
respect to the uniform ground state, while εa,q = Jq2/2 + D

consistently with Eqs. (B2) and (17). Equations (30) are
obtained from Eq. (11) by setting ndw = 0,1 for ↑↑ and
↑↓ b.c., respectively. We are now in the position to give an
expression for the DW free energy:

F = −T ln(Z↑↓/Z↑↑)

= Edw − T ln(4πL) − T

2

∫ ∞

−∞
ln

[
βJ

2π
(q2 + c2)

]
γ (q)dq.

(31)

Using the fact that∫ ∞

−∞

ln(q2 + c2)

q2 + c2
L

dq = 2π

cL

ln(c + cL) (32)

with cL = c tanh[c(L + 1)/2], after some algebra, one obtains

F = Edw − T ln(4βDL {1 + tanh[c(L + 1)/2]}2). (33)

Note that tanh(c(L + 1)/2) approaches one in the limit
L � 1/c. In Fig. 3, the free-energy difference F computed
numerically with the transfer-matrix technique (see Sec. III)
is compared with analytic predictions. Two possible system
sizes were considered L = 20, 100. The theoretical curve
given in Eq. (33) and numerical points literally overlap at
low temperature. At intermediate temperatures, it turns out
that a better agreement is achieved when the bare values
of D and c appearing in the argument of the logarithm
are replaced by the corresponding renormalized quantities

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3

Δ
F

T /J

L=100, T.M.
L=100, Eq. (33) ren.
L=100, Eq. (33)
L=20, T.M.
L=20, Eq. (33) ren.
L=20, Eq. (33)

FIG. 3. (Color online) Domain-wall free energy F as a function
of temperature for different system sizes L and D/J = 0.1. Symbols
(crosses L = 100 and squares L = 20) are numerical values obtained
by means of transfer-matrix calculations (T.M. in the legend). Lines
represent the prediction of Eq. (33), either using bare constants D

and c or renormalized ones D(λc) and c(λc) (abbreviated as “ren.” in
the legend), as described in the main text.

D(λc) = D Z3(λc) and c by c(λc) = c Z(λc). The derivation
of the temperature-dependent Z(λ), describing Polyakov-
renormalization flux [34,41,42], is reproposed for the reader’s
convenience in Appendix C. λc is the cutoff length at which
renormalization stops. By increasing L, the temperature at
which F � 0 systematically lowers, as expected from the
logarithmic dependence on L in Eq. (33). For this reason, the
renormalization effects are less severe and already the Gaus-
sian approximation works very well for L = 100. However,
for L = 20, the prediction of Eq. (33) with bare constants
[labeled with “Eq. (33)” in the figure legend] deviates more
significantly from the exact numerical results. In particular, the
transfer-matrix calculation displays a concavity not shown by
the theoretical curve obtained with bare values of c and D. The
concavity is, instead, reproduced at intermediate temperatures
by Eq. (33) if renormalized constants D(λc) and c(λc) are
used [labeled with “Eq. (33) ren.” in the figure legend].

C. Susceptibility and correlation length

In an infinite spin chain, pair-spin correlations decay with
the distance as 〈Sα(x + r)Sα(x)〉 = 〈(Sα(x))2〉 e−|r|/ξ , where
ξ is the correlation length and α = x,y,z. Henceforth, we will
focus on their z component and on the magnetic susceptibility
along the easy axis, to which they are related through the
equation

χ = − 1

L

∂2F

∂B2
z

= (gμB)2

T
〈(Sz(x))2〉

+∞∑
r=−∞

e−|r|/ξ

= (gμB)2

T
〈(Sz(x))2〉 coth

(
1

2ξ

)
(34)

with μB Bohr magneton and g Landé factor (kB = 1).
In the high-temperature limit, ξ vanishes and 〈(Sα(x))2〉
becomes independent of α = x,y,z so that the Curie law is
recovered [with the substitution 〈(Sz(x))2〉 → S(S + 1)/3].
In the low-temperature limit, 〈(Sz(x))2〉 → S2, ξ � 1 and
χ T ∼ ξ . The last relation is normally employed to extract
information about the spin-Hamiltonian parameters directly
from experimental susceptibility data. For the Ising chain
ξ ∼ eβEdw throughout a wide range of temperatures. Therefore
it is generally believed that the thermodynamics of anisotropic
spin chains may be described with the Ising model just
fitting the exchange interaction to the barrier that controls
the exponential divergence of χ T (ξ in the literature). In a
previous work [34], we showed that this is not appropriate for
the model described by Hamiltonian (1) when DWs extend
over several lattice units. This is the regime we address in
the present work [the use of Hamiltonian (2) is legitimate
only in this limit, c � 1]. Existing expansions of ξ often
disagree among them and their applicability is limited to some
undefined low-temperature region. Starting from Eq. (33)
and Polyakov renormalization, the following low-temperature
expansion is derived in Appendix D:

ξ � 1

4 e c βEdw

eβEdw

Z3(λc)
. (35)

The validity of Eq. (35) was checked against numerical results
obtained with the transfer-matrix technique and compared
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FIG. 4. (Color online) Correlation length in units of DW width
c ξ computed for D/J = 0.1. Symbols are obtained with the transfer-
matrix algorithm for an infinite chain (T.M. in the legend). Lines
represent analytic expressions given in the literature, Eqs. (36)
and (37), and obtained by us. The dash-dotted (light-blue) curve
[“Eq. (38)” in the legend] is obtained by continuing Eq. (35) with
Eq. (38) for Edw/T < 4.262. The different theoretical curves have
been rescaled by constant factors to match the numerical points at
low temperatures.

with other two expansions reported in the literature. More
specifically, in Refs. [22,23] it was proposed

ξ ∼ 1

c
eβEdw , (36)

which differs by a temperature-dependent prefactor from the
result obtained in Ref. [20]:

ξ ∼ 1

c βEdw
eβEdw . (37)

In Fig. 4, all analytic results have been rescaled by a constant in
order to overlap the numerical points at low temperature. Com-
pared with the other two low-temperature expansions, Eq. (35)
reproduces the numerical points up to higher temperatures, but
it fails as well for T > Edw/4. More dramatic is the divergence
of Eq. (35) as T approaches Edw, associated with the vanishing
of Z(λc). We understand this spurious effect as due to the fact
that the cutoff λc at which renormalization stops becomes of
the order of ξ itself. Tentatively, we tried to tune this artifact
by assuming that the contributions arising from spin waves
(including Polyakov renormalization) somehow freeze when
λc becomes of the order of the actual number of spins aligned
along the same direction, which happens for βEdw = 4.262
(see Appendix D). For higher temperatures, we thus suggest
to replace Eq. (35) by

ξ = A0

c
ebβEdw , (38)

with constants A0 = 0.3282 and b = 0.5496 determined by
requiring the continuity of ξ and its derivative with respect to
βEdw. Note that in all Eqs. (35)–(38), the product c ξ only de-
pends on βEdw. In other words, the correlation length in units of
DW width should be a universal, scaling function of the same
variable, as highlighted numerically in Ref. [34]. Of course,
different expansions for ξ yield a different scaling function,

whose validity is eventually confirmed by comparison with
numerical results and experiments. The phenomenological
curve obtained using Eq. (35) for βEdw > 4.262 and Eq. (38)
otherwise is plotted with a dash-dotted (light-blue) line in
Fig. 4. Though it is not fully justified on rigorous footing,
the curve reproduces well the universal behavior of c ξ versus
βEdw till the correlation length becomes of the order of the DW
width (c ξ � 1). At such short scales, the notion of correlation
length itself becomes somewhat meaningless.

