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Magnon spin-current theory for the longitudinal spin-Seebeck effect
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We present a theoretical model for the longitudinal spin-Seebeck effect (LSSE) in bilayers made of a
ferromagnetic insulator (FMI), such as yttrium iron garnet (YIG), and a normal metal (NM), such as platinum
(Pt), that relies on the bulk magnon spin current created by the temperature gradient across the thickness of the
FMI. We show that the spin current pumped into the NM layer by the magnon accumulation in the FMI provides
continuity of the spin current at the FMI/NM interface and is essential for the existence of the longitudinal
spin-Seebeck effect. The results of the theory are in good agreement with experimental data for the variation of
the LSSE with the sample temperature and with the FMI layer thickness in YIG/Pt bilayers.
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I. INTRODUCTION

Recent discoveries of phenomena involving the interaction
of heat currents and spin currents has originated a vigorous
field of spintronics, known as spin caloritronics [1]. One
feature of this new field is that experiments have been leading
theory; i.e., most experimental observations have been made
before any theoretical prediction. This is the case of the
spin-Seebeck effect (SSE), discovered in 2008, that consists
of the generation of a spin current by a temperature gradient
applied to a magnetic material [2]. In a few years, the SSE
and other spin-dependent thermoelectric effects have been
observed in many metallic, semiconductor, and insulating
ferromagnets in several configurations and material structures
[2–30]. This has stimulated intense theoretical effort [31–47]
to explain the experimental observations and to put forward
new ideas leading to a rapid evolution of the field. The
attention drawn by the spin-dependent thermolectric effects,
and SSE in particular, is largely because they have revealed
new mechanisms for generating and detecting spin currents,
thus opening many possibilities in spintronics.

Depending on the experimental arrangement, the spin
current generated by the SSE can be perpendicular or
parallel to the temperature gradient, characterizing the so-
called transverse [1–4] or longitudinal [1,5,6] configurations,
respectively. While the transverse SSE can be observed in both
metallic and insulating magnetic materials, the longitudinal
spin-Seebeck effect (LSSE) is observed unambiguously only
in insulators, because they are free from the anomalous Nernst
effect [6,26,29]. The most common way to detect the spin
currents generated by the SSE consists of measuring the
voltage resulting from the charge current created by means
of the inverse spin-Hall effect (ISHE) in a nonmagnetic
metallic (NM) layer in contact with the magnetic material
[48–52]. Other ways to observe the SSE involve the action
of torques created by spin currents on the spin dynamics
[10,15,21,23,24,37].

One striking feature of the SSE is that different types of
materials and configurations reveal a variety of aspects of
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the phenomenon, requiring different mechanisms to explain
the generation of spin current by the thermal gradient. The
pioneering experiments of Uchida et al. [2], with a temperature
gradient along a permalloy film, were explained in terms
of a nonuniform spin accumulation created along the film
[1,2,31–35]. This produces a varying spin current transverse to
the gradient and consequently a varying ISHE voltage in the
attached NM strips. Similar experiments with the insulating
ferrimagnet yttrium iron garnet (Y3Fe5O12, or YIG) done with
the same transverse configuration require another mechanism,
since in insulators, the spin currents are carried by spin waves,
or magnons. As shown in Refs. [1,3,38,45], the transverse
spin currents are created by interfacial thermal spin pumping
caused by the difference between the magnon temperature in
the ferromagnet and the lattice temperature in the attached NM
strips. The interfacial spin pumping is thermally activated by
the temperature difference that varies along the film, resulting
in a varying ISHE voltage. The same mechanism is believed
to be operative in the longitudinal configuration, where the
temperature gradient is applied across the thickness of the
film [1,45]. However, while the calculated interfacial thermal
spin pumping ISHE voltage is in reasonable agreement with
the measured values in the transverse configuration, a few
microvolts for a few Kelvin temperature difference, there has
been no clear-cut comparison of theory with experiments for
the longitudinal configuration.

