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Nature of the ferromagnetic ground state in the Mn4 molecular magnet

S. V. Streltsov,1,* Z. V. Pchelkina,1,2 D. I. Khomskii,3 N. A. Skorikov,1 A. O. Anokhin,1 Yu. N. Shvachko,1 M. A. Korotin,1

V. I. Anisimov,1,2 and V. V. Ustinov1

1Institute of Metal Physics, S. Kovalevskoy St. 18, 620990 Ekaterinburg, Russia
2Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia

3II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany
(Received 9 September 2013; revised manuscript received 15 January 2014; published 30 January 2014)

Using ab initio band-structure and model calculations, we studied magnetic properties of one of the Mn4

molecular magnets [Mn4(hmp)6], where two types of the Mn ions exist: Mn3+ and Mn2+. The direct calculation
of the exchange constants in the GGA + U approximation shows that in contrast to a common belief, the strongest
exchange coupling is not between two Mn3+ ions (Jbb), but along two out of four exchange paths connecting
Mn3+ and Mn2+ ions (Jwb). Within the perturbation theory, we performed the microscopic analysis of different
contributions to the exchange constants, which allows us to establish the mechanism for the largest ferromagnetic
exchange. In the presence of the charge order, the lowest in energy virtual excitations, contributing to the
superexchange, will not be those across the Hubbard gap ∼U , but will be those between the Mn3+ and Mn4+

ions, which cost much smaller energy V (�U ). Together with strong Hund’s rule coupling and specific orbital
order, this leads to large ferromagnetic exchange interaction for two out of four Mn2+-Mn3+ pairs.
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I. INTRODUCTION

The magnetic materials are so ubiquitous and essential for
plenty of devices used in the everyday life that their properties
are just taken for granted. The refrigerator magnets, medical
implants, loudspeakers, magnetic resonance imaging scanners,
magneto-optical disks, electrical motors, and generators, etc.:
all these devices use permanent or nonpermanent magnets. Yet,
such an ancient and customary phenomenon as magnetism
offers plenty of amazing new aspects. One of them is the
molecule-based magnetism discovered about two decades
ago [1].

It was revealed that single-molecule magnets (SMMs) and
single-chain magnets having large spin and strong easy-axis
anisotropy can self-assemble into two- and three-dimensional
(2D and 3D) networks. This gives a great hope that one bit of
information could be stored on a single molecule [2]. The new
multidisciplinary field developed at the interface of chemistry
and solid-state physics was triggered by the finding that SMMs
exhibit both classical and exotic quantum magnetic proper-
ties [3]. Challenged by the promising molecular spintronics
and quantum computing applications, sophisticated SMMs
based not only on 3d transition metals but also on the 4d

and even on the lanthanide and actinide elements were devel-
oped [4–7]. The theoretical studies have mostly concentrated
on the description of the resonant tunneling experiments [8,9],
ab initio simulations [10–12], and investigation of the role of
the correlation effects [13].

The single-molecule magnets consist of a core and bridging
polynuclear complexes. The physical insight into the magnetic
interactions within the core is essential for both fundamental
and technological development. At present, the values of
the exchange constants in SMMs are typically estimated
by the fitting of the experimental magnetic susceptibility
to some solution of the Heisenberg model. There are a
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number of deficiencies in such a strategy mainly related
with the large number of fitting parameters and sometimes
with an arbitrariness in the choice of the model Hamiltonian,
which in general must include not only different direct
and superexchange interactions, but also magnetocrystalline
anisotropy, Dzyaloshinskii-Moriya terms, etc.

In this paper, we calculate the exchange constants
in one of the Mn4 molecular magnets {[Mn4(hmp)6

(NO3)2FeNO(CN)5]·4CH3CN} with two types of Mn ions
(Mn2+ and Mn3+) having “butterfly” geometry. Experimen-
tally, it is established that the ground state of this molecule is
ferromagnetic. It is commonly assumed that there are two
exchange interactions in the Mn4 molecule magnets: Jbb

(body-body) between two Mn3+ ions and Jwb (wing-body)
between Mn2+ and Mn3+ ions (see Fig. 1, where J1 and J2

are two different Jwb), both of which are ferromagnetic with
the first being much larger than the second [14]. The direct
calculations presented in this paper reveal that this accepted
picture is in fact incorrect: the dominant ferromagnetic
exchange is not Jbb, but Jwb, with two inequivalent Jwb being
very different. The magnetic susceptibility obtained by the
exact diagonalization method with the use of the calculated
exchange integrals agrees with experimental data.

The detailed microscopic analysis shows that there are
many exchange processes in the Mn4(hmp)6 molecular mag-
net, which partially compensate each other, but its magnetic
properties are mainly defined by two features of this system.
First of all, the Jahn-Teller distortions lead to a specific orbital
order, which in turn makes two exchange paths between Mn2+
and Mn3+ ions inequivalent. Second, the charge order strongly
modifies the exchange processes between Mn ions of different
valences and favors ferromagnetic exchange coupling. The
results obtained allow us not only to describe magnetic
properties of the Mn4(hmp)6 molecular magnet, but can be
applied to other systems, including transition-metal oxides,
with a charge-ordered ground state. In conclusion, we suggest
some recipes to increase the value of the ferromagnetic
exchange in the Mn4 molecule magnets on the basis of the
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FIG. 1. (Color online) A fragment of the Mn4 crystal structure is
shown. The Mn2+ ions (Mn1 and Mn2) are shown as gray, Mn3+ (Mn3
and Mn4) as green, O as blue, and N as brown balls. Arrows show
the direction of the Jahn-Teller elongation of the Mn3+O6 octahedra.
The path for the “body-body” exchange coupling is labeled as Jbb,
while two different “wing-body” exchange integrals are denoted via
J1 and J2.

microscopic model developed in this study. We believe that
the strategy presented here will be useful for other SMMs.