Remarkably, the different expansions (35)–(38) disagree
in the temperature range in which ξ can be accessed ex-
perimentally. In fact, in real systems, defects and impurities
limit the chain size to 102–104 consecutive, interacting
spins [32,33]. For typical values [47] of J and D, one has
c � 0.1. Therefore the behavior of the correlation length can
be studied experimentally only for T > Edw/6, for the purest
spin chains, or T > Edw/4, in worst cases. When the latter
scenario occurs, Eq. (38) suggests that the barrier ξ , defined
as ξ ∼ eβξ , should approach half of the DW energy Edw.
Indeed, this has been observed in Mn(III)-TCNE molecular
spin chains [48–50], whose main thermodynamic features
should be captured by the model Hamiltonian (1). In a recently
published review article [51], it was pointed out that Eq. (36)
does not succeed in reproducing the measured susceptibility
of this family of spin chains {though Eq. (36) was implicitly
attributed to Ref. [34] instead of Ref. [23]}. For completeness,
we mention that preliminary results indicate that averaging
over different directions of the easy axis—with respect to the
applied field—also affects the value of the effective barrier ξ

when the latter is extracted from powder measurements.
The temperature dependence of 〈(Sz(x))2〉 can also affect

the magnetic susceptibility at intermediate temperatures,
T > Edw/4 [see Eq. (34)]. According to Eq. (C3) and the
following equations, also this quantity should depend—to a
large extent—only on βEdw. In passing, we note that within our
classical model the correct Curie constant cannot be recovered
at high temperature: a fully quantum-mechanical calculation
would be needed. This question lies beyond the scope of the
present work.

III. NUMERICAL CHECKS

In this section, we describe and critically comment the
numerical calculations that were made in order to check ro-
bustness and limitations of our analytic results. The derivation
of Eq. (33) strongly relies on the solution to Eq. (6) and on the
correctness of the density of states ρ(q) given in Eq (29). All
these intermediate passages were checked diagonalizing the
equivalent discrete-lattice problem, as explained in details in
Appendix B. The transfer-matrix algorithm and how finite size
constrains the minimal-energy spin profile will be discussed
in separate sections.

A. Finite-size transfer matrix

The thermodynamic properties of the model described by
Hamiltonian (1) and—more generally—of any classical-spin
chain with nearest-neighbor interactions can be computed
with the transfer-matrix technique. This approach has been
largely used to derive analytic [22,23,52] and numerical

014429-6



DOMAIN-WALL FREE ENERGY IN HEISENBERG . . . PHYSICAL REVIEW B 89, 014429 (2014)

results [53,54] for infinite chains. Less frequently it has been
employed to study finite systems [55], for which more flexible
methods exist [56,57]. As far as equilibrium properties are
concerned, integration of stochastic Landau-Lifshitz-Gilbert
equation, Monte-Carlo and transfer-matrix algorithms should
produce the same results (for a comparison between the first
two approaches see Refs. [56], [57], and [34] for the last
two). For our specific problem of computing the free-energy
difference between the configurations sketched in Fig. 1, the
transfer-matrix technique turned out to be extremely efficient.
Let us separate the bulk interactions from those characterizing
the spins at boundaries:

H = −
L−1∑
i=1

Vbulk(�Si, �Si+1) − Vbc(�S1) − Vbc(�SL) . (39)

Defining

Vexch(�Si, �Si+1) = J �Si · �Si+1,
(40)

Vss(�Si) = D
(
Sz

i

)2
,

we have

Vbulk(�Si, �Si+1) = Vexch(�Si, �Si+1) + 1
2 (Vss(�Si) + Vss(�Si+1)),

Vbc(�S1) = 1
2Vss(�S1) + JSz

1, (41)

Vbc(�SL) = 1
2Vss(�SL) ± JSz

L,

the last term being plus for ↑↑ b.c. and minus for ↑↓ b.c.. Vexch

can possibly describe anisotropic exchange, Dzyaloshinskii-
Moriya interaction, etc., and Vss any type of single-spin
interaction (other anisotropy terms, Zeeman energy, etc.). With
these conventions, the transfer-matrix kernel [58] takes the
form

KTM(�Si, �Si+1) = exp[βVbulk(�Si, �Si+1)]. (42)

The latter defines the following eigenvalue problem:∫
KTM(�Si, �Si+1)Wm(�Si+1)d�i+1 = λmWm(�Si) (43)

whose eigenvalues may typically be ordered from the largest
to the smallest one:

λ0 > λ1 > λ2 > · · · .

The eigenvalue problem (43) can be solved analytically only in
few fortunate cases [59]. Generally, it can be converted into a
linear-algebra problem and solved numerically by discretizing
the unitary sphere [60–62]. For each temperature, the number
of points used to sample the solid angle was increased
until the desired precision in the free-energy calculation was
reached. Once that eigenvalues and eigenvectors are known,
the partition function is given by

ZTM =
∑
m

λL−1
m w1

mwL
m with

w1
m =

∫
exp

[
1

2
βVbc(�S1)

]
Wm(�S1)d�1, (44)

wL
m =

∫
exp

[
1

2
βVbc(�SL)

]
Wm(�SL)d�L.

The calculation of Z↑↓ and Z↑↑ just requires to change one
sign in the definition of Vbc(�SL) given in Eq. (41). In this way,
F = −T ln(Z↑↓/Z↑↑) was computed also numerically (with
two different methods described in Appendix E) to check the
validity of Eq. (33). Results are plotted in Fig. 3. Further details
concerning the calculation of 〈(Sz(x))2〉 shown in Fig. 6 may
be found in Ref. [55], while details about how to compute the
correlation length for the infinite chain (see Fig. 4) are given
in Ref. [34].

B. General spin profile

The whole theoretical treatment developed in the previous
and in the next sections strongly depends on the profile �n(x)
assumed in Eq. (18). Strictly speaking, this profile minimizes
the DW energy of an infinite chain when the micromagnetic
limit is legitimate (i.e., for c � 1). Still working with broad
DWs, analytic expressions can be derived for the case of
L < ∞, which are recalled for the reader’s convenience in
Appendix F. The accuracy of those analytic results was—in
turn—checked against a discrete-lattice calculation based on
nonlinear maps [63–65]. The most remarkable fact is that
when the DW width becomes of the order of the system
size (L) the dependence of nz(x) on the spatial coordinate
crosses over from hyperbolic tangent to cosine (see Fig. 8).
This imposes a natural range of validity to our model, which
depends on the size of the characteristic length involved
in a specific calculation. For the correlation length, e.g.,
meaningful analytic results can be derived only as long as ξ �
1/c. We already commented on this while deriving Eq. (38). In
the next section, we will discuss the temperature dependence of
the period of modulation of 2D striped domain patterns. Also
in this case, our considerations are expected to hold as long
as the separation between two successive DWs is much larger
than 1/c. Since the period of modulation is found to decrease
with increasing temperature, this self-consistency requirement
eventually sets a high-temperature threshold above which
our theory cannot be applied. Remarkably, the mean-field
approach prescribes the low-temperature stripe phase to evolve
into a single-cosine modulation at the mean-field Curie tem-
perature [40,66]. However, since the mean-field approximation
is known to overestimate the Curie temperature, in realistic
systems it may happen that long-range magnetic order is lost
before single-cosine modulation is attained. Summarizing, if
for some reason the period of modulation is constrained to be
of the order of 1/c, a single-cosine modulation is expected.
Whether this is necessarily the case when the true Curie
temperature of a magnetic film is approached remains—to
the best of our knowledge—not clear.

IV. DOMAIN WALLS IN THIN FILMS

The same treatment presented up to now can be extended
to DWs described by the spin profile in Eq. (18) embedded in
2D or 3D magnetic lattices. Here we focus on 2D systems,
realized in thin ferromagnetic films or (flat) nanowires.
More concretely, we address systems whose thickness, τ ,
(defined along the z direction) is smaller than the DW
width: τ < 1/c. The generalization of Hamiltonian (2) to two
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dimensions reads

H =
∫ Ly+1

0
dy

∫ Lx+1

0

[
J

2
|∇ �S|2 − D(Sz)2

]
dx, (45)

where Lx and Ly denote the lateral extensions (in lattice units)
of the system along x and y directions, respectively. Exchange
and anisotropy constants are related to the atomic counterparts
by the thickness: J = τJatom and D = τDatom (τ being the
number of monolayers in the film). The vector field defining
the local spin direction is a function of two spatial variables
�S = �S(x,y), but it can still be decomposed as in Eq. (3). The
major difference is that the fluctuation field becomes a function
of x and y, �φ(x,y), while �n(x) is assumed to depend only on
x. Strictly speaking, the assumption of a DW profile being
described by Eq. (18) does not allow considering complex
magnetic-domain patterns, such as bubbles or labyrinths.
Those patterns are not really the focus of the present paper,
which rather deals with thermal properties of DWs. Being fully
determined by �n(x), the same basis set �ea defined for the 1D
case can be employed to study Gaussian fluctuations about
a DW hosted in a 2D lattice. Generally, the corresponding
Schrödinger-like operator is obtained by adding a free-particle
term, acting along the y direction, to the operators Ĥa defined
previously:

Ĥ 2D
a = −J

2
∂2
y + Ĥa . (46)

For the uniform case, �n = �ez, the eigenfunctions of Ĥ 2D
a are

the same as those of a free particle in a box:

	a,qx,qy
(x,y) = 2 sin(qxx) sin(qyy)√

(Lx + 1)(Ly + 1)
, (47)

with qα = lα π/(Lα + 1), lα = 1,2,3, . . . (α = x,y), and
eigenvalues

εa,qx ,qy
= J

2

(
q2

x + q2
y

)+ D . (48)

When �n(x) is chosen as in Eq. (18), the free-state eigenfunc-
tions are given by

	a,qx,qy
(x,y) =

√
2

Ly + 1
sin(qyy)	a,qx

(x) , (49)

with the same eigenvalues as in Eq. (48), 	a,qx
(x) being

the eigenfunctions defined in Appendix B. The bound-state
contribution reads

�a,qy
(x,y) =

√
2

Ly + 1
sin(qyy)�a(x) , (50)

with �a(x) defined in Eq. (25) and eigenvalues εa,qy
= Jq2

y/2
(for both components a = x0,ϕ0). By analogy with the 1D
case, each component of the fluctuating field �φ(x,y) can be
expanded on eigenfunctions of the operator Ĥ 2D

a defined in
Eq. (46). Finally, the fluctuation Hamiltonian can be written
as

H[ �φ] =
∑

a

⎡
⎣∑

qy

εa,qy
|ba,qy

|2 +
∑
qx ,qy

εa,qx ,qy
|ba,qx ,qy

|2
⎤
⎦ ,

(51)

where ba,qy
and ba,qx ,qy

are the projections of a generic
φa(x,y) on the basis functions �a,qy

(x,y) and 	a,qx,qy
(x,y),

respectively. Using the same conventions as in Eq. (11), the
partition function is now given by

Z[�n] = e−βH[�n]

[∫
�
a,qy

dba,qy
e−βεa,qy

∣∣ba,qy

∣∣2
]ndw

× exp

⎡
⎣−1

2

∑
a,qx ,qy

ln

(
βεa,qx ,qy

π

)⎤⎦ (52)

(the label ν has been dropped because it takes just one value
for each component a).

Let us consider first the contribution of the bound state
associated with translation invariance of DW centers, x0.
We can formally use the substitution defined in Eq. (26)
and replace each amplitude variable by the corresponding
coordinate of DW center bx0,qy

= x0(qy)
√

2c so that

Zx0 =
∫

�
x0,qy

dbx0,qy
e−βεx0 ,qy |bx0 ,qy |2

= (2c)Ly/2
∫

�
qy

dx0(qy) exp

[
−βEdw

2
q2

y |x0(qy)|2
]

, (53)

where the equivalence Edw = 2Jc has been used. The de-
pendence on qy in x0(qy) is better understood by thinking
that in the ground state the DW develops as a straight line
along y. Therefore x0(qy) actually describes the displacement
field associated with a corrugation of the DW induced by
thermal fluctuations. In fact, a 1D Hamiltonian for elastic
displacements (with “stiffness” Edw),

Hel = Edw

2

∑
y

[x0(y + 1) − x0(y)]2 , (54)

would yield a partition function equal to Eq. (53) for qy ∼ 0,
namely, in the continuum-limit formalism. However, if the
lattice discreteness is reintroduced, undesired divergences are
avoided. From textbooks it is known that Hamiltonian (54)
reads

Hel = 2Edw

∑
qy

sin2

(
qy

2

)
|x0(qy)|2 (55)

in the appropriate Fourier space with qy = ly π/(Ly + 1) and
1 � ly � Ly . When the Boltzmann weights in Eq. (53) are
replaced with βHel, after Gaussian integrations with respect
to dx0, one obtains

Zx0 = (2c)Ly/2 exp

⎧⎨
⎩−1

2

∑
qy

ln

[
2βEdw

π
sin2

(
qy

2

)]⎫⎬
⎭. (56)

For Ly � 1, one has

∑
qy

ln

[
sin

(
qy

2

)]
� Ly + 1

π

∫ π

0
ln

[
sin

(
qy

2

)]
dqy

= −(Ly + 1) ln 2, (57)
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which leads to

Zx0 =
(

2π

βJ

)Ly/2

(58)

(within the present approximation Ly + 1 � Ly). A detailed
derivation of the contribution due to the bound state associated
with the degeneracy with respect to ϕ0 is given in Appendix G.
At low temperature, this term turns out to be the same as
Eq. (58), i.e., Zϕ0 = Zx0 .

As for 1D case, we focus on the ratio between the partition
functions obtained for ↑↓ and ↑↑ b.c.. For one DW embedded
in a thin film, this is

Z↑↓
Z↑↑

= e−βLyEdwZx0Zϕ0

× exp

⎧⎨
⎩1

2

∑
qy

∫ ∞

−∞
ln

[
βJ

(
q2

x + q2
y + c2

)
2π

]
γ (qx) dqx

⎫⎬
⎭ .

(59)

Note that only the summation over the qx label has been
substituted with an integral [following the same conventions
as in Eqs. (28) and (29)]. Moreover, the fact that the energies
εa,qx ,qy

in Eq. (48) actually do not depend on the label a has
been used. Exploiting again Eq. (32), the argument of the
exponential in Eq. (59) can be approximated as

∑
qy

[
ln

(
βJ

2π

)
+ 2 ln

(
cL +

√
q2

y + c2
)]

� Ly ln

(
βJc2

L

2π

)

+ 2(Ly + 1)

π

∫ π

0
ln

[
1 +

√(
qy

cL

)2

+
(

c

cL

)2]
dqy,

(60)

where we considered Ly � 1 and cL = c tanh[c(Lx + 1)/2]
now. The integral in the last line of Eq. (60) can be solved
analytically:

∫ π

0
. . . dqy = π [ln (1 + c̃ cosh t)] + cL t − π

− 2cL

√
c̃2 − 1 arctan

[√
c̃ − 1

c̃ + 1
tanh

(
t

2

)]

Lx�1= π ln

[
1 +

√
1+

(
π

c

)2]
+ c arcsinh

(
π

c

)
− π

(61)

with sinh t = π/c and c̃ = c/cL. The latter approaches one
when Lx � 1 is considered. To the leading order and at low
temperature, the free energy per unit length of a DW embedded
in a thin film, whose linear dimensions are much larger than

the lattice spacing, reads

Fdw = − T

Ly

ln(Z↑↓/Z↑↑)

= Edw − 2 T

[
c

π
arcsinh

(
π

c

)
− 1

]

− 2 T ln

{
c

[
1 +

√
1 +

(
π

c

)2]}
− T

Ly

ln(4πLx) .

(62)

The last entropic term arises from two contributions neglected
inZx0 andZϕ0 , namely a rigid translation of the DW as a whole
and a rigid rotation of the chirality vectors (see Appendix G
for details). Those contributions have been already computed
for the 1D case in Eq. (27), for which y takes just one
value. Even if this entropic term practically does not affect
the free energy for Lx,Ly � 1, it is important in relation
to the underlying degeneracies with respect to x0 and ϕ0. In
fact, these degeneracies eventually determine the (i) floating
of magnetic-domain patterns and (ii) the vanishing of critical
current for DW motion in nanowires with no intermediate
anisotropy (Dx = 0).