In this paper, we propose a different mechanism for the
LSSE that originates in the magnon flow across the thickness
of the ferromagnetic insulator (FMI) film created by the
temperature gradient. The proposed mechanism relies on the
magnon spin current generated in the bulk of the film, not at
the interface, but it requires the contact with a NM layer to
provide continuity for the spin flow. The bulk spin current
is calculated macroscopically with the Boltzmann equation
for the magnon flow, subject to the appropriate boundary
condition at the FMI/NM interface in a treatment similar to
one used by Zhang and Zhang [53,54]. However, instead of
using the concept of spin convertance introduced by Zhang
and Zhang, we employ the familiar spin mixing conductance
used to explain the spin pumping process in ferromagnetic
metal/NM interfaces [55,56] and recently shown to hold in
bilayers of YIG/platinum (Pt) [57]. In order to test key features
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FIG. 1. (Color online) FMI/NM bilayer used to investigate the
LSSE. (a) Illustration of the conversion of the spin into the charge
current by the ISHE in the NM layer. (b) Coordinate axes used
to calculate the spin currents generated by a temperature gradient
perpendicular to the plane of the bilayer.

of the model, we have carried out experiments to measure the
temperature dependence of the longitudinal SSE in YIG/Pt
bilayers. The results of the model explain quantitatively our
experimental data, as well recent measurements of the YIG
thickness dependence of the LSSE in YIG/Pt bilayers [58].

The paper is organized as follows. Section II presents the
derivation of the expression for the spin current in the FMI
layer using the Boltzmann transport equation and the concept
of magnon accumulation [53,54]. Section III is devoted to the
calculation of the spin current at the FMI/NM interface using
the pumped spin current into the NM layer, the condition of
continuity of the current, and the expression for the ISHE
voltage generated in the NM layer. In Sec. IV, the SSE
spin current is calculated for YIG/Pt bilayers. Section V
describes the experimental measurements and comparison
with the results of the model. In the Appendix, we calculate
the relaxation of magnons in YIG due to 4-magnon processes
used in Sec. IV.

II. MAGNON SPIN CURRENT IN THE FMI LAYER

Consider the FMI/NM bilayer, illustrated in Fig. 1, in the
presence of a temperature gradient normal to the plane and
with a static magnetic field H applied in the plane. We chose
a coordinate system with the z axis parallel to the field and the
y axis perpendicular to the plane. In this section, we calculate
the expression for the spin current in the FMI layer. The spin
current in the FMI is carried by the magnetic excitations, which
are spin waves, or magnons [53,54,59–61], with the wave
vector �k and energy �ωk . We denote by nk the number of
magnons with wave number k in the whole volume V of the
FMI layer; n0

k the number in thermal equilibrium, given by
the Bose-Einstein distribution, n0

k = 1/[exp(�ωk/kBT ) − 1];
and δnk = nk − n0

k the number in excess of equilibrium. The
magnon accumulation δnm is defined as the density of magnons
in excess of equilibrium [53,54]:

δnm = 1

(2π )3

∫
d3k

(
nk − n0

k

)
. (1)

The magnon spin-current density with polarization z, �J z
S ,

related to the magnetization current �J z
M used in Refs. [59–61]

by �J z
S = �J z

M/γ , can be written as [53,54]

�J z
S = �

(2π )3

∫
d3k�vk

(
nk − n0

k

)
, (2)

where γ = gμB/� is the gyromagnetic ratio and �vk is the k-
magnon velocity. The distribution of the magnon number under
the influence of the thermal gradient can be calculated with the
Boltzmann transport equation. In the absence of external forces
and in the relaxation approximation, in steady state it gives

nk(�r) − n0
k = −τk �vk · ∇nk(�r), (3)

where τk is the k-magnon relaxation time. Using
Eq. (3) in Eq. (2), one can show that the spin current is the sum

of two parts, �J z
S = ⇀

J z
S∇T + ⇀

J z
Sδn, where

�J z
S∇T = − �

(2π )3

∫
d3kτk

∂n0
k

∂T
�vk(�vk · ∇T ) (4)

is the contribution of the temperature gradient and

�J z
Sδn = − �

(2π )3

∫
d3kτk �vk(�vk · ∇δnk(�r)) (5)

is due to the spatial distribution of the magnon accumulation.
With the temperature gradient normal to the plane, Eq. (4)
gives the spin current in the y direction as