II. CRYSTAL STRUCTURE AND CALCULATION DETAILS

The crystal structure for system [Mn4(hmp)6(NO3)2

(H2O)2](ClO4)2·4H2O, abbreviated as Mn4(hmp)6 in what
follows, was taken from Ref. [15]. The main building block
of Mn4(hmp)6 is the core consisting of four Mn ions (two
Mn2+ and two Mn3+) and surrounding ligands shown in Fig. 1.
Since Mn3+ are Jahn-Teller active ions, the ligand octahedra
surrounding them are strongly distorted. It was shown in
Ref. [16] that in the case of identical ligands, the elastic
interaction favors a parallel order of the elongated Mn-O
bonds in the Jahn-Teller octahedra having a common edge.
Surprisingly, this is also the case in Mn4(hmp)6.

Note right away that for the J2 bonds (Mn1-Mn4 and Mn2-
Mn3), the long Mn3+-O bonds, shown in Fig. 1 by broad
arrows, lie in the plane of corresponding Mn1-O-Mn4-O and
Mn2-O-Mn3-O plaquettes, whereas for the bonds J1 (Mn1-
Mn3 and Mn2-Mn4), these long bonds are perpendicular to
such plaquettes. As we show in the following, this will finally
give very different exchange constants J1 and J2.

The band-structure calculations were performed within the
density functional theory (DFT). This type of calculation was
proven to provide adequate description of many organic com-
pounds including mixed-valence systems [11,17,18], while
some restrictions related with the computation of the low-spin
states have to be mentioned [19]. The projector augmented
wave (PAW) method as implemented in the Vienna ab initio
simulation package (VASP) was used [20]. The exchange-
correlation potential was chosen to be in Perdew-Burke-

Ernzerhof (PBE) form [21]. Nonspherical contributions from
the gradient corrections inside the PAW spheres were included
in the calculation scheme. In order to take into account
strong electronic correlations on the Mn sites, the GGA +U

approximation (the generalized gradient approximation taking
into account onsite U Hubbard correction) was applied [22]
with the onsite Coulomb repulsion parameter U = 4.5 eV and
the intra-atomic Hund’s rule exchange JH = 0.9 eV [23]. The
spin-orbit coupling was not taken into account in the present
calculations, so that the effects related to this interaction (such
as, e.g., the single-ion anisotropy) were not considered.

The mesh of 8 k points was used in the course of the
self-consistency. The integration of the bands was performed
by the tetrahedron method with the Blöchl corrections [24].
The magnetic susceptibility was calculated using the exact
diagonalization technique of the Heisenberg model

Ĥ = 2Jbb
�̂S3 �̂S4 + 2J1( �̂S1 �̂S3 + �̂S2 �̂S4) + 2J2( �̂S1 �̂S4 + �̂S2 �̂S3) (1)

implemented in the ALPS package [25]. The exchange con-
stants Jbb, J1, and J2 were calculated from the total energies of
four different magnetic configurations as discussed in Sec. III.
The numeration of the spins and Mn ions in Eq. (1) and Fig. 1
is the same.

III. RESULTS OF THE CALCULATIONS AND
COMPARISON WITH EXPERIMENT

The total and partial density of states (DOS) obtained in
the GGA +U calculation for the fully ferromagnetic order
[Fig. 2(a)] are presented in Fig. 3. One may see that the top

FIG. 2. (Color online) Magnetic configurations used for the
exchange-coupling calculations.
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FIG. 3. (Color online) The total and partial density of states
(DOS) of the Mn4 obtained in the ferromagnetic GGA + U calcula-
tion. The positive (negative) values correspond to the spin-up (-down)
states. The Fermi energy is in zero.

of the valence band is formed mostly by the O 2p states with
admixture of the N 2p, Mn3+ and Mn2+ 3d states. The lower
Hubbard bands corresponding to the 3d states of the Mn3+
and Mn2+ ions are in the range from −5 to ∼−2 eV. The
magnetic moments on the Mn2+ and Mn3+ were found to be
4.6μB and 3.7μB , respectively. The deviations from the ionic
values (5μB and 4μB ) are related with the hybridization and
covalency effects, which result in a transfer of a part of the
spin density to the ligands. Similar effects were found in many
other systems based on the transition-metal ions [26,27]. The
lowest total energy corresponds to the magnetic configuration,
when all Mn ions are ordered ferromagnetically.

As was already mentioned, typically only two exchange
constants Jbb and Jwb are considered in the analysis of the
magnetic properties of the Mn4 molecular magnets [15,28].
In Mn4(hmp)6, Jwb is the exchange constant between Mn2+
and Mn3+, and Jbb between two Mn3+. However, a close
inspection of the available crystal structure [15] shows that
there are two different distances between the Mn2+ and Mn3+
ions: d1(Mn2+ − Mn3+) = 3.28 Å, and d2(Mn2+ − Mn3+) =
3.34 Å, which may result in two different exchange couplings
Jwb. In order to check this hypothesis, we calculated total
energies of four magnetic structures presented in Fig. 2,
which allows us to extract three different exchange constants:
J Calc

bb = −0.3 K, J Calc
1 = −6.3 K, and J Calc

2 = −0.5 K, all of
which are ferromagnetic. Here, J1 and J2 are two inequivalent
Jwb exchange couplings, which are shown in Figs. 1 and 2.
This result is quite in contrast to the common opinion that Jbb

must be much larger than any of Jwb.

