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Topological magnetization jumps in a confined chiral soliton lattice
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We demonstrate that a finite-size chiral soliton lattice formed in a chiral helimagnet with fixed boundary
conditions exhibits magnetization jumps in a response to the magnetic field applied perpendicular to the chiral
axis. The imposed boundary conditions lead to confinement of topological charges and quantized spatial periods
of the soliton lattice. Building an envelope of the ground-state energies belonging to different topological sectors,
we find the magnetization jumps related with the level crossing. After numerically establishing the quantization
condition, we also develop a field-theoretical model to support the numerical results.
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I. INTRODUCTION

In recent years, chiral helimagnets, where antisymmetric
Dzyaloshinskii-Moriya (DM) interactions induce long-range
modulations of magnetic order, became a subject of active
experimental and theoretical investigations. The interest is
foremost aroused by an opportunity to observe stable magnetic
topological structures. They can be realized either as whirls
of magnetization (the so-called skyrmions) observed, for
example, in MnSi [1], Fe1−xCoxSi [2], and Cu2OSeO3 [3],
or as a spiral helimagnetic order, which can be deformed by
an external magnetic field. In particularly, the long-standing
prediction by Dzyaloshinskii was experimentally verified in
the hexagonal chiral magnet Cr1/3NbS2 by using Lorenz
microscopy and small-angle electron diffraction [4]. It claims
that the magnetic field applied perpendicular to the helical axis
stabilizes a topological ground state of the chiral helimagnet
called magnetic soliton lattice [5]. The chiral soliton lattice
(CSL) presents a periodic array of 2π domain walls (kinks)
and their number coincides with the topological one.

One aspect of the studies of the chiral helimgnets is
related with the use of their non-trivial magnetic patterns
in modern spintronic devices [6]. For instance, it has been
demonstrated that a control and detection of a motion of the
skyrmions by weak electric currents may be important route
towards spintronic applications [7]. Manipulation of the chiral
magnetic spiral with the magnetic field and/or the electric
current has been theoretically discussed in Refs. [8–10]. The
noticable negative magnetoresistance protected by chirality
have been recently observed in Cr1/3NbS2 in a wide range
of temperature below incommensurate-commensurate phase
transition [11].

In practice, to realize storage technologies or spintronic
devices based on the chiral magnets, it is essential to
understand their physics for finite-size samples or systems
with a reduced dimensionality. For instance, the modeling
of skyrmion dynamics in constricted geometries have been
carried out in Ref. [12]. There are experimental evidences that
the epitaxial induced strain in the thin films of MnSi results
in an appearance of states (i.e., skyrmions) that are metastable
or absent in the bulk MnSi [13]. Another remarkable feature
found in magnetometry measurements in MnSi thin films is

the sudden jumps in magnetization seen in the field-induced
unwinding of the confined helicoid [14]. Apparently, the
discrete change of the helicoidal structure provides a promising
functionality for spintronic devices and a theoretical treatment
of the effect is highly required.

The problem is not as simple as it might seem at first glance.
Obviously, the finite-size solution for magnetization with
imposed fixed boundary conditions (BC) changes substantially
as compared with the bulk one, because the confined chiral
solitons repel each other and we expect topological quantiza-
tion of the soliton lattice period to accommodate an integer
number of solitons over a finite system. However, any naive
attack of the isoperimetric variational problem by standards
methods, i.e., a seeking of conditional extremum, faces serious
difficulties. Indeed, the linear Lifshitz invariant coming from
the DM term and fixing the topological charge takes the form of
a total derivative and, as a result, the BC cannot be incorporated
into the variational scheme. In this context, we note that in
Ref. [14] the discrete jumps of magnetization were proposed
based on the variational analysis by taking account of finite
sample thickness with free boundary conditions.

In this paper, to clarify the effects of the boundary pinning
on the bulk magnetization in an explicit manner, we perform
an unbiased numerical analysis of the lattice model and discuss
the ground state spin configurations with an imposed BC.
Based on the numerically justified quantization condition
for the spatial periods of the CSL, a level-crossing scheme
of the ground state energies is formulated and the resultant
magnetization jumps are naturally explained.

The paper is organized as follows. In Sec. II, the lattice
model and the details of the routines used in the numerical
calculations are introduced. In Sec. III, we present the
numerical results, which justifies the topological quantization
condition. The analytical model supporting the numerical
findings is developed in Sec. IV. Finally, we make concluding
remarks in Sec. V.