J z
S = −Sz

S

∂T

∂y
, (6)

Sz
S = �

(2π )3T

∫
d3k τkv

2
ky

exx

(ex − 1)2
, (7)

where T is the average temperature and x = �ωk/kBT is
the normalized magnon energy. We consider the magnon and
phonon systems to have the same temperature T , as recently
demonstrated experimentally [30]. In order to calculate the
spin current due to the gradient in the magnon accumulation,
in the spirit of linear response theory, we follow Refs. [53,54]
and write the distribution function as the sum of the equilibrium
distribution plus a small deviation in the form of the following
expansion:

nk(�r) = n0
k + ∂n0

k

∂εk

[
μm(y) +

∞∑
n=1

g(n)(y) Pn(cos θ )

]
, (8)

where εk = �ωk is the magnon energy, μm(y) is the n =
0 component of the small deviation and plays the role of
a chemical potential, θ is the angle between �k and the y

axis, and Pn is the Legendre polynomial of order n. Using
the orthogonality relations for Pn, it has been shown that the
magnon accumulation and the spin current are related to the
deviations of the equilibrium distribution by [53,54]

δnm(y) = I0μm(y), (9)

J z
Sδn(y) = �

3
I1g

(1)(y), (10)

where the integrals are defined by

In = 1

(2π )3

∫
d3kvn

k

∂n0
k

∂εk

. (11)
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In Refs. [53,54], it is shown that in the steady state, the
magnon accumulation obeys a diffusion equation,

∂2δnm(y)

∂y2
= δnm(y)

l2
m

, (12)

and that the spin current due to the spatial variation of the
magnon accumulation is given by

J z
Sδn(y) = �Dm

∂

∂y
δnm(y), (13)

where

Dm = τmI2/(3I0) and lm = (DmτSL)1/2 (14)

are the diffusion parameter and diffusion length, respectively;
τm is a weighted magnon lifetime averaged over the Brillouin
zone; and τSL the spin-lattice relaxation time. The solution
of Eq. (12) gives for the spatial variation of the magnon
accumulation

δnm(y) = A cosh[(y + tFM)/lm] + B sinh[(y + tFM)/lm],

(15)

where A and B are coefficients to be determined by the
boundary conditions. Using Eq. (15) in Eq. (13), one obtains
the total y component of the z-polarized magnon spin-current
density in the FMI:

Jm
S (y) = −Sz

S∇yT + �
Dm

lm
A sinh[(y + tFM)/lm]

+ �
Dm

lm
B cosh[(y + tFM)/lm]. (16)

This result will be used in the next section to match the
boundary conditions at the free FMI surface and at the
FMI/NM interface.

III. SPIN CURRENT AND ISHE VOLTAGE
IN THE FMI/NM BILAYER

In this section, we consider the FMI layer in atomic contact
with a NM having a strong spin-orbit scattering, such as Pt and
Pd. As is well known, the precessing spins associated with the
magnon accumulation at the FMI/NM interface pump a spin
current into the NM given by [55,56]

�J sp

S (0+) = �g
↑↓
r

4πM2

(
�M × ∂ �M

∂t

)
, (17)

where �M is the FMI magnetization at the interface and g
↑↓
r

is the real part of the spin mixing conductance. The spin
current in the NM is carried by the conduction electrons
and can be expressed in terms of a spin accumulation. The
nonequilibrium spin accumulation builds up in the NM,
resulting in a backflow spin current J

bf

S into the FMI.
The spin accumulation is governed by a diffusion equation,
which can be easily solved to calculate J

bf

S , considering
the reflection at the surface in y = tN . One can show
that the sum of the y components of the z-polarized spin
pump and backflow spin currents at the FMI/NM interface
is J z