A. Positional order of domain walls

The fact that both Zϕ0 and Zx0 arise from elasticlike
Hamiltonians has important implications that deserve some
further comment. As already pointed out, Zx0 is associated
with corrugation of the DW as a function of y (see the
sketch in Fig. 5). In the ideal case considered here, this
instability destroys positional order (defined by the profile
�n) at finite temperatures. In real films, positional order may
be stabilized by some substrate anisotropy, pinning or dipolar
interaction. The last one is responsible for the emergence of
magnetic-domain patterns in films magnetized out of plane. In
this context, Eq. (62) may be applied to study the temperature
dependence of the optimal period of modulation for a stripe
pattern, known to be the ground state [67–70] (gray and white

FIG. 5. (Color online) Schematic view of stripe pattern in a film
with out-of-plane anisotropy. Gray and white areas represent domains
with opposite magnetization in the ground state. Colored (online)
arrows give a pictorial representation of DW corrugation and short-
range chiral order at finite temperature. Note that Bloch DWs have
been assumed and disorder in the arrows direction [ϕ0(y) variable]
has been exaggerated to help visualization.
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domains in Fig. 5). At zero temperature, a modulated phase
results from the competition between magnetostatic energy
(which favors in this case antiparallel alignment of spin pairs)
and the energy cost to create DWs. Several approaches lead
to the same scaling of the characteristic period of modula-
tion [67,68,71]: Lstripes ∼ eEdw/(4�τ 2), with � = μ0M

2
s a3/4π

being the strength of dipolar interaction, τ is the adimensional
film thickness, a is the dimensional lattice constant, and Ms is
the saturation magnetization (remember that in this section, it
is Edw = 2τ

√
2JatomDatom). A first-order estimate of thermal

effects is obtained by replacing Edw in the expression of Lstripes

with Fdw defined in Eq. (62): Lstripes ∼ eFdw/(4�τ 2). The latter
is consistent with a decrease of the period of modulation with
increasing temperature, as observed in experiments [38,39]
and predicted by mean-field approach [40,71]. Note that in
deducing the DW free energy Fdw, dipolar interaction was
totally overlooked. For instance, this interaction is known to
produce an effective intermediate anisotropy that stabilizes
Bloch type of DWs in films magnetized out of plane. Strictly
speaking, since we assumed Dx = 0, our treatment should not
apply to stripped patterns emerging in those films. A more
accurate study of this specific phenomenon—which we intend
to address in a forthcoming paper—shall possibly produce
a different entropic contribution to the DW free energy.
Nevertheless, the main message of this paragraph is expected to
hold true: Gaussian fluctuations around a DW profile suffice to
account for a decrease of Lstripes with increasing temperatures.

Still referring to domain patterns in films with dominant
out-of-plane anisotropy, elastic deviations from the ideal stripe
phase are known to yield anisotropic decay of correlations [72]
along x and y. In the naive description of the stripe pattern
given above, we ideally froze the elastic modes associated
with compression along x. Yet, some disorder is expected to
arise from the corrugation modes, developing along y and
associated with Zx0 . Without entering the details, this fact
already suggests the decay of spatial correlations to be more
severe along y rather than along x. Consistently with this
picture, several theoretical works [72–75] predict that the
stripped ground state should evolve into a 2D smectic or
nematic phase [76] at finite temperature. The degeneracy with
respect to x0 of a single DW embedded in a thin film propagates
to more complex patterns and leads to the floating-solid
description [the specific choice of �n(x) being dependent on x

only does not allow for rotational invariance on the xy plane,
which in physical systems also occurs].

Usually, in real films all these effects are hindered by
pinning. As related to the latter, the assumption—stated by
Hamiltonian (54)—that DWs behave as elastic interfaces is
the starting point for describing depinning and creep dynam-
ics [77–79]. However, at relatively high temperatures, pinning
may become negligible, thus restoring the idealized theoretical
picture sketched above. The observation of stripe mobility in
Fe/Cu(001) films, indeed, supports this scenario [38].

B. Chiral order of domain walls

The instability with respect to ϕ0 is, instead, related to DW
chirality. As pointed out in Appendix G, Zϕ0 may be thought
of as arising from the 1D XY Hamiltonian given in Eq. (G2)
in the limit of small misalignment between neighboring

chirality vectors �eϕ0 (y). It is well known that the 1D XY

model—with nearest-neighbor interactions—can only sustain
short-range order. Therefore our picture suggests that just
short-range chiral order should develop along the y direction
when only uniaxial anisotropy and exchange interaction are
considered. An intermediate anisotropy Dx �= 0—for instance,
of magnetostatic origin—stabilizes two possible values of
ϕ0. Eventually, this drives the original XY Hamiltonian Hxy

in Eq. (G2), which describes the effective coupling between
chirality vectors, towards the Ising universality class. Neither
in this case long-range chiral order along y is expected
to be stable. From a snapshot taken at finite temperature
we would rather expect domains of opposite chirality to
alternate randomly along, e.g., a Bloch DW [for which
�eϕ0 = (±1, 0, 0)]. This phenomenon was recently observed on
Fe/Ni/Cu(001) films [6], consisting of ten monolayers of Ni
and 1.3 of Fe. Our conjecture is sketched pictorially in Fig. 5.
Arrows represent the alternating magnetization direction along
DWs, instead of the �eϕ0 vectors, to facilitate the comparison
with experiments reported in Ref. [6]. A scenario consistent
with chiral order of DWs requires either a significant film
thickness (so that dimensional crossover may occur) or the
presence of a Dzyaloshinskii-Moriya interaction [80]. The
latter, still in Ref. [6], was observed to stabilize homochiral
Néel type of DWs, with �eϕ0 = (0, 1, 0), in samples with thinner
Ni interlayer.

Our considerations about short-range chiral order of DWs
seem in striking contrast with Villain’s conjecture [81] (con-
firmed by experiments on Gd-based spin chains [82]). This
prescribes that in spin chains that develop short-range chiral
order and are packed in a 3D crystal long-range chiral order
should set in at higher temperature than magnetic ordering.
In our mindset, the “information” about chirality of DWs in a
2D stripe-domain pattern cannot propagate along x, from one
DW to the next because they are separated by regions in which
all spins are aligned along the easy axis. Some misalignment
between neighboring spins is, instead, needed to have a finite
chiral order parameter. This ceases to hold true, e.g., close to
the spin-reorientation transition where a canted-stripe phase
was recently observed in 2D simulations [66,83].

One should not forget that the arguments provided here
strictly rely on thermodynamic equilibrium. Homochirality of
DWs may be observed in experiments [84–86] and simulations
as a result of slow dynamics [87–89], similarly to what
happens in superparamagnetic nanoparticles [57,90,91], for
which long-range ferromagnetic order would be forbidden by
equilibrium thermodynamics.

Chirality is also related to adiabatic spin transfer torque
(STT), through which an electric current may displace a DW
hosted in a ferromagnetic nanowire. Translation of the DW,
i.e., a variation of the x0 parameter, is in this case necessarily
accompanied by a precession of the ϕ0 angle, which produces
a periodic change of the DW structure between Bloch and Néel
type. The corresponding Landau-Lifshitz-Gilbert equation
reads

d �S
dt

= γ0 �Heff × �S + αG �S × d �S
dt

− u ∂x
�S, (63)

where the effective field is defined from the Hamiltonian H
in Eq. (45) (possibly modified to include the magnetostatic
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energy or an intermediate anisotropy) as

�Heff = − 1

gμB

δH
δ �S , (64)

γ0 is the gyromagnetic ratio, αG is the Gilbert damping, and
the last term accounts for the adiabatic STT with

u = gμBJeP

2eMsa
, (65)

where Je represents the electrical current density and P is
the polarization factor of the current [the lattice unit a has
been added because the derivative in Eq. (63) is considered
dimensionless]. The adiabatic STT term in Eq. (63) can be
regarded as a precessional contribution about an effective
“field” �HSTT = −u(�S × ∂x

�S)/γ0, which is proportional to the
local chirality vector [46]. Due to its close relation with
chirality, we believe that reconsidering adiabatic STT in the
perspective of short-range chiral order may contribute to
shed some light on the puzzling scenario of DW motion
induced by electric currents. For instance, adiabatic STT seems
to catch the main physics of Co/Ni nanowires magnetized
out of plane [92,93], while it largely fails for prototypical
Permalloy nanowires (magnetized in plane) [94–96]; the
critical current for DW motion is observed to depend strongly
on temperature [97,98] in some samples and not in others [99].
Even if the extension to 2D of the sketch in Fig. 1 naturally
leads to films or nanowires magnetized out-of-plane, our
calculation can be adapted to samples magnetized in plane by
a permutation of coordinates [36,100]. Within our picture, the
ratio between the correlation length characterizing short-range
chiral order (ξϕ0 ) and the actual transverse size of a sample (Ly)
should discriminate two regimes: for ξϕ0 � Ly the response
of a DW to adiabatic STT is expected to depend strongly on
temperature; for ξϕ0 � Ly this dependence should be much
less dramatic. Also in this context, it is worth remarking
that thermally assisted DW depinning [16,101] and possible
nonhomogeneous mechanisms of precession [102] have been
neglected in our considerations.