II. FORMULATION

We consider a finite-size chain of the classical chiral
helimagnet (CHM) with the fixed BC on both ends, as shown in
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FIG. 1. (Color online) A finite-size chiral soliton lattice consid-
ered here, where spins on both ends are fixed in a parallel manner. The
whole system is put under the magnetic field applied perpendicular
to the helical axis.

Fig. 1. A classical spin at the ith site, Si = S (cos ϕi, sin ϕi,0),
is parametrized by the angle ϕi obeying the BC:

ϕ0 = 0 and ϕN = −2πn, (1)

where i = 0 and N correspond to sites at the edges. A
topological number n specifies the whole number of solitons
accommodated in the system and determined by the winding
numbers of the homotopy group π1(S1). This kind of BC
may be realized, for example, by attaching ferromagnetic
slabs on both ends of the chiral helimagnet. The total energy
of the system is described by an effective one-dimensional
Hamiltonian,

H/JS2 = −
N−1∑
i=0

cos(ϕi+1 − ϕi)

+Dz/J

N−1∑
i=0

sin(ϕi+1 − ϕi) − h

N∑
i=0

cos ϕi, (2)

where J > 0 is the nearest-neighbor ferromagnetic exchange
interaction and Dz is the mono-axial Dzyaloshinskii-Moriya
interaction along a certain crystallographic chiral axis (taken
here as the z axis). The magnetic field Hx is applied perpen-
dicular to the chiral axis. The dimensionless field strength
is h ≡ gμBHx/JS, where g is the electron g factor and
μB is the Bohr magneton. In the case of an infinite system
with the free BC, the zero-field ground state is the CHM
with the spiral modulation wave number Q0 = arctan(Dz/J ).
In the numerical calculations below, we took Dz/J = 0.16
corresponding to the value observed in Cr1/3NbS2 [4].

The lattice version of Landau-Lifshitz equations results in
equation for the variables ϕi (see Appendix A):

0 = γ sin(ϕi − ϕi−1 + δ)

− γ sin(ϕi+1 − ϕi + δ) + h sin ϕi, (3)

where δ = arctan(Dz/J ) and γ = √
1 + D2

z /J
2. In order to

perform numerical computations, it is convenient to split
Eq. (3) to a form convenient for an iterative routine (see
Ref. [8]):

sin ϕi = (γ sin(ϕi+1 + δ) + γ sin(ϕi−1 − δ))

× [γ 2 (sin(ϕi+1 + δ) + sin(ϕi−1 − δ))2

+ (γ cos(ϕi−1 − δ) + γ cos(ϕi+1 + δ) + h)2]−1/2,

(4)

cos ϕi = (γ cos(ϕi−1 − δ) + γ cos(ϕi+1 + δ) + h)

× [γ 2 (sin(ϕi+1 + δ) + sin(ϕi−1 − δ))2

+ (γ cos(ϕi−1 − δ) + γ cos(ϕi+1 + δ) + h)2]−1/2.

(5)

The static spin configuration is found by using the iteration
scheme. The numerical algorithm starts by initializing the
values of spin variables. Scanning linearly the chain, the spin
variable at each site gets updated according to Eqs. (4) and (5),
being reset along the net field due partly to some unchanged
neighbors and some that have already been repointed. The
iterations stop if the sum

√∑N
i=0(ϕ(k)

i − ϕ
(k−1)
i )2 taken over

the chain on the kth step is less than tolerance 10−8.

III. NUMERICAL RESULTS

By using the numerical scheme set out above, we computed
the ground state energy, Emin/JS2, associated with the Hamil-
tonian (2) for the systems consisting of N + 1 = 211, 411, and
811 sites. In our calculations, the trying starting configurations
were taken as ϕi = −2πni/N that is compatible with the
imposed boundary conditions (1). The topological number
n is firstly fixed and we search for the minimum energy as
a function of h. In Fig. 2, the results for the case of 411
sites are shown. In the case of h = 0, we found that the
system relaxes to the CHM state with the maximal topological
number nmax = [NQ0/2π ]. In the current case, Dz/J = 0.16
and N = 410, thus, we have nmax = [10.353] = 10. As h

increases and the soliton lattice starts to form, the topological
number for the stable ground state exhibits cascade transitions
to n = nmax − 1,nmax − 2, . . . ,1 at the critical field strengths
where the energy levels cross each other. The envelope of the
ground-state energies provides a series of phase transitions
from one topological sector to another with smaller n. At
higher fields, the energy levels are distributed so dense that
the energy crossing points almost merge and become hardly
resolved.