S (0+) = −�g
↑↓
eff /(4πM2)

∑
k ωk(m+

k m−
k ), where m+

k and
m−

k are the circular polarized transverse components of the

magnetization associated with the k magnon and g
↑↓
eff is the real

part of the effective spin mixing conductance that takes into
account the spin-pumped and backflow currents. In the linear
approximation, m+

k m−
k ≈ 2Mγ �δnk/V , so the spin current in

the NM can be related to the magnon number (in excess of
thermal equilibrium) at the interface

J z
S (0+) = −γ �

2g
↑↓
eff

2πM

1

(2π )3

∫
d3kωkδnk. (18)

Using the expansion in Eq. (8) and the orthogonality
relations for the Legendre polynomials, we find that only
the n = 0 term contributes to Eq. (18). With Eq. (9) and
∂n0

k/∂εk = −ex(ex − 1)−2(kBT )−1, one can show that the spin
current in the NM is related to the magnon accumulation at
the interface by

JS(0+) = −γ �kBT

2πM

C1

C0
g

↑↓
eff δnm(0), (19)

where

C1 =
∫

d3k
xex

(ex − 1)2
and C0 =

∫
d3k

ex

(ex − 1)2
. (20)

In order to calculate the coefficients in Eq. (15) and the
magnon accumulation δnm(0) at the FMI/NM interface in
terms of the temperature gradient ∇T , we use the boundary
conditions determined by conservation of the angular mo-
mentum flow that requires continuity of the spin currents
at the interfaces [53–56,66]. At the substrate/FMI interface,
J z

S (y = −tFM) = 0, whereas at the FMI/NM interface, J z
S (y =

0−) = J z
S (y = 0+). From the boundary condition at y = −tFM,

we obtain, with Eq. (16), B = Sz
S∇T lm/�Dm. Using this result

in Eq. (15), we find a relation between the coefficient A and
the magnon accumulation at the FMI/NM interface:

A = δnm(0)

cosh(tFM/lm)
− Sz

S∇T lm

�Dm

tanh(tFM/lm). (21)

With the boundary condition J z
S (0−) = J z

S (0+), where
J z

S (0−) is given by Eq. (16), with the coefficients A and
B above, and J z

S (0+) given by Eq. (19), we obtain the
magnon accumulation at the FMI/NM interface created by
the temperature gradient ∇T in the y direction:

δnm(0) = 1 − cosh−1(tFM/lm)

a tanh(tFM/lm) + bg
↑↓
eff

Sz
S∇T , (22)

where

a = �Dm/lm and b = γ �kBT C1/(2πMC0). (23)

As will be shown in the next section, in YIG/Pt bilayers
a � bg

↑↓
eff . Therefore, the spin-current density at the interface

calculated with Eqs. (19) and (22) becomes approximately

J z
S (0) = −bg

↑↓
eff ρ

a
Sz

S∇T , (24)

where ρ is a factor that represents the effect of the finite FMI
layer thickness, given as

ρ = cosh(tFM/lm) − 1

sinh(tFM/lm)
, (25)
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such that ρ ≈ 1 for tFM � lm and ρ ≈ 0 for tFM 	 lm.
Equation (24) shows that the magnon spin current at the
FMI/NM interface generated by the temperature gradient
applied perpendicularly to the bilayer plane is proportional to
the temperature gradient and to the spin mixing conductance
of the interface. This means that the NM layer in contact with
the FMI film that is used to detect the ISHE voltage is essential
for the existence of the spin current. This result explains the
experimental observation [21,23,24] that a Pt layer in contact
with a YIG film is necessary for using the SSE to control the
relaxation rate of spin waves in the film.