V. CONCLUSIONS

We considered the effect of thermalized linear excitations
about a DW profile. Expressions for the free energy of
a DW embedded in 1D or 2D lattices were derived as a
function of temperature and the system size. This was achieved
by rephrasing in the language of Polyakov renormaliza-
tion [34,41,42] some known results, obtained from lineariza-
tion of the Landau-Lifshitz equation [25–30]. Our approach is
equivalent to the steepest-descent approximation of functional
integrals [20]. It has, in our opinion, the advantage of allowing
for an easier generalization to 2D. Moreover, it provides a
better insight on the role of fast- and slow-varying degrees of
freedom, while keeping track of the nonhomogeneity within
the fluctuation field. For instance, it is straightforward to
realize that fluctuations associated with bound states shall be
localized at the DW center. This information might be relevant
to the aim of accounting efficiently for thermal fluctuations
in the Landau-Lifshitz-Gilbert equation [103], beyond the
mean-field level (Landau-Lifshitz-Bloch equation [14,18]).

From the knowledge of the DW free energy, we provided
a phenomenological expansion for the correlation length that
may be used to fit the susceptibility of single-chain magnets
(slow-relaxing spin chains [31–35]). The last ones are often
realized by creating a preferential path for the exchange
interaction between anisotropic magnetic units—consisting of
transition metals or rare earths—through an organic radical.
Thus, to some extent, Eq. (1) can be considered a reference
Hamiltonian for single-chain magnets in general [34,35].

In a previous work [40], we explained the shrinking
of magnetic domains, observed in films with out-of-plane
anisotropy, within a mean-field approach and assuming a
nonhomogeneous spin profile. Retaining the last feature for
the unperturbed profile, in this paper, we showed that Gaussian
fluctuations also lead to a qualitatively similar result.

As a further implication, our model suggests that long-range
chiral order cannot occur within DWs interposed between
saturated domains. The robustness of this conjecture certainly
deserves to be checked beyond the Gaussian approxima-
tion. Yet, it seems consistent with recent experiments on
Fe/Ni/Cu(001) films [6]. This softening of chiral order may
acquire some relevance also in view of DW manipulations by
means of spin-transfer torque.
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APPENDIX A: LOWERING AND RAISING OPERATORS

In the next two appendices, we provide some details about
the solution of the eigenvalue problem (6) in the presence of
↑↓ b.c.. In terms of the lowering and raising operators

âm = ∂η + m tanh η,
(A1)

â†
m = −∂η + m tanh η,

the generalized fluctuation Hamiltonian given in Eq. (23) reads
Ĥm = â

†
mâm + m. Using the commutator relation

[â†
m,âm] = − 2m

cosh2 η
, (A2)

one finds the alternative representation Ĥm = âm+1â
†
m+1 −

(m + 1). We now show that if |ψ〉m is an eigenstate of
Ĥm then â

†
m+1|ψ〉m is an eigenstate of Ĥm+1. Let |ψ〉m

be an eigenstate of âm+1â
†
m+1 with eigenvalue λm, i.e.,

âm+1â
†
m+1|ψ〉m = λm|ψ〉m, then

â
†
m+1(âm+1â

†
m+1|ψ〉m) = â

†
m+1âm+1(â†

m+1|ψ〉m) (A3)

= λm(â†
m+1|ψ〉m), (A4)

which means that â
†
m+1|ψ〉m is an eigenstate of â

†
m+1âm+1 with

the same eigenvalue λm. With the above representations of Ĥm

and Ĥm+1, it can easily be checked that if |ψ〉m is an eigenstate
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of Ĥm with eigenvalue Em then â
†
m+1|ψ〉m is an eigenstate of

Ĥm+1 with eigenvalue Em + 2(m + 1). Thus the Hamiltonians
Ĥm and Ĥm+1 share the same spectrum, except for the fact
that Ĥm+1 has the additional eigenstate |0〉m+1, defined by
âm+1|0〉m+1 = 0, which is not present in the spectrum of Ĥm.
This property allows constructing eigenstates of the Hamilton
operator Ĥm recursively. For the case of our interest, we stop
the iteration at the first step m = 1, namely we just apply â

†
1 to

the free-particle eigenstates (see the following appendix for the
explicit calculation). The missing vacuum state |0〉1 is nothing
but the bound state represented through Eq. (25) in real space.

APPENDIX B: DERIVATION OF THE DENSITY OF STATES

In the finite system, the solutions of the free-particle Hamil-
tonian are ψ0(q,x) = A cos(qx) + B sin(qx), where A ,B are
constants to be determined from the boundary and normaliza-
tion conditions. The free-state solutions of the Schrödinger-
like Eq. (6) obtained for antiferromagnetic (↑↓) b.c. [namely,
when �n(x) describes a DW profile] can be obtained by applying
the raising operator â

†
1 defined in Eq. (24) to ψ0(q,x):

	a,q(x) =A {q sin(qx)/c + tanh[c(x − x0)] cos(qx)}
+ B {tanh[c(x − x0)] sin(qx) − q cos(qx)/c} ,

(B1)

with a = x0,ϕ0. Independently of the determination of A and
B, it is straightforward to show that 	a,q(x) are solutions of
the Schrödinger-like Eq. (6) with eigenvalues

εa,q = J

2
q2 + D , (B2)

formally equal to those obtained starting from a uniform profile
(↑↑ b.c.). We show in the following that the allowed values of
q are not the same, which affects the density of states.

The constants A and B in Eq. (B1) have to be determined
from the boundary conditions 	a,q(0) = 	a,q(L + 1) = 0 and
the normalization condition∫ L+1

0
dx |	a,q(x)|2 = 1 . (B3)

Though deriving an analytic expression for A and B is
computationally demanding, the density of states can easily
be obtained. Nontrivial solutions (A �= 0 and B �= 0) exist
only if the determinant of the system defined by the boundary
conditions 	a,q(0) = 	a,q(L + 1) = 0 vanishes:

tanh(cx0) tanh [c(L + 1 − x0)] tan[q(L + 1)]

− q tanh(cx0)/c − q2 tan[q(L + 1)]/c2

− q tanh [c(L + 1 − x0)] /c = 0, (B4)

which gives the following transcendental equation for the
determination of the possible q values:

tan[q(L + 1)] = q{tanh(cx0) + tanh[c(L + 1 − x0)]}
c{tanh(cx0) tanh[c(L + 1 − x0)] − q2/c2} .

(B5)

This equation can be solved using, e.g., graphical methods.
More significantly, it allows deriving an analytic expression
for the density of states. To this purpose, let us set

tan α = q {tanh(cx0) + tanh [c(L + 1 − x0)]}
c{tanh(cx0) tanh [c(L + 1 − x0)] − q2/c2} . (B6)

The solution of Eq. (B5) is

q(L + 1) = α + pπ with p ∈ Z,
(B7)

α = arctan

[
q{tanh(cx0) + tanh[c(L + 1 − x0)]}

c{tanh(cx0) tanh[c(L + 1 − x0)] − q2/c2}
]
,

which can be solved for p to obtain

p = q(L + 1)

π
− 1

π
arctan

[
q {tanh(cx0) + tanh [c(L + 1 − x0)]}

c{tanh(cx0) tanh [c(L + 1 − x0)] − q2/c2}
]

. (B8)

The density of states [44] is defined as

ρ(q) = dp

dq
= L + 1

π
− c

π

{
tanh(cx0) tanh [c(L + 1 − x0)] + q2

c2

}
tanh(cx0) + tanh [c(L + 1 − x0)]

(q,x0)
, with

(q,x0) = c2

{
tanh(cx0) tanh [c(L + 1 − x0)] − q2

c2

}2

+ q2 {tanh(cx0) + tanh [c(L + 1 − x0)]}2 . (B9)

In order to compute the DW free energy analytically, we
assume the DW to be centered in the system, i.e., x0 =
(L + 1)/2. In this case, Eq. (B5) reads

tan[q(L + 1)] = 2q tanh [c(L + 1)/2]

c{tanh2[c(L + 1)/2] − q2/c2} . (B10)

Setting tan α = q/c tanh[c(L + 1)/2], Eq. (B10) takes the
form

tan[q(L + 1)] = tan(2α). (B11)

The density of states simplifies to

ρ(q) = L + 1

π
− 2c tanh[c(L + 1)/2]

π{c2 tanh2[c(L + 1)/2] + q2} , (B12)

014429-12



DOMAIN-WALL FREE ENERGY IN HEISENBERG . . . PHYSICAL REVIEW B 89, 014429 (2014)

and for L � 1/c, tanh2[c(L + 1)/2] ≈ 1,

ρ(q) = L + 1

π
− 2c

π (c2 + q2)
. (B13)

In order to check the validity of Eq. (B12), we performed a
numerical diagonalization of Eq. (6) for a finite, discrete lattice
(the excellent agreement is summarized in Fig. 2).