In Fig. 3, we show the coordinate behavior of ϕi correspond-
ing to the ground states of the different topological sectors. It is
clearly seen that for h = 0 (n = nmax), the system adjusts itself
to the BC by matching the spatial period to the smallest value
close to the bulk period. A larger value, nmax + 1, is disfavored
because of the energy costs associated with the ferromagnetic
exchange.

In each topological sector, the number n is found to be
conserved and the kinks form regular lattice structure. In
Fig. 4(a), we show h dependence of the lattice period � for
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FIG. 2. (Color online) Magnetic field dependence of minimum
energies, Emin/JS2, belonging to different topological sectors with
n = 10,9, . . . ,1 from the bottom to the top, for the case of Dz/J =
0.16 and N = 410.
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FIG. 3. Spatial modulation of the phase angle ϕi (measured in
2π units) corresponding to the minimum energy states at typical
magnitude of h belonging to different topological sectors n =
10,9, . . . ,1, for the case of Dz/J = 0.16 and N = 410.

N = 810 (nmax = 20). We see that the period jumps at the
energy-crossing points and exhibits a steplike behavior. Each
step gives the quantized period

�n = N/n. (6)

This result is the most essential finding of the numerical anal-
ysis and it is out of reach of the standard variational analysis
based on the continuum version of the lattice Hamiltonian (2).
It is seen that �n is kept constant irrespective of h within each
topological sector. In Fig. 4(a), we also show the analytical
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FIG. 4. (Color online) (a) Numerical (solid line) and analytical
(dotted line) field dependencies of the spatial period and (b)
magnetization curve, for the case of Dz/J = 0.16 N = 810.

FIG. 5. (Color online) Magnetization curves for (a) N = 210 and
(b) 410. Analytical magnetization curve for the infinite system is also
shown by the dotted lines.

result for the period of the infinite system, which is expressed
by Eq. (9) given below.

The magnetization per site is computed as M =
1

N+1

∑N
i=0 cos ϕi . In Fig. 4(b), we show the h dependence

of M . In each topological sector, M increases almost linearly
as a function of h and exhibits jumps at the energy-crossing
point. In Fig. 5, we show the magnetization for the cases
of 211 and 411 sites. It is seen that for a larger system the
magnetization curve becomes more smooth and approaches
the bulk magnetization [15]. This change describes quantum-
to-classical crossover in the confined soliton system.

IV. AN ANALYTICAL MODEL OF THE
QUANTIZED PERIOD

The found numerical results for quantization of the
CSL period can be reproduced by a slight modification of
the variational analysis of the continuum version of the
Hamiltonian (2). This approach is relevant because of
the slowly varying nature of the spin variables, S(z) =∑

i Siδ(z − zi) ≡ Sn(z), parametrized by the unit vector field
n(z) = (cos ϕ(z), sin ϕ(z),0). The transformation converts (2)
into the form, which is nothing but the Pokrovsky-Talapov
(PT) model [16],

H/JS2 =
∫ N

0
dz

[
1

2
(∂zϕ)2 + Q0∂zϕ − h cos ϕ

]
, (7)

where the atomic lattice constant is set to unity. Hereinafter,
N plays a role of the length of the system, and Q0 = Dz/J . A
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conventional variational analysis gives the CSL configuration,

ϕ(z) = −π − 2am
(√

h
κ

z
)

, (8)

where am is the Jacobi’s amplitude function with the elliptic
modulus κ (0 � κ < 1). The period of CSL is given by

� = 2κK(κ)/
√

h, (9)

where K(κ) is the complete elliptic integral of the first
kind. In the bulk case, following the recipe presented by
Dzyaloshinskii [5] and de Gennes [17], one should minimize
the total energy with respect to the elliptic modulus κ that
yields κ = 4E(κ)

√
h/(πQ0), where E(κ) is the complete

elliptic integral of the second kind.
However, in the finite-size system considered here, the BC

prevents us from searching the global energy minimum as a
function of κ . Instead, the quantization condition (6) should
be employed:

2κnK (κn) /
√

h = N/n, (10)

which determines the discrete elliptic modulus κn as a function
of h. It should be stressed again that this condition is beyond
the variational scheme, because it is impossible to obtain the
condition (6) via any variational procedure for the continuum
model (7), where the linear Lifshitz invariant Q0∂zϕ gives no
contribution to the variational equation. In this context, we
mention that the theoretical analysis for MnSi films given in
Ref. [14] for free boundary conditions derives the parameter κ

from minimizing of the energy density averaged over the layer
thickness, and the κ varies continuously with the magnetic
field.