In the experiments with the LSSE, one applies a temperature
difference between the two sides of a FMI/NM bilayer to
create a spin current across the structure using the arrangement
illustrated in Fig. 3(a). Due to the ISHE, the spin-current
density �J z

S flowing into the NM layer generates a charge-
current density given by �JC = θSH(2e/�) �J z

S × �σ , where θSH

is the spin-Hall angle and �σ is the spin polarization [49]. If
the magnetic field is applied in the plane and transverse to the
long direction of the NM layer, the resulting charge current
flows along the long direction and produces a direct current
(dc) ISHE voltage at the ends of the NM layer. Since the spin
current at the FMI/NM interface diffuses into the NM layer
[53–56] with diffusion length λN , in order to calculate the
voltage at the ends of the NM layer, one has to integrate the
charge-current density along x and y so that the ISHE voltage
becomes [51]

V = RNwλN

2e

�
θSH tanh

(
tN

2λN

)
J z

S (0), (26)

where RN , tN , and w are the resistance, thickness, and width
of the NM strip, respectively.

IV. APPLICATION TO YIG/PT BILAYERS

In order to calculate the integrals in Eqs. (7) and (20), one
needs the relation between the spin-wave angular frequency ωk

and the wave number k. As is often done in the literature, we
consider initially a quadratic dispersion relation ωk = ω0 +
γ Dk2, where ω0 is the k = 0 magnon frequency and D is the
intraexchange stiffness parameter. With the magnon velocity
vk = ∂ωk/∂k = 2γDk, we obtain from Eq. (7)

Sz
S = C5/2

k
5/2
B T 3/2τm

6π2�3/2(γD)1/2
, (27)

where C5/2 is a parameter given by

C5/2 =
∫

ex

(ex − 1)2
x(x − x0)3/2dx, (28)

where x0 = �ω0/kBT . The lower limit of integration is x0,
the minimum normalized spin-wave energy, determined by
the magnetic field. The upper limit is the maximum energy
at the Brillouin zone boundary. If we set x0 = 0 and consider
the upper limit infinity, since the integrand vanishes for large
x, it can be shown that C5/2 = �(7/2)ς (5/2) ≈ 4.46, where
�(z) and ς (z) are the gamma and Riemann zeta functions,
respectively. For fields up to a few kilooersteds, x0 is small and
the numerical integration of Eq. (8) gives a value close to the
ones above. One can show that with the quadratic dispersion

relation, the diffusion parameter in Eq. (14) becomes

Dm = 4τmkBT γDC3/2

3�C1/2
, (29)

where

C1/2 =
∫

dx
ex(x − x0)1/2

(ex − 1)2
and C3/2 =

∫
dx

ex(x − x0)3/2

(ex − 1)2
.

(30)

If we set x0 = 0 and consider the upper limit infinity, it
can be shown that C3/2 = �(5/2)ς (3/2) ≈ 3.4. For x0 
= 0,
numerical integration shows that this value changes little for
fields of a few kilooersteds. The situation is different for C1/2,
because the integration diverges for x0 = 0. Considering H =
100 Oe, x0 = 4.2 × 10−5, numerical integration gives C1/2 ≈
250. Using a = �(Dm/τSL)1/2, b = γ �kBT C3/2/(2πMC1/2),
and Sz

S given by Eq. (27), the spin current at the interface in
Eq. (24) becomes, for ρ = 1,

J z
S (0) = (kBT )2(3τSLτm)1/2

4πMD6π2�

(
C3/2

C1/2

)1/2

C5/2g
↑↓
eff kB∇T . (31)

We use for YIG the following parameters [62]: γ =
1.76 × 107 s−1, D = 5.4 × 10−9 Oe cm2, 4πM = 1.76 kG,
τSL ≈ 10−6 s, and τm ≈ 10−10 s, which is an approximate
average value for the magnon lifetime as calculated in the
Appendix. The reported [61,63–67] values for the spin mixing
conductance g