Diagonalization of the discrete eigenvalue problem. The
discrete version of Eq. (6) is given by∑

j,k

ψ(j )

[
−J

2
j,k + V (k)δj,k

]
ψ(k) = ε , (B14)

where j,k is the discrete Laplace operator

j,k =

⎧⎪⎨
⎪⎩

−2, j = k,

1, k = j ± 1

0, else,

, (B15)

the potential is

V (k) = D[2 cos2(θk) − 1], for ↑↓ b.c.,
(B16)

V (k) = D, for ↑↑ b.c.,

and θk corresponds to the discrete profile computed, e.g., with
the nonlinear map method (see Appendix F). A complete
orthonormal system fulfilling the boundary conditions ψ(0) =
ψ(L + 1) = 0 is

un(j ) =
√

2

L + 1
sin(qnj ), qn = π

L + 1
n (B17)

with 0 � j � L + 1 and 1 � n � L. The functions ψ are
expanded in this basis,

ψ(j ) =
∑

n

wnun(j ), (B18)

and inserted into Eq. (B14) to get∑
n,m

wn{J [1 − cos(qn)]δn,m + Mn,m}wm = ε, (B19)

with

Mn,m =
∑

j

un(j )V (j )um(j ) . (B20)

This is equivalent to solving the eigenvalue problem∑
m

{J [1 − cos(qm)]δn,m + Mn,m}wm = εnwn. (B21)

It is worth noting that in a finite discrete system the possible
number of eigenfunctions L is finite. As a consequence, every
time a domain wall is added, a free state is “lost” and a
bound state is “gained.” However, this procedure is correct
only when the distance between DWs is large enough to treat
them independently. In our case, we just considered one or no
DW in the system. When no DW is present, i.e., for ↑↑ b.c.,
un(j ) are solutions to the eigenvalue problem in Eq. (B14)
with eigenvalues

ε↑↑,n = J [1 − cos(qn)] + D . (B22)

As already mentioned, the dispersion relation is expected to
depend on q in the same way for both choices of b.c., but the

allowed values of q may, generally, be different. The spectrum
in Eq. (B22) was compared with that obtained by solving the
eigenvalue problem (B21) numerically: εn obtained in both
cases were plotted against the eigenvalue index n. Indeed, the
two dispersion relations turned out to overlap. Therefore the
“shifted” q↑↓,n, corresponding to ↑↓ b.c., could be deduced
through the following formula:

q↑↓,n = arccos

(
J + D − ε↑↓,n

J

)
. (B23)

Eventually, the density of states plotted with symbols in Fig. 2
was obtained with the discrete derivative

ρ(q) = ∂n

∂q
� 1

q↑↓,n+1 − q↑↓,n

. (B24)

APPENDIX C: POLYAKOV RENORMALIZATION

When ferromagnetic b.c. (↑↑) are considered, the expan-
sion in Eq. (7) involves only free states 	a,q(x), those given
in Eq. (16). Thermal averages of the coefficients aa,q and their
products are momenta of the Gaussian integrals entering the
partition function Z[�n] and, therefore, fulfill the relations

〈aa,q〉 = 0,
(C1)

〈aa,q aa,q ′ 〉 = T

2 εa,q

δq,q ′

(equipartition theorem). From this, it follows that thermal
averages of the fluctuation-field components read

〈
φ2

a

〉
↑↑ = T

L + 1

∑
q

sin2(qx)

εa,q

� T

2(L + 1)

∫ ∞

−∞

sin2(qx)

εa,q

ρ↑↑ dq

= T

2πJ

∫ ∞

−∞

1 − cos(2qx)

q2 + c2
dq

= T

Edw
[1 − e−2cx − e−2c(L+1−x)], (C2)

the first two terms of the last line come directly from integration
on the complex plane, while the third one has been added by
hand for symmetry with respect to the boundaries x = 0 and
x = L + 1. This contribution is lost when the summation

∑
q

is approximated with an integral (first line). Starting from
Eq. (12), it can be shown [34,42] that the following relations
hold for thermal averages:

〈(∂x
�S)2〉 = (

1 − 〈
φ2

a

〉
↑↑
)
(∂x �n)2 +

∑
a

〈(∂xφa)2〉↑↑,

(C3)
〈(Sz(x))2〉 = (

1 − 3
〈
φ2

a

〉
↑↑
)
(nz)2 + 〈

φ2
a

〉
↑↑ .

In Fig. 6, we compare 〈(Sz(x))2〉 obtained by inserting the
analytic formula for 〈φ2

a〉↑↑ given in Eq. (C2) with numerical,
transfer-matrix calculations. The analytic expression agrees
very well with numerics at low temperature. For an infinite
system, the Gaussian approximation would give 〈φ2

a〉∞ =
T/Edw, which is indeed recovered away from the boundaries
(not shown). The more refined, Polyakov approach consists
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FIG. 6. (Color online) 〈(Sz(x))2〉 obtained for ↑↑ b.c.: transfer-
matrix calculation (symbols, T.M. in the legend) and analytic result
(line) obtained combining Eq. (C2) with Eq. (C3): 〈(Sz(x))2〉 =
1 − 2〈φ2

a〉↑↑. Calculation parameters are D/J = 0.01, T/J = 0.02,
L = 100 spins.

in integrating the free-state degrees of freedom progressively,
starting from fluctuations associated with shorter spatial scales.
Consistently with Eq. (C3), this leads to renormalization of the
spin-Hamiltonian parameters [41,42]:

J → J
(
1 − 〈

φ2
a

〉
dq

)
,

(C4)
D → D

(
1 − 3

〈
φ2

a

〉
dq

)
,

with 〈
φ2

a

〉
dq

= T

2πJ

1

q2 + c2
dq. (C5)

The term c2 at the denominator is usually neglected to facilitate
the analytic treatment; the error due to this approximation will
be compensated by a proper choice of cutoff at which the
renormalization procedure stops. It is convenient to pass to
the real space through the substitution λ = 1/q so that the
renormalization flux takes the form

J (λ + dλ) = J (λ)

(
1 − T

2πJ (λ)
dλ

)
,

(C6)

D(λ + dλ) = D(λ)

(
1 − 3

T

2πJ (λ)
dλ

)
.

The integration of the first differential equation is straightfor-
ward and gives J (λ) = JZ(λ), with Z(λ) = 1 − T λ/(2πJ )
and J being the original, bare exchange constant appear-
ing in Hamiltonian (1). Taking into account that dZ(λ) =
−T dλ/(2πJ ), the second equation takes the form

dD(λ)

D(λ)
= 3

dZ(λ)

Z(λ)
⇒ D(λ) = DZ3(λ), (C7)

where, again, D is the original, bare anisotropy constant
and D(λ) the renormalized one. The cut-off λc at which the
renormalization stops can be chosen in order that the Gaussian
result for an infinite system, 〈φ2

a〉∞ = T/Edw, is recovered at
low temperature, namely, λc = 2πJ/Edw = π/c. The whole
renormalization is meaningful as long as Z(λc) > 0, that is for
T < Edw. This is not a problem because the requirement that

the DW free energy be positive, F � 0, is generally more
strict.

APPENDIX D: SCALING OF THE
CORRELATION LENGTH

In this appendix, we describe the way in which a semi-
analytical expression for the correlation length was deduced.
As mentioned in the main text and shown in Fig. 3, a better
agreement between F given in Eq. (33) and numerical
results is obtained by introducing the renormalized parameters
D(λc) and c(λc) only in the argument of the logarithm.
Considering that D(λc) = D Z3(λc) and c(λc) = c Z(λc), after
this substitution, the DW free energy takes the form

F = Edw − T ln(βEdwcLZ3 {1 + tanh[cZ(L + 1)/2]}2).