By taking the condition (10), we use κn in Eq. (8) to compute
the continuum energy,

H
JS2

= 4n
√

h

κn

[
2E(κn) −

(
1 − κ2

n

2

)
K(κn)

]
− 2πQ0n.

(11)

In Fig. 6(a), we show the h dependence of H for different
topological sectors (we set N = 410). The result is qual-
itatively well consistent with the numerical one [we also
present an approximate analysis for a weak field limit in
Appendix B]. From Eq. (11), the competition between the
commensurability (exchange and Zeeman) and incommen-
surability (DM) energies is elucidated. The exchange and
Zeeman terms are combined to give the first term in the r.h.s.,
which tends to increase the commensurate domain and, as
a function of h, decreases more rapidly as the topological
number ndecreases. On the other hand, the DM term gives the
n-dependent intercept and favours larger topological numbers.
We emphasize that the first term is a part of the sine-Gordon
(SG) model (with Q0 = 0), whereas the second term depends
explicitly on Q0. A detailed discussion of differences between
the SG model and the PT model with the finite Q0 is given in
Ref. [18] within the renormalization-group analysis.

By using Eq. (8), the magnetization is merely computed as

Mn = 1

N

∫ N

0
dz cos ϕ = −1 + 2

κ2
n

− 2E(κn)

κ2
nK(κn)

. (12)
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FIG. 6. (Color online) (a) Energy given by Eq. (11) as function
of h for n = 10,9,8,7,6. Energy crossing points are indicated by
circles. (b) Magnetization curves given by Eq. (12). Figure 5(b) is
reproduced in (c) to make a comparison between the analytic and
numerical results.

In Fig. 6(b), we show the magnetization curves for n =
6–10. As h increases, the ground state magnetization curve,
indicated by the thick line, jumps at a critical field hn

from (n + 1) sector to n sector. We repeat Fig. 5(b) as
Fig. 6(c) to compare the analytical result with the numerical
one. Although in the continuum approximation the terms
containing (∂zϕ)m (m � 3) are omitted, analytical results are
qualitatively consistent with numerical results based on the
lattice model. With changing h inside each topological sector,
the shape of the texture does not exhibit any visible change
and abruptly jumps to the next topological sector at critical
fields hn.

We note an essential different role of the fixed BC in
formation of the magnetization jumps in our system and
in finite-size Heisenberg spin chains. In the last case, steps
in a magnetization curve arise from the discretness of the
energy spectrum. A fixing of the boundary spins lifts only
the SU(2) degeneracy but the spectrum remains untouched.
In the case of the CHM, the energy states are indexed by the
parameter κ , which varies continuously with the magnetic
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field for the infinite system or for the finite system with
free boundary conditions. By fixing spins at the edges,
the spectrum changes drastically and becomes discrete with
values determined by κn, i.e., by a number of periods of the
CSL.

V. CONCLUDING REMARKS

In this paper, we theoretically demonstrated a phenomena
of topological quantization of the soliton lattice period in a
finite-size chiral helimagnet with fixed boundary conditions.
We first presented the numerical analysis to seek for the
ground state of the lattice version of the model. An essential
finding is that the spatial period of the solitons is quantized to
Ln = N/n (where N is the system size and n = 1,2, . . . ,N ).
The quantum number exhibits abrupt jumps to the next one as
the fields increase. This phenomena is a direct consequence
of the soliton-confinement into the finite size system. As a
consequence of this effect, the magnetization curves exhibit
abrupt jumps at given values of the field corresponding
to the transition from one quantum number to another. To
describe the numerical results from analytical viewpoints,
we considered a continuum version of the model under the
quantization condition and obtained the consistent results. We
stress our model analysis is justified only after the quantization
condition was numerically confirmed.