↑↓
eff in YIG/Pt vary from 2 × 1012 cm−2 to

4 × 1014 cm−2. Considering g
↑↓
eff = 1014 cm−2, we find from

Eq. (31) for ∇T = 300 K/cm and T = 300 K a spin-
current density at the interface JS(0) ≈ 10−4 erg/cm2. Using
for Pt [51,65–71] λN = 4 nm, θSH = 0.08, and conductivity
σPt = 2.4 × 104�−1 cm−1, the resistance of a Pt strip with
typical dimensions l = 0.6 cm, w = 0.2 cm, and tN = 6 nm
is RN = 208�, and we obtain from Eq. (26) an ISHE voltage
of V ≈ 40 mV. This is more than three orders of magnitude
larger that the experimental values [5,6,25].

The value of the spin current calculated with Eq. (31) is
overestimated mainly because the quadratic magnon disper-
sion relation, which is widely used in calculations, deviates
considerably from the actual relation for magnon with large
wave numbers that have a strong weight in the integral in
Eq. (28). This is clearly seen in Fig. 2, which shows the
calculated dispersion relation for YIG [72] and the curve
for ωk = ω0 + γDk2. Two steps are taken to improve the
calculation. First, we use for the magnon dispersion relation

ωk = ωZB

(
1 − cos

πk

2km

)
, (32)

where ωZB is the zone boundary frequency and km is the
value of the maximum wave number. As shown in Fig. 2,
Eq. (32) is a better approximation for the magnon dispersion
over the whole Brillouin zone. Second, we take into account
that the magnon lifetime is a strong function of the wave num-
ber, as shown in the appendix. With the dispersion in Eq. (32),
the group velocity becomes vk = ωZB(π/2km) sin(πk/2km).
Writing the magnon lifetime as τk = τ0/ηq , where τ0 is
the lifetime of magnons near the zone center (k ≈ 0) and
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FIG. 2. (Color online) Spin-wave dispersion in YIG. The upper
(blue) solid curve is calculated with quadratic dispersion. The dotted
curve is calculated by Ref. [72] for k along a [111] direction. The
lower (wine) solid curve is calculated with the linear approximation
used to calculate the integrals.

ηq = ηk/η0 is an adimensional relaxation rate, Eq. (7) leads to

Sz
S = �τ0kmω2

ZB

24T
BS, BS =

∫ 1

0
dqq2 sin2

(
πq

2

)
exx

ηq(ex − 1)2
,

(33)

where q = k/km is a normalized wave number. In Eq. (33), we
consider spherical energy surfaces and integrate over a sphere
of radius km = √

3 × 2.5/al , al being the lattice parameter.
One can show that with the dispersion relation in Eq. (32)
and the wave number-dependent magnon relaxation rate, the
diffusion coefficient in Eq. (14) becomes

Dm = τ0π
2ω2

ZB

12k2
m

B2

B0
, (34)

while the parameters in Eq. (23) are

a = �τ0π
2ω2

ZB

12k2
mlm

B2

B0
and b = γ �kBT

2πM

B1

B0
, (35)

where

B0 =
∫ 1

q0

dqq2 ex

(ex − 1)2
, B1 =

∫ 1

0
dqq2 xex

(ex − 1)2
and

(36)

B2 =
∫ 1

0
dqq2 sin2

(
πq

2

)
ex

ηq(ex − 1)2
. (37)

Using Eqs. (33)–(37) in Eq. (24), we obtain the following ex-
pression for the spin-current density at the FMI/NM interface:

J z
S (0) = −γ �ρk3

mlm

4πMπ2

B1BS

B2
g

↑↓
eff kB∇T . (38)

The integrals in Eqs. (33), (36), and (37) were evaluated
numerically for YIG with the dispersion relation in Eq. (32),

0 100 200 300
0

1

2

3

J S
 (

T
)/

J S
 (

0)