(D1)

We are interested in the value of L = L̄ for which F (L̄) = 0.
Let us set ξ̃ = cL̄ and ζ = βEdw so that our problem reduces
to an implicit equation in the variables ξ̃ and ζ . Then consider
the following map in the ξ̃ variable:

�it = Z(ζ )

2
(ξ̃it + c),

(D2)

ξ̃it+1 = eζ

ζZ3(ζ )
[1 + tanh(�it )]

−2 ,

which is parametrically dependent on ζ , with it = 1,2, . . .

representing the iteration index. From its definition, it follows
that Z(λc) = Z(ζ ) = 1 − 1/ζ . The initial condition of the
map (D2) is set to

ξ̃1 = eζ

4ζZ3(ζ )
. (D3)

The fixed point ξ̃∞ gives the sought for solution F (L̄) = 0.
For ξ̃1 � 1, it is �1 � 1 and tanh(�1) � 1, consequently.
In this case, the map converges already at the first iteration,
namely ξ̃1 � ξ̃∞. Numerically, one finds that the latter equiv-
alence holds within 1.4% for any D/J > 0.1.

To extend the validity of Eq. (D3) to high temperatures,
we used the trick—not fully justified—that Polyakov renor-
malization somehow stops when λc becomes of the order of
the actual number of spins aligned along the same direction:
L̄/2 − 3/2c. This number is evaluated placing, ideally, the
DW in the middle of a segment of length L̄; the contribution of
1/c misaligned spins lying roughly on half DW is subtracted
as well as that of 1/(2c) “blocked” spins at one boundary
[consistently with Eq. (C2)]. In terms of the reduced variable
entering the map (D2), λc = L̄/2 − 3/2c when ξ̃∞ = 2π + 3,
which occurs at ζ = 4.262. We are now in the position to
give an expression for the scaling function f (ζ ) describing
the universal behavior of the product c ξ , which is expected to
scale like c L̄, as a function of the scaling variable ζ = βEdw:

f (ζ ) =
{

eζ

4ζZ3(ζ ) for ζ > 4.262,

A0 ebζ+1 otherwise,
(D4)

with constants A0 = 0.3282 and b = 0.5496 determined by
requiring the continuity of ξ̃1 and its derivative with respect
to ζ . The exact relation between the scaling function f (ζ )
and ξ computed numerically can only be obtained by fitting
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FIG. 7. (Color online) Transfer-matrix calculation. Domain-wall
free energy as a function of temperature obtained with F =
−T ln(Z↑↓/Z↑↑) (squares) or by means of Eq. (E1) (blue, short-
dashed). The averaged differences EJ (exchange energy, upper
green curve) and ED (anisotropy energy, lower magenta curve) are
also plotted. Computation parameters are L = 20 and D/J = 0.1.

a constant prefactor (see Fig. 3); this turns out to be of the
order of the Euler constant, therefore we can reasonably set
the equivalence c ξ � f (ζ )/e.

APPENDIX E: ALTERNATIVE CALCULATION OF THE
DW FREE ENERGY IN A SPIN CHAIN

Given the general relation ∂(βF )/∂β = 〈H〉, the free
energy is usually evaluated as

F (β) = β0

β
F (β0) + 1

β

∫ β

β0

〈H〉 dβ (E1)

in Monte Carlo [104] or stochastic-LLG simulations [17,18].
As suggested in Ref. [17], the DW free energy can be
computed with the same approach provided that integration
is started from a temperature at which F (β0) is independent
of b.c. In order to prove the results presented in Fig. 3, we
repeated the calculation of F following this approach. The
initial temperature (in J units) was chosen as 1/β0 = 0.6,
for which the difference between the average energy 〈H〉
computed for ↑↑ and ↑↓ b.c. is about 2 × 10−5J . The free
energy computed integrating 〈H〉↑↓ − 〈H〉↑↑ for L = 20 is
displayed in Fig. 7 as a (blue) short-dashed line. It clearly
overlaps the points shown in Fig. 3 and replotted here for
convenience. It is worth mentioning that while the accuracy of
Eq. (E1) is bound to repeating the computation at sufficiently
small temperature steps (dβ = 0.01 for the present case), the
formula F = −T ln(Z↑↓/Z↑↑) can be used independently
of any constraint. In Fig. 7 the two independent contributions
to 〈H〉↑↓ − 〈H〉↑↑ coming from the exchange (EJ ) and
anisotropy (ED) energies are also plotted. The irregular
behavior observed at the lowest temperatures is associated with
numerical instabilities, typical of the transfer-matrix technique
in the limit T → 0.

APPENDIX F: SPIN PROFILE IN LATERALLY
CONSTRAINED DOMAIN WALLS

Here, we propose again an analytic derivation of the DW
profile for finite systems [46,105], which employs a continuum

formalism, and check its results against numerical calculations
on a discrete lattice. We first consider the DW profile for an
infinite chain with ↑↓ b.c.. Since for T = 0 one has �n(x) =
�S(x), the minimum-energy profile given in Eq. (18) can be
obtained from Hamiltonian (2). The latter in polar coordinates
�S ≡ (sin θ cos ϕ, sin θ sin ϕ, cos θ ) reads

H =
∫

J

2
[(∂xθ )2 + sin2(θ ) (∂xϕ)2] dx

−
∫

[D cos2(θ ) + Dx sin2(θ ) cos2(ϕ)] dx + const.

(F1)

The intermediate anisotropy Dx such that 0 < |Dx | < |D| has
been introduced for the sake of generality. The profile that
minimizes the functional in Eq. (F1) with respect to θ (x) and
ϕ(x) is the solution to the following Euler–Lagrange equations:

J∂2
x θ = J sin θ cos θ (∂xϕ)2 + 2D̃ cos θ sin θ,

J sin2(θ )∂2
xϕ + 2J sin θ cos θ∂xθ∂xφ (F2)

= 2Dx sin2(θ ) sin ϕ cos ϕ

[where D̃ = D − Dx cos2(ϕ)], compatible with ↑↓ b.c., that
is,

cos [θ (x)] = − tanh[c(x − x0)],

ϕ(x) = ϕ0 = 0,
π

2
,π,

3π

2
,

(F3)

with the more general c =
√

2D̃/J than in the main text.
The choice of ϕ0 depends on the sign of the intermediate
anisotropy. For Dx > 0, one has ϕ0 = 0,π (Néel DW), while
for Dx < 0, it is ϕ0 = π/2,3π/2 (Bloch DW). Note that in
both cases there exist two degenerate solutions that correspond
to opposite chirality of the DW [46]. The energy associated
with the profile (F3)—with respect to a uniform ground state—
is Edw = 2

√
2D̃J − Dx .

A helpful, well-established [21] analogy consists in inter-
preting x as “time” and θ as “spatial coordinate.” Then the first
Euler-Lagrange equation in Eq. (F2) describes the motion of
a classical particle of “mass” J moving in a potential V (θ ) =
D cos2(θ ) + Dx sin2(θ ) cos2(ϕ0) (ϕ = ϕ0 has been assumed).
The “particle energy”

ε = J

2
(∂xθ )2 + D̃

2
cos(2θ ) (F4)

is a constant of integration and it is univocally defined by the
b.c.

θ (0) = 0,
(F5)

θ (L + 1) = π ,

consistent with Fig. 1. For the infinite chain θ (−∞) = 0 and
θ (∞) = π , which yields ε = D/2, namely, ∂xθ = 0 at the
boundaries. For finite chains, instead, one expects ε > D/2,
i.e., a nonvanishing derivative at the boundaries. We will see
that this condition is necessary to develop a continuum model
for finite chains [it guarantees the convergence of the elliptic
integrals in Eqs. (F6) and (F7)]. Integration of Eq. (F4) gives
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the following implicit equation for the DW profile:

x =
√

J

D̃

∫ θ

0

dθ ′√
2ε

D̃
− cos(2θ ′)

, (F6)

where the b.c. θ (0) = 0 has been used. The second b.c. in
Eq. (F5) implies

L + 1 = 2

√
J

2ε + D̃
K
(√

2D̃

2ε + D̃

)
, (F7)

K being the complete elliptic integral of the first kind. This
equation can be solved numerically to deduce ε. The whole
model holds for broad DWs, c � 1, when the continuum
limit is appropriate. Numerical instabilities are expected for
ε � D̃/2, when integrals diverge. Assuming that the DW
is centered at (L + 1)/2 with θ [(L + 1)/2] = π/2, the spin
profile can also be computed as

x = L + 1

2
−
√

J

D̃

∫ π/2

θ

dθ ′√
2ε

D̃
− cos(2θ ′)

, (F8)

which solves the possible numerical divergence at the bound-
aries. Though Eq. (F8) only applies to x � (L + 1)/2, the
other half of the profile can be deduced from the property
θ (L + 1 − x) = π − θ (x). For very short chains, the constant
of integration is approximately ε = J (∂xθ )2/2 [meaning that
in Eq. (F4) the derivative dominates over the cosine term also
at boundaries]. As a consequence, the condition (F7) takes the
form

L + 1 =
√

J

2ε

∫ π

0
dθ , (F9)

which gives ε = J (π/(L + 1))2/2, i.e., the derivative ∂xθ is
constant over the whole chain and takes the value of the
smallest wave vector q allowed in the reciprocal space. The
spin profile can be computed analytically:

θ (x) = π

L + 1
x ⇒ Sz(x) = cos

(
π

L + 1
x

)
. (F10)

The above profile corresponds to a single harmonic. In Fig. 8,
the spin profile obtained with different methods (at T = 0)
for two different chain lengths is shown. The harmonic
approximation is satisfactory for L = 6 but, as expected, does
not reproduce the discrete-lattice calculation for L = 150 (not
shown).