The conventional assumption (|Jbb| > |Jwb|) was justified
by two arguments. First of all, the Mn-Mn distance along
the diagonal (3.20 Å in the present system) is much smaller
than along the edges of the Mn4 rhombus. Since the exchange
constant in the simplest case [29]

J ∼ t2
dd

U
(2)

and the hopping integral for the d orbitals (tdd ) is supposed to
be inversely proportional to the distance between ions tdd ∼
1/r5 [30], this viewpoint seems to be justified. However, the
expression for the superexchange interaction in a particular
situation can be quite different from Eq. (2). The detailed
analysis performed in Sec. IV shows that for the given system,
J1 is indeed expected to be ferromagnetic and its absolute
value is much larger than |J2| and possibly larger than |Jbb|.

Second, the values of the exchange constants are typically
extracted from the fitting of the experimental magnetic
susceptibility χ (T ) by the theoretical curve obtained from
the solution of the Heisenberg model [15,31]. There are
three (g, Jbb, and Jwb) or even four (g, Jbb, J1, J2) fitting
parameters, which results in an arbitrariness of this procedure.
Instead of the fitting we first performed a direct calculation of
the temperature dependence of χT (as described in Sec. II)
with the exchange constants obtained in the band-structure
calculations. The single variable parameter (g factor) was
chosen to fit the high-temperature tail of χT and it was found
to be equal to 1.86.

One may see from Fig. 4 that there is a reasonable agreement
between calculated and experimental curves for B = 0.01 T.
One may improve this agreement in the range from 20 to
100 K performing the fit to experimental data using calculated
in the GGA +U exchange constants as a starting point. This
yields J fit

bb = −0.01 K, J fit
1 = −6.5 K, J fit

2 = −0.2 K, and
g = 1.87 K. Further improvement can be achieved by adding
the single-ion anisotropy (via DS2

z terms for the Jahn-Teller
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FIG. 4. (Color online) Temperature dependence of the experi-
mental and calculated χT . All theoretical curves were obtained by
exact diagonalization of the isotropic exchange interaction described
by Hamiltonian (1) with the exchange constants, obtained in the
GGA + U approximation, or using fitting taking into account or
neglecting the single-ion anisotropy (D). χ is the molar susceptibility.
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Mn3+ ions) into the fitting scheme. This gives J
fit,D
bb = −0.3 K,

J
fit,D
1 = −3.6 K, J

fit,D
2 = −0.4 K, Dfit,D = −0.18 K, and

g = 1.94 K. Thus, while J obtained in this “educated” fitting
differs from those calculated in the GGA +U , the main result
is the same: J1 is the largest exchange constant. The difference
between theoretical and experimental data for T < 10 K is
related with experimental features of the measurements and
Mn4(hmp)6 samples, as discussed in Sec. III A.

A. Low-temperature behavior of χ (T )T :
Experimental difficulties

Figure 5 discloses the details of measurements for
the dried (aged) polycrystalline sample [Mn4(hmp)6

(NO3)2FeNO(CN)5]4CH3CN in Ref. [15]. Due to low-spin
state S = 0, the Fe2+ ion does not contribute to the total
paramagnetic response. Temperature dependencies for the
product χT are obtained at magnetic fields B = 0.01 and
0.20 T. The measurements are performed at cooling from
300 down to 2.0 K and at heating to ambient conditions.
The temperature axis in Fig. 5 is in logarithmic scale for
better view of low-temperature behavior. While treatment of
the mass of solvent acetonitrile molecules was subtracted
from the total molecular weight, so that it was taken as
1208.448 g/mol. Solvent losses are a characteristic feature of
Mn4(hmp)6 structures. Fresh crystals lose solvent with time,
making the molar weight out of control, so that the error may
reach 12%. Therefore, in this paper, the data for dry (aged)
crystals left in the open dry air for several months were used.

One may see in Fig. 5 that the position of the low-
temperature maximum of χT depends on the applied magnetic
field B: it shifts to higher temperatures with increase of B. Such
a behavior is common for most of the high-spin molecules
and molecular magnets [3]. The origin of the maximum and
its position in particular is not related with the microscopic
characteristics of the exchange-coupled core. There are a few
possible explanations of the low-temperature behavior of the
experimental χT curve.

FIG. 5. (Color online) The experimental χT vs T data obtained
for the polycrystalline sample in different magnetic fields B = 0.01
and 0.20 T for the cooling (DOWN) and heating (UP) regimes. The
solid lines are guided by the eye.

First of all, in paramagnetic systems, the Curie law is
only observed at temperatures kBT � gμBSH . For T �
Tp = gμBSH , thermal excitations are ineffective in providing
dynamic Boltzmann equilibrium on higher Zeeman levels and
the lowest level becomes “overpopulated.” In theory, it means
that one can not expand the Brillouin function in the Taylor
series at x � 1 (where x = gμBSH/kBT ) and get the Curie
law. In practice, the data points will not lay on the equilibrium
χ (T )T curve. For B = 0.2 T, where the maximum in χ (T )T
is first clearly observable, Tp = 2.4 K and hence for the
temperatures of order of Tp or lower the deviations from the
Curie law have to be observed. This is exactly what is seen in
Fig. 5. It is worthwhile mentioning that the stronger magnetic
fields shift this region of the “inapplicability” of the Curie law
to higher temperatures [32].