As comments, we discuss a peculiarity of the suggested
mechanism as compared with known phenomena of mag-
netization jumps. Quantization of physical quantity under
changing magnetic field takes place in a wide class of
quantum phenomena such as Josephson effect [19], quantum
Hall effect [20], quantized flux in superconductors [21],
and magnetization plateaus in spin chains [22]. Another
example is the well-known classical Barkhausen effect [23]
caused by an irreversible magnetic domain wall motion by
breaking it away from pinning sites. In comparison with
these phenomena, magnetization jumps presented in this study
have their origin in the repulsive interaction between the
topological charges protected by crystal chirality. By confining
the topological charges in the finite system, the spatial period
of the CSL gets quantized that provides the magnetization
jumps.

Finally, we point out that the quantization scheme de-
veloped in the paper may be applied to a wider class of
phenomena described by the PT model, which universally
describes incommensurate-to-commensurate phase transitions
in condensed matters. Especially, the problem of vortex depin-
ning in artificial vortex-flow channels of finite length in type-II
superconducting films should be singled out. Previously, it
has been analyzed within the PT model and a crucial role of
the sample boundaries on the depinning transition has been
demonstrated [24].
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APPENDIX A: EQUATIONS OF MOTION OF A
CHIRAL HELIMAGNET

Monoaxial CHM is described by an effective one-
dimensional Hamiltonian,

H = −J
∑

i

Si · Si+1 + Dz

∑
i

[Si × Si+1]z

− gμBHx

∑
i

Sx
i , (A1)

where Si = Sni is the local spin moment at the site
i, and the parametrization through the unit field ni =
(sin θi cos ϕi, sin θi sin ϕi, cos θi) with the polar angles θi and
ϕi is used.

The Euler-Lagrange equations of motion are then given by

�S sin θi ∂t θi = δH
δϕi

, �S sin θi ∂tϕi = −δH
δθi

, (A2)

that leads to the system in the lattice form:

dθi

dτ
=

√
1 + D2

J 2
sin θi−1 sin(ϕi − ϕi−1 + δ)

−
√

1 + D2

J 2
sin θi+1 sin(ϕi+1 − ϕi + δ)

+h sin ϕi, (A3a)

dϕi

dτ
= −(cos θi+1 + cos θi−1)

+
√

1 + D2

J 2
cot θi sin θi−1 cos(ϕi − ϕi−1 + δ)

+
√

1 + D2

J 2
cot θi sin θi+1 cos(ϕi+1 − ϕi + δ)

+h cot θi cos ϕi, (A3b)

where τ = t/τ0 with τ0 = �/JS.
For the static spin configurations considered in the paper

it is supposed that θi = π/2, which reduces the system to
Eq. (3) and the Hamiltonian (A1) modifies into the form given
by Eq. (2).

APPENDIX B: MAGNETIZATION FOR A
WEAK FIELD LIMIT

The magnetization jumps presented in this paper can
be analytically described based on the formulas (10), (11),
and (12). We first specify a topological sector n. Second, we
determine κn as a function of h by using Eq. (10). Then, we
determine the energy as a function of h by using Eq. (11).
Finally, we compute the magnetization as a function of h

by using Eq. (12). The appearance of the jumps is a direct
consequence of the energy crossing [see Fig. 6(a)]. To grapple
with the analytic structure of the crossing, it may be useful
to see the field dependence of the energy for a weak field
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limit, i.e., h � 1. This limit corresponds to the condition,
κn � 1, and then Eq. (10) gives κ � N

πn

√
h. Using this relation

in the series expansion formulas for K(κ) and E(κ), we
obtain

K � π

2
+ 1

8π

N2

n2
h + 9

128π3

N4

n4
h2 + O(h3), (B4)

E � π

2
− 1

8π

N2

n2
h − 3

128π3

N4

n4
h2 + O(h3). (B5)

Plugging these expressions into Eq. (11) gives

H
JS2

= 2
π2

N
n2 − 1

2
Nh

(
1 + 7

16π2

N2

n2
h

)
− 2πQ0n. (B6)

We see that the first term comes from the ferromagnetic
exchange which causes an energy cost due to making solitons.
The second and third terms arise from the Zeeman interaction.
The fourth term is the Lifshitz invariant topological term. From
this formula, it is clearly seen that the energy is a downward-
convex quadratic function of h with n-dependent intercepts.
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