Discrete-lattice calculation. In the case of a discrete chain,
a recursive formula (nonlinear map) for the computation of the
spin profile was proposed in Refs. [63–65]. The starting point
is the DW Hamiltonian

Hdw = J

L∑
i=0

[1 − cos(θi+1 − θi)] +
L+1∑
i=0

D sin2(θi), (F11)

where the decomposition

�Si · �Sj = cos(θi) cos(θj ) + sin(θi) sin(θj ) cos(ϕi − ϕj )

(F12)
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FIG. 8. (Color online) DW spin profile obtained with different
methods for D/J = 0.05, yielding c−1 ≈ 3.16. Nonlinear map and
continuum approach produce the same spin profile for both L =
6, 150. For L = 6, the harmonic approximation given by Eq. (F10) is
also accurate.

with ϕi = ϕ0 was used. To find the profile, Hdw has to be
minimized:

∂Hdw

∂θi

= 0 , 0 < i < L + 1, (F13)

which yields

J sin(θi − θi−1) − J sin(θi+1 − θi) + D sin(2θi) = 0.

(F14)
The nonlinear map is built as follows:

s̃i+1 = sin(θi+1 − θi) , (F15)

so that

s̃i+1 = s̃i + D

J
sin(2θi) (F16)

and

θi+1 = θi + arcsin(s̃i+1) . (F17)

The procedure gives a unique solution when the boundary
conditions are inserted

θ0 = 0, θL+1 = π , (F18)

and the first step is given, θL = π − δ. The difficulty of the
procedure is to find the correct value of δ that satisfies the
boundary conditions (F18). In practice, one tries different
values of δ until |θ0| is smaller than a preset threshold.
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However, this procedure gets numerically unstable for long
chains. For L odd, one can circumvent the problem by letting
the iteration start at the DW center, where θ(L+1)/2 = π/2 and
θ(L+3)/2 = π/2 + δ. The more dramatic misalignment between
two adjacent spins occurs at the DW center. Therefore here the
iteration step δ can be defined more easily. After a certain
iteration ī, all the spins characterized by a lattice index i > ī

are assumed to point along the same direction as the boundary,
θi = π . The configuration of spins lying on the other side of
the DW is obtained from the condition

θL+1−i = π − θi, (L + 1)/2 < i � L + 1. (F19)

Figure 8 shows that the results obtained with the nonlinear
map (for a discrete lattice) and those computed with the
continuum formalism [by means of Eqs. (F7) and (F8)] are
not distinguishable.

APPENDIX G: Zϕ0 CONTRIBUTION AND DW CHIRALITY

With a similar strategy followed to obtain Eq. (58), the
contribution due to the bound state with vanishing energy
associated with degeneracy in ϕ0 can be evaluated. Still from
Eq. (26) it follows that bϕ0,qy

= ϕ0(qy)
√

2/c. The correspond-
ing factor in the partition function is transformed accordingly:

Zϕ0 =
∫

�
ϕ0,qy

dbϕ0,qy
e−βεϕ0 ,qy |bϕ0 ,qy |2

=
(

2

c

)Ly/2 ∫
�
qy

dϕ0(qy) exp

[
−βJ

c
q2

y |ϕ0(qy)|2
]
.

(G1)

Establishing the same analogy as before, with a “stiffness”
2J/c, a contribution equivalent to Eq. (58) is recovered, i.e.,
Zϕ0 = Zx0 . On a more physical basis, the Boltzmann weight

in Eq. (G1) may be thought of as arising from an XY -model
Hamiltonian,

Hxy = −2J

c

∑
y

cos[ϕ0(y + 1) − ϕ0(y)] + 2J

c
Ly

= −2J

c

∑
y

�eϕ0 (y + 1) · �eϕ0 (y) + 2J

c
Ly, (G2)

involving the ϕ0 angles of different arrays of spins, labeled
by y. From the second line, it is clear that Hxy describes the
effective coupling between chirality vectors of neighboring
chains. Along this line, Eq. (G1) can equivalently be written
as

Zϕ0 �
(√

2

c
e−2βJ/c

)Ly
∫ π

−π

dϕ0(1) . . . dϕ0(Ly)

× exp

{
2βJ

c

∑
y

cos[ϕ0(y + 1) − ϕ0(y)]

}
. (G3)

In terms of relative angles δy = ϕ0(y + 1) − ϕ0(y) (and as-
suming Ly + 1 � Ly), the above expression takes the form

Zϕ0 =
(√

2

c
e−2βJ/c

)Ly
[ ∫ π

−π

dδye
2βJ

c
cos(δy )

]Ly

=
[

2π

√
2

c
e−2βJ/c I0

(
2βJ

c

)]Ly

, (G4)

where I0(κ) is the modified Bessel function of the first kind.
For 2βJ/c � 1 (low temperatures), it is I0(κ) � eκ/

√
2πκ

and Zϕ0 = Zx0 is recovered again. For the sake of simplicity,
this equivalence has been assumed in the calculation of the
DW free energy for the 2D case [see Eq. (62)].
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Yakhmi, and W. Haase, Inorg. Chem. 51, 9983 (2012).

[49] R. Ishikawa, K. Katoh, B. K. Breedlove, and M. Yamashita,
Inorg. Chem. 51, 9123 (2012).

[50] M. Balanda, M. Rams, S. K. Nayak, Z. Tomkowicz, W. Haase,
K. Tomala, and J. V. Yakhmi, Phys. Rev. B 74, 224421
(2006).

[51] W.-X. Zhang, R. Ishikawa, B. Breedlove, and M. Yamashita,
RSC Adv. 3, 3772 (2013).

[52] A. R. McGurn and D. J. Scalapino, Phys. Rev. B 11, 2552
(1975).

[53] M. Blume, P. Heller, and N. A. Lurie, Phys. Rev. B 11, 4483
(1975).

[54] R. Pandit and C. Tannous, Phys. Rev. B 28, 281 (1983).

[55] A. Vindigni, A. Rettori, M. G. Pini, C. Carbone, and P.
Gambardella, Appl. Phys. A 82, 385 (2006).

[56] U. Nowak, R. W. Chantrell, and E. C. Kennedy, Phys. Rev.
Lett. 84, 163 (2000).

[57] X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, Phys.
Rev. Lett. 96, 067208 (2006).

[58] H. W. Wyld, Mathematical Methods of Physics (Benjamin,
Massachusetts, USA, 1976).

[59] M. E. Fisher, Am. J. Phys. 32, 343 (1964).
[60] A. H. Stroud, Approximate Calculation of Multiple Integrals

(Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1971).
[61] A. D. McLaren, Math. Comp. 17, 361 (1963).
[62] M. Abramowitz and I. E. Stegum, Handbook of Mmathematical

Functions (Dover, New York, USA, 1970).
[63] L. Trallori, P. Politi, A. Rettori, M. G. Pini, and J. Villain, Phys.

Rev. Lett. 72, 1925 (1994).
[64] A. Rettori, L. Trallori, P. Politi, M. G. Pini, and M. Macciò,

J. Magn. Magn. Mater. 140–144, 639 (1995).
[65] L. Trallori, M. G. Pini, A. Rettori, M. Macciò, and P. Politi,
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