Second, there is no phase transition from correlated state
(with spins SMn3+ = 2 and SMn2+ = 5

2 ) to high-spin state
S = 9 for the individual Mn4(hmp)6 complex as well as for
other heterospin SMMs. Experimentally, there is no Curie
temperature that can be measured. There is a temperature
domain in which a crossover from a correlated paramagnetic
to a high-spin superparamagnetic state occurs in an individual
tiny single crystal. In this domain, both our Heisenberg model
and dynamic S = 9 approach are not applicable. However,
there is a blocking temperature Tb ∼ 1–2 K, below which every
complex in a tiny crystal becomes an anisotropic quantum
magnet. In the measurement starting from that low temperature
Tb, the magnetic response becomes quantitatively irreversible
and dependent on magnetic history due to magnetic anisotropy
of individual complex. In particular, this leads to a divergence
of field-cooled (FC) and zero-field-cooled (ZFC) χT curves,
as it happens in spin glasses. The FC-type curves prevail
in published data. A typical sample mass of order of 10
mg requires fields 1000 G and higher to get satisfactory
paramagnetic response at 300 K. For more than 40 various
Mn4(hmp)6 systems listed in Refs. [14,28,33], the experimen-
tal χ (T )T data were obtained at B > 0.1 T, so that a sharp
peak was present on every curve. In the experimental protocols,
χ (T ) measurements are performed at heating from helium to
ambient temperatures. They usually follow after magnetization
field measurements M(B), where the excursions to high
fields B = 5 to 7 T take place. The dependence of that
type inherits magnetic history of the sample and imports
excessive (or deficient) magnetization from the low- to higher-
temperature region. This makes a broader temperature domain
inappropriate for numerical analysis.

Third, the magnetic fields as low as ∼0.1 T are capable
to produce a texture in thin polycrystalline magnets. For
textured samples, the product χ (T )T reaches maximum at
higher temperatures. Ignoring the anisotropy, the maximal
χ (T )T values in the high-spin state are limited by 45 to
50 emu K/mol for g = 2.0 to 2.1, respectively. Note also that
the g factor for the S = 9 state differs from its average value
at high temperatures. As an example, a broad maximum of
42 emu K/mol at T ≈ 10 K was observed in polycrystals
of [Mn2Mn2(teaH)2(teaH2)2(O2CPh)4]·0.7MeCN·0.3EtOH
nearly isostructural to the similar system not revealing it [34].
That might be an indication of a texture rather than drastic
enhancement of exchange coupling.
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For analysis, we select χ (T )T data points measured at B =
0.01 T in order to avoid the the effect of the “overpopulation”
of the lowest Zeeman level and reduce Tp as described above.
Two sets of data “at cooling” and “at heating,” presented
in Fig. 4, allow us to estimate the difference between these
regimes. Down to 20 K, both data coincide with the accuracy
of 3.5%. At 2.0 K, the data diverge reaching 48.1 emu K/mol
“at cooling” and 53.9 emu K/mol “at heating.” The values
14.3 emu K/mol at 300 K are in agreement with other results
reported on Mn4(hmp)6 structures and with the theoretical
value 13.90 emu K/mol for g =1.94. The value of the effective
activation barrier �eff = |Deff|S2 = 17.9 K extracted from the
ac data in Ref. [4] (�eff , τ0 = 4.89 × 10−9 s , parameters of
Arrhenius law) fits in the range of published data usually found
around 15–23 K (see Refs. [5–7] in Ako et al. [34]). This gives
an estimate for the effective ZFS constant Deff = −0.2 K in the
S = 9 state. In the temperature domain 1.8–3.5 K (T > Tb),
the interplay of thermal and quantum relaxation processes of
the magnetization occurs. The thermal barrier is therefore
“short-cut” by the quantum tunneling of the magnetization,
and the obtained Deff value gives the lowest estimate for the
theoretical parameter. The upper estimate for DS=9 may reach
−0.4 K.

IV. MICROSCOPIC MECHANISM OF THE FM
EXCHANGE COUPLING

In order to understand why J1 is much larger than J2 and
Jbb, one needs to find all the contributions to these exchange
integrals. It is especially nontrivial to explain the difference
between J1 and J2 because both constants describe coupling
between Mn3+ and Mn2+ ions in a similar geometry.

We will consider the superexchange coming from the
virtual hopping of d electrons via p states of ligands, and use
the fourth order of the perturbation theory. The perturbation
resulting to different energies of ↑↑ and ↑↓ states is given by
the hopping integral t . The fourth order of the perturbation
theory means that we are considering only those paths which
consist of four hoppings and the initial and final states are the
same. The energy difference between initial and excited states
(which appear while electrons hop) define the denominators
in Eqs. (3)–(7). The numerators in Eqs. (3)–(7) are given by
the corresponding hopping integrals tpd between the ligand p

and Mn d orbitals with different coefficients, which take into
account the symmetry of the hoppings, number of the hoppings
of a given type, etc. The detailed description of this method
can be found elsewhere [29,35–37].

One needs to introduce the following parameters to find
explicit expressions for the exchange parameters: U is the
onsite Coulomb repulsion parameter, and �CT is the charge-
transfer energy (energy of the excitation from the ligand 2p

orbitals to the 3d shell of a transition-metal ion). In general,
�CT depends both on the valence state of the transition-metal
ion and type of the ligand [38,39]. For instance, according to
the result of Mizokawa, the charge-transfer energy for Mn2+
is �2+ ∼ 7 eV, which is much larger than in the case of the
Mn3+ ions, for which �3+ ∼ 4 eV [39].