 T (K)

FIG. 3. (Color online) Temperature dependence of the spin cur-
rent in the LSSE calculated with various models. The lower solid
curve (wine) represents a T 2 dependence, as in Eq. (31). The solid
curve in the middle (red) represents a T 1/2 dependence, predicted by
the mechanism of interfacial thermal spin current [38]. The dotted and
upper solid (blue) curves correspond to Eq. (38), calculated without
and with, respectively, a temperature dependence in the magnon
lifetime.

where x = �ωk/(kBT ), with ωZB = 6 × 1013 s−1, correspond-
ing to the zone boundary frequency of 9.5 THz in Fig. 2. In
the integral in B0, we consider a minimum normalized wave
number q0 = 10−3 determined by the boundary conditions
imposed by the contact with the Pt layer [68]. We also use for
YIG a lattice parameter al = 1.23 nm, which gives km = 2 ×
107 cm−1, and the normalized magnon relaxation rate calcu-
lated in the Appendix due to 3- and 4-magnon processes, ηq =
ηk/η0 = 1 + (0.5q + 5.1q2 − 3.25q3) × 103. Hence, we find
for T = 300 K, BS = 2.2 × 10−4, B0 = 282, B1 = 0.55, and
B2 = 5.1 × 10−3. With these values and τ0 = 0.5 × 10−7 s,
we obtain a diffusion coefficient Dm = 6.6 cm2/s. Consid-
ering [54] τSL = 10−6 s, we find from Eq. (14) a magnon
diffusion length lm = 26 μm. These values will be used in the
comparison of theory with experiments in the next section.

An important signature of a theoretical model for transport
phenomena is the temperature dependence of physical quan-
tities of interest. Figure 3 shows curves for the temperature
dependence of the spin currents calculated with various models
relative to their values at T = 300 K. The lower solid curve
(wine) corresponds to Eq. (31) calculated with the quadratic
dispersion relation and setting infinity for the upper limits of
the integrals. In this case, the parameters in Eqs. (28) and (30)
do not depend on the temperature and the spin current varies
with T 2. The solid curve in the middle (red) represents a T 1/2

dependence, which applies to the mechanism of interfacial
thermal spin current, Eqs. (12) and (15) of Ref. [38], that was
used to interpret the experimental data obtained with transverse
SSE in FMI layers. In the case of the calculation with the
nearly exact dispersion relation, Eq. (38), the temperature
dependence is not a simple one; it is contained in Eqs. (33),
(36), and (37) for the coefficients B1, B2, and BS through
the variable x = �ωk/kBT and the magnon relaxation rate.
The results of the calculation with Eq. (38), considering that
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lm ∝ D
1/2
m , as in Eq. (14), are plotted in two ways: (1) the

dotted curve (blue) is obtained assuming that the magnon
relaxation does not vary with temperature, and (2) the upper
solid curve (blue) was calculated considering that the magnon
relaxation rate varies with T 2, as shown in the Appendix, and
the temperature dependence of the magnetization, given by
M(T )/M(0) = 1.0 − 0.3(T/300)2, which represents well the
experimental data for YIG [73]. In both cases, the magnon
spin current vanishes at T = 0 because the thermal magnon
population vanishes. Since the magnon population decreases,
whereas the lifetime increases, as T is lowered, the competition
between the two factors results in the peak �30 K, which is a
characteristic feature of our model. As will be shown later, the
temperature dependence of the Pt layer resistance attenuates
the peak somewhat.