According to the terminology of Ref. [29], there are
two important types of the exchange processes related with
delocalization and correlation effects. They are sketched

FIG. 6. (Color online) Two types of the contributions to the
superexchange according to the notations of Ref. [29].

in Fig. 6. The delocalization contribution to the exchange
interaction involves the transfer of the ligand p electron to
one of the Mn ions, while the d electron from another Mn
occupies the vacant place in the ligand p shell (after that, both
electrons must return to their initial places). The correlation
effects are related with the transfer of two p electrons to two
d sites on the right and on the left and then back.

For simplicity in the analysis, we will neglect the crystal-
field splitting between t2g and eg orbitals (which in general
is not small, ∼2 eV, in the case of the transition-metal ions)
and the splitting of the Mn3+ eg levels due to the Jahn-Teller
effect. These terms will effectively increase the denominators
in Eqs. (4)–(7).

A. Delocalization contribution to J1 and J2

There are two special features of the studied Mn4 molecular
magnet which must be taken into account to find the expression
for the delocalization contribution to the J1 and J2 exchange
constants.

First of all, the electron transfer from Mn3+ to Mn2+ (back
and forth) is quite different from the transfer from Mn2+ to
Mn3+ (back and forth). Neglecting the intra-atomic Hund’s
rule coupling (JH ) in the first case, the energies of the excited
states (with respect to the energy of the unperturbed state) are
�2+, 2U , and again �2+. So, this electron transfer is highly
unfavorable because it costs 2U , where U ∼ 4.5–8 eV [23,40].
In contrast, the second type of the electron transfer (from
Mn2+ to Mn3+ back and forth) costs neither 2U nor even
U , one only needs to spend the energy V . V is the energy
of transfer (excitation) of an electron from Mn2+ to Mn3+,
determined by the local coordination of these ions and by
the intersite Coulomb interaction. Note that this energy V is
much smaller than the onsite Coulomb (Hubbard) repulsion U ,
therefore, the process of the virtual transfer of an electron from
Mn2+ to Mn3+, leading to superexchange between these ions,
costs much less energy than that between the similar Mn ions,
Mn2+-Mn2+ and Mn3+-Mn3+, and also less than the transfer
in the pair Mn2+-Mn3+ in the opposite direction, which would
correspond to the “reaction” (Mn2+,Mn3+) → (Mn1+,Mn4+).
Correspondingly, this process of virtual hopping from Mn2+
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FIG. 7. (Color online) The pair of the t2g orbitals participating in
the superexchange interaction between Mn3+ and Mn2+ in the case
of the J1. There will be the second pair for the same ions, when the
orbitals are interchanged and hopping occurs via another common
ligand. The ligands are shown as light blue circles, Mn 3d orbital in
gray, and ligand 2p orbitals in blue. Here and in Figs. 8–10, arrows
show how the electrons move from one Mn to another.

to Mn3+ would give the largest exchange, which agrees with
our numerical results.

The intersite Coulomb interaction for Mn was estimated
to be ∼0.5 eV using constrained random-phase approxima-
tion [41]. The constrained local density approximation (LDA)
calculation for charge-ordered Fe3O4 (where the number of
the d electrons is just slightly larger than in our situation)
gives V = 0.18 eV [42]. One may expect that V � 2U in our
case of Mn4(hmp)6 as well. In effect, the second type of the
electron transfer (i.e., from Mn2+ to Mn3+) will dominate and
one may neglect the first type of the transfer (from Mn3+ to
Mn2+). This is shown in Figs. 7–10 by arrows.

Moreover, the electron transfer from Mn2+ to Mn3+ back
and forth costs also less charge-transfer energy since one needs
to spend �3+, and as it was mentioned above �3+ < �2+.
Thus, we see that the charge order strongly modifies the
electron-transfer processes (and exchange processes as it will
be shown below) and should be explicitly taken into account.

FIG. 8. (Color online) Two t2g/eg contributions to the superex-
change interaction between Mn3+ and Mn2+ in the case of the J1.
The antiferromagnetic contribution is presented in the left panel (a),
while ferromagnetic in the right panel (b). The ligands are shown
as light blue circles, half-filled Mn 3d orbital in gray, empty x2-y2

orbital in white, ligand 2p orbitals in blue. The long Mn3+-O is shown
in red.

FIG. 9. (Color online) Two t2g/eg contributions to the superex-
change interaction between Mn3+ and Mn2+ in the case of the J2.
The antiferromagnetic contribution is presented in the left panel (a),
while the ferromagnetic in the right panel (b). The ligands are shown
as light blue circles, half-filled Mn 3d orbital in gray, empty x2-y2

orbital in white, ligand 2p orbitals in blue. The long Mn3+-O is shown
in red.

Second, since the 3d shell in the case of the Mn2+ is half-
filled and in Mn3+ is close to half-filling, i.e., to the situation
where the energy gain due to the intra-atomic exchange
coupling is maximal, one needs to properly count the number
of the Hund’s rule constants JH for each electron-transfer
process. As we will see in the following, this will additionally
stabilize ferromagnetic contributions to the exchange coupling
between Mn3+ and Mn2+.

We start with the calculation of the contributions coming
from exchange coupling between t2g orbitals on Mn3+ and
Mn2+ ions. This term is nearly the same for J1 and J2 since
all considered orbitals are half-filled on all sites, while the
angle dependence of the hoppings can be neglected in the first
approximation:

J
t2g/t2g

1,2 = 2t4
pdπ

�2
3+(V + 4JH )

≡ J0. (3)

This contribution is antiferromagnetic and J0 > 0. The factor
2 appears because there are two pairs of the t2g orbitals, which
take part in this superexchange process (one of the pairs for
J1 is shown in Fig. 7, while the another one will act via the
second common oxygen).

FIG. 10. (Color online) The antiferromagnetic t2g/eg contribu-
tions to the superexchange interaction between Mn3+ and Mn2+ in the
case of the J2. The ligands are shown as light blue circles, half-filled
Mn 3d orbital in gray, ligand 2p orbitals in blue. The long Mn3+-O
is shown in red.
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The eg/eg contribution in the shared edge geometry is
expected to be small since the electrons are supposed to hop
via almost orthogonal ligand 2p orbitals [23] and will not be
considered here. In contrast, the cross terms from the t2g and
eg orbitals are of great importance. They will be different for
J1 and J2 because the single half-filled eg orbital of Mn3+ is
directed differently in the pairs providing J1 and J2 exchange
couplings.

There are two types of the t2g/eg contributions. One is the
hopping from the half-filled eg orbital of Mn2+ to the half-filled
t2g states of Mn3+ (t2g → eg) and back [see Fig. 8(a)]. These
terms are antiferromagnetic and the same for both J1 and
J2. However, there is also the “opposite” process, hopping of
eg → t2g , from Mn2+ to Mn3+ and back. Due to the Jahn-Teller
character of the Mn3+ ion, with its particular orbital occupation
[one eg electron of Mn3+ occupies the 3z2-r2 orbital, where
the local z axis is directed along the long Mn-O bonds (see
Fig. 1 and red bonds in Figs. 8 and 10)], the contribution of
this process would be different for J1 and J2. This is explained
in detail in the following.

We start with J1. If the local z axis is directed along the
longest Mn3+-O bond, then the x2-y2 orbital of Mn3+ must be
empty, while the 3z2-r2 orbital is half-filled. The expression
for the exchange coupling between the half-filled x2-y2 orbital
of Mn2+ and the half-filled xy orbital of Mn3+ is very similar
to Eq. (3) with the only difference that here one of the tpd

hoppings is of the σ symmetry. Since according to Ref. [43]
the hopping between the x2-y2 and px orbitals is (

√
3/2)tpdσ

in the given geometry and tpdσ ≈ 2tpdπ [30]:

J
xy/x2-y2

1 = 3

2

t2
pdπ t2

pdσ

�2
3+(V + 4JH )

= 3J0 (4)

[since exchange occurs via two oxygens, the prefactor equals
2(

√
3/2)2 = 3

2 ]. The orbitals providing this contribution are
shown in Fig. 8(a). The exchange coupling given by Eq. (4) is
antiferromagnetic.

The ferromagnetic contribution comes from the interaction
between the half-filled xy orbital of Mn2+ and the empty
x2-y2 orbital of Mn3+, which are shown in Fig. 8(b). Finding
the difference between total energies of ferromagnetic and
antiferromagnetic solutions in the perturbation theory, one gets
that

J
x2-y2/xy

1 = −3

2

t2
pdπ t2

pdσ 4JH

�2
3+V (V + 4JH )

= −12J0JH

V
. (5)

These types of the ferromagnetic terms described by the second
Goodenough-Kanamori-Anderson rule [29,36] are usually
quite small because instead of the small V there appears U ,
which is much larger. In effect, these contributions ∼1/U 2 are
considerably smaller than the conventional antiferromagnetic
superexchange, which is ∼1/U . This is one of the reasons
why the insulating transition-metal oxides are mostly anti-
ferromagnets [44]. Moreover, typically the ferromagnets are
the systems with the small U (YTiO3 [45], K2Cr8O16 [46],
Ba2NaOsO6 [47], etc.). Since, as was mentioned above, in the
present system V is less than U this term turns out to be quite
efficient. The multiplier 4JH , which appears in the numerator
in Eq. (5) due to the high-spin state of Mn ions, additionally
increases this contribution.

The t2g/eg contributions to the J2 can be obtained in a
similar manner. The antiferromagnetic coupling between the
x2-y2 orbital of Mn2+ and the t2g orbital is exactly the same
as in the case J1 [the difference is only in the notations: here,
the xz orbital is the active one, see Fig. 9(a)] and described by
Eq. (4).

The ferromagnetic contribution is also similar, but the
coefficients in expression for its value will be different. Due
to a different direction of the long Jahn-Teller Mn3+-O bond,
only one of the lobes of the empty x2-y2 orbital of Mn3+ ion
will be directed towards Mn2+ [see Fig. 9(b)]. As a result, the
ferromagnetic term will be just

J
x2-y2/xy

2 = −3

4

t2
pdπ t2

pdσ 4JH

�2
3+V (V + 4JH )

= −6J0JH

V
. (6)

In addition to the reduction of the ferromagnetic contribu-
tion for this pair (6) as compared to (5), there appears for this
bond (due to different direction of the long Mn3+-O bond) also
an antiferromagnetic contribution from the hopping between
the half-filled xz orbital of Mn2+ and the half-filled 3z2-r2

orbital of Mn3+, shown in Fig. 10:

J
3z2-r2/xz

2 = 2t2
pdπ t2

pdσ

�2
3+(V + 4JH )

= 4J0. (7)

Since an opposite hopping from 3z2-r2-Mn2+ to xz-Mn3+ is
also possible, the prefactor 2 appears in the last equation.
Thus, one may see that the ferromagnetic t2g/eg component
of J2 turns out to be suppressed due to a specific orbital
order induced by the Jahn-Teller distortions of the Mn3+O6

octahedra, while the antiferromagnetic one is enhanced.
Combining the above-mentioned contributions, one obtains

that

J1 =
(

4 − 12JH

V

)
J0, (8)

J2 =
(

5 − 6JH

V

)
J0. (9)

Thus, J1 is ferromagnetic if V < 3JH ∼ 2.7 eV. The esti-
mations of V mentioned in Sec. IV A definitely satisfied
this condition, so that J1, as well as J2, are expected to
be ferromagnetic and |J1| > |J2|. However, care should be
taken with V calculated in Refs. [41,42] since in the present
consideration V is not only the intersite Coulomb repulsion,
but it also includes the effects of the different local environment
of the Mn3+ and Mn2+ ions. In order to calculate V directly,
one may use the constraint calculations as proposed in
Ref. [42]. This lies beyond the scope of this paper. Here, we
only provide the upper limit for the value of V .

One may extract the unscreened value of V , recalculating
it as the center of the gravity difference for the 3d bands
of Mn3+ and Mn2+ in the LDA approximation. Since there
is a different number of the d electrons on these two ions,
there will be different contributions from the onsite Coulomb
repulsion U to these orbital energies. This correction can be
written as (U − JH )(nd − 1/2) [22] in the case of Mn ions,
where nd is the number of the d electrons per ion. Taking
into account this correction, we obtained the unscreened
value of V ∼ 2 eV, so that even in this situation J1 must
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be ferromagnetic. However, according to Koopmans’ theorem,
the orbital energies can not be considered as excitation energies
(in which we are interested), but are subjected to the orbital
relaxation and electron correlation effects, which are the
essence of the screening processes and which can be quite
efficient [48].

We would like to note that the presented above expres-
sions for the exchange integrals can only be used for the
qualitative understanding of the exchange processes in the
Mn4 molecular magnet. The ferromagnetic contributions from
the overlap between empty and half-filled orbitals would
be reduced by three factors. First of all, one needs to take
into account the crystal-field splitting (�CFS) between the t2g

and eg shells in an appropriate way, which will modify the
denominators in Eqs. (4)–(7) [e.g., in Eq. (4) one will need
to substitute �3+ → �3+ + �CFS]. Second, as is shown in
the Appendix A, there are antiferromagnetic terms related
with the correlation contribution to the exchange coupling
and these terms are especially important in the case of J2.
Third, there will also be an additional contribution coming
from the antiferromagnetic interaction between the half-filled
t2g orbitals and the “belt” of the 3z2-r2 orbital (i.e., r2 part)
through the p orbital. Corresponding hopping is not small and
equals tpdσ /2 [43]. This will provide additional contributions
to Eqs. (4), (5), and (7) and modify Eqs. (8) and (9), but still
leave the qualitative description of the exchange processes
correct.

Finally, it is worth mentioning that for the quantitative
estimation of different contributions, one needs to know
the exact values of the model parameters such as JH

and V .

B. Jbb exchange

The same delocalization and correlation effects will be
important for the exchange coupling between two Mn3+, i.e.,
for the Jbb exchange constant. However, the sign and the value
of the total exchange interaction may strongly depend on the
details of the crystal structure: the Mn-O, Mn-Mn distances
and the Mn-O-Mn bond angle. The detailed analysis of the Jbb

does not seem to add much here since first of all it represents
the usual superexchange consideration for two Mn3+ ions,
which can be found elsewhere (e.g., in Ref. [23]), and, second,
the value of Jbb is quite small.

V. CONCLUSIONS

In this paper, we performed ab initio band-structure calcula-
tions for the Mn4(hmp)6 molecular magnet within the density
functional theory (DFT) using the GGA +U approximation.
The exchange parameters for the Heisenberg model were
extracted from the total-energy calculations of several collinear
spin configurations. In contrast to a common belief, one of the
exchange constants for two pairs of the Mn3+ and Mn2+ ions
(so-called Jwb) turns out to be the largest J1 = −6.3 K. Two
other exchange couplings are J2 = −0.5 K (another two pairs
of Mn3+ and Mn2+ ions) and Jbb = −0.3 K (between the Mn3+
ions).

The microscopic analysis based on the fourth-order per-
turbation theory allowed us to establish the mechanism of

the strong exchange coupling along the J1 exchange path.
Conventional superexchange between two Mn ions in the edge-
sharing geometry is enhanced in Mn4(hmp)6 by the charge
order. The charge disproportionation leads to the situation
in which the lowest virtual excitations, contributing to the
superexchange, will not be those across the Hubbard gap
∼ U , but will be those between Mn3+ and Mn4+, which
cost much smaller energy: the energy V (� U ) stabilizing
the charge-ordered state. As a result, the exchange coupling
between the empty x2-y2 orbital of Mn3+ and the half-filled
t2g orbitals of Mn2+, according to the second Goodenough-
Kanamori-Anderson rule [29], turns out to be quite effective
and stabilizes ferromagnetic coupling along the J1 exchange
paths.

In addition to charge order, there is an orbital order
in Mn4(hmp)6, which also has influence on the exchange
interaction in this system. The direction of the long Jahn-Teller
Mn-O bond in the Mn3+O6 octahedra defines the orientation
of the empty x2-y2 orbital. This in turn regulates the absolute
values of the exchange coupling between different Mn3+ and
Mn2+ pairs making one of them (J1) larger than the other (J2).

It is also important that the energy of the first excited state in
the exchange process for the ferromagnetic state is reduced by
a strong intra-atomic Hund’s rule exchange coupling. This is
a feature of the Mn3+ ion with d4 electronic configurations
that has one empty 3d orbital and the energy difference
between (d ↑)5 and (d ↑)4(d ↓)1 states is 4JH . For any other
configuration (d3, d2, etc.), this energy difference between the
excited states, according to and against Hund’s rule, will be
smaller.

The exchange constants calculated in the GGA +U ap-
proximation were used for the solution of the quantum
Heisenberg model for the given geometry. The magnetic
susceptibility obtained by the exact diagonalization method
reasonably agrees with the experimentally observed data. This
additionally supports the results obtained by the DFT methods.
The agreement between theoretical and experimental data
may be further improved by “educated” fitting, i.e., fitting,
which uses exchange constants obtained in the GGA +U

approximation as a starting point. The account of the single-ion
anisotropy on the Mn3+ sites also makes the agreement better.
Although the exchange constants obtained by this fitting are
somewhat different from those calculated in the GGA +U

(J fit,D
bb = −0.3 K, J

fit,D
1 = −3.6 K, J

fit,D
2 = −0.4 K, Dfit,D =

−0.2 K), the general tendency is the same: J1 is the largest
exchange coupling.

One of the questions which arises is whether it is possible
to increase the values of the ferromagnetic exchanges in the
Mn4 molecular magnets, and what recipes one may provide
on the basis of the microscopic model developed in this study.
The substitution of all Mn ions by Co, Ni, Cu ions would result
in the absence of the empty eg orbitals, while changing Mn
on Ti or V one reduces the energy gain due to the Hund’s
rule coupling. From this point of view, the pair Cr3+ (t3

2g)
and Cr2+ (Jahn-Teller ion t3

2ge
1
g) could look more promising

if one could stabilize Cr2+ (which is usually not easy). One
may also expect some variations of the exchange constants
if the Fe4+ and Fe3+ instead of the Mn3+ and Mn2+ ions
will be used since the intersite Coulomb repulsion, which
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contributes significantly to the energy of the charge-ordered
state stabilization, was reported to be quite small for one of the
Fe compounds [42]. The substitution of the rare-earth elements
instead of the transition-metal ions may lead to a significant
gain in the Hund’s rule energy, but it will simultaneously
decrease the hopping integrals t .

Alternatively, one may try to use not 3d but 4d or 5d

elements. These typically have low-spin states with (most of)
electrons in the t2g shell and with eg states often empty and
much smaller U (than 3d counterparts). Then, one could expect
enhancement of ferromagnetic t2g → empty eg contribution.
Unfortunately, the crystal-field splitting between t2g and eg

levels for the 4d and 5d are usually larger, and also the
moments of respective ions are smaller than, e.g., those of
Mn2+, Mn3+ [17,49,50].

Yet another option, which can be proposed, is the sub-
stitution of the oxygen by another ligand, e.g., sulfur. The
charge-transfer energy �CT for the S2+ ions is much smaller
than for O2+ [38] so that it would be chemically possible to
substitute some of the oxygens by sulfurs. This may lead to an
increase of the exchange coupling.
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APPENDIX: CORRELATION CONTRIBUTION
TO J1 AND J2

Very similar analysis can be performed for the correlation
contributions to the J1 and J2 exchange parameters. Following,
we briefly discuss them and present some of the formulas.
Since as was mentioned in Sec. IV A the charge-transfer energy
from the O 2p to Mn2+ 3d shell (�2+) is much larger than from
the O 2p to Mn3+ 3d shell (�3+), one may take into account
only a part of the correlation contributions related with the
charge-transfer energy �3+, i.e., the processes, when the first
excitation occurs to the 3d shell of Mn3+. We will also neglect
the terms describing the exchange coupling via orthogonal p

orbitals, which are of order or (t4
pd/�

2
3+)[Jp

H/(�3+ + �2+ +
Upp)2], where J

p

H is the Hund’s rule coupling on the oxygen
ion, while Upp is the Coulomb repulsion between two holes in
the p shell of oxygen.

The correlation contributions from the half-filled t2g orbitals
will be antiferromagnetic and the same for J1 and J2:

J
t2g/t2g

1,2 ∼ 2t4
pdπ

�2
3+

1

(�3+ + �2+ + Upp)
. (A1)

In the case of J1, the terms describing the correlation exchange
between the empty x2-y2 orbital on the Mn3+ ion and the
half-filled t2g orbitals of the Mn2+ and between half-filled t2g

orbitals on the Mn3+ and the half-filled eg orbitals of the Mn2+
have different signs and nearly cancel each other out.

The direction of the Jahn-Teller distortion of the Mn3+O6

octahedra coincides with one of the Mn3+-O bond forming the
Mn3+-Mn2+ bond in the case of the J2 exchange coupling.
This upsets the delicate balance between ferromagnetic and
antiferromagnetic t2g/eg terms and makes this contribution
antiferromagnetic:

J
t2g/eg

2 ∼ 3

4

t2
pdπ t2

pdσ

�2
3+

1

(�3+ + �2+ + Upp)
. (A2)

This antiferromagnetic term additionally decreases the ferro-
magnetic contribution to J2 given in Eq. (6).
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Soc. 127, 17353 (2005).

[34] A. M. Ako, V. Mereacre, I. J. Hewitt, R. Clérac, L. Lecren,
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