V. EXPERIMENTAL RESULTS AND COMPARISON
WITH THEORY

In order to test some features of the theoretical model
presented in the previous sections, we have carried out
two sets of measurements of the dc ISHE voltage due to
LSSE. In the first set, we have done measurements at room
temperature using an arrangement similar to those of Uchida
et al. [5,6,25] and Kikkawa et al. [26], as illustrated in
Fig. 4(a). In the second set, which is crucial to test the model,
we have done measurements as a function of the sample
temperature. The FMI material is a pure single crystal YIG,
and the NM material is a Pt thin layer, which is known
to have reasonably large values for the spin-Hall angle and
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FIG. 4. (Color online) (a) FMI/NM bilayer used to study the
LSSE. (b) Variation of the dc ISHE voltage V created by the SSE
with the magnetic field intensity for three values of �T : 4, 8, and
12 K. (c) Variation of the voltage with the temperature difference �T

between the two sides of sample A, consisting of a Pt (6 nm)/YIG
(8 μm)/GGG (0.5 mm) structure. A positive �T corresponds to a
temperature in the NM layer that is larger than in the FMI layer.
(d) Variation of V with �T measured in sample B, consisting of a Pt
(6 nm)/YIG (1 mm) slab.

spin mixing conductance with YIG. In the room-temperature
measurements, a commercial Peltier module is used to heat or
cool the side of the Pt layer, while the other side of the sample
is in thermal contact with a copper block maintained at room
temperature. The temperature difference across the sample is
calibrated as a function of the current in the Peltier module
by means of two thermocouples attached to thin copper sheets
placed between the module and the sample structure. Two
samples were used, designed to test the thickness dependence
of the ISHE voltage. Sample A consists of a strip of single-
crystal YIG (111) film grown by liquid phase epitaxy onto
a 0.5-mm-thick [111]-oriented Gd3Ga5O12 (GGG) substrate.
Growth was made at a constant temperature in supersaturated
solutions using a PbO-B2O3-based flux by the horizontal
dipping technique. The strip is 10 mm long and 2.3 mm
wide, and the YIG film is 8 μm thick, with the thickness
measured directly with a scanning electron microscope. The
YIG strip is covered with a 6-nm-thick Pt layer deposited
by magnetron sputtering. Two Cu wires attached with silver
paint to the ends of the Pt layer are used to measure dc ISHE
voltage directly with a nanovoltmeter. Sample B consists of a
single-crystal YIG slab with the dimensions 10, 3, and 1 mm,
cut with faces along (111) from a boule grown by the
Czochralski method. The faces are optically polished, and one
of them is fully covered with a 6-nm-thick Pt layer. The aim
of using the two samples is to compare the dc ISHE voltages
in an 8-μm-thick YIG film and in a 1-mm-thick single-crystal
YIG slab measured with the same setup. Since the predicted
magnon diffusion length is 26 μm, this would provide a test
for the calculated variation of the LSSE with the YIG layer
thickness.

Figure 4(b) shows the dependence of the voltage created by
the spin current due to the SSE on the magnetic field intensity
(applied perpendicularly to the ISHE current direction) for
three values of the temperature difference �T across the
Pt/YIG/GGG structure: 4, 8, and 12 K. The change in
the sign of the voltage with the reversal in the direction of the
field is due to the change in the sign of the spin polarization.
The data show that for a fixed field direction, V does not
depend on the value of the magnetic field, in agreement with
the model. Figure 4(c) shows the measured variation of the
voltage V in sample A with the temperature difference �T for
an applied field H = ±1 kOe. The linear dependence of V on
�T confirms the prediction of Eqs. (26) and (38). Figure 4(d)
shows the variation of V with �T measured in sample B.
Since the thicknesses of the Pt/YIG/GGG structure and of the
Pt/YIG slab are 0.5 and 1.0 mm, respectively, for a given �T ,
the temperature gradient ∇T is twice as large in the former
as in the latter. One important conclusion drawn from the data
of Fig. 4(c) and 4(d) is that the voltage due to the SSE spin
current in an 8-μm-thick YIG film is comparable to that in a
1-mm-thick YIG slab. In other words, for a fixed temperature
gradient, V is independent of the FMI layer thickness in the
thickness range of the measurements. This result seems to
contradict the predictions of the model in Eq. (38), since
sample A has tFM 	 lm and the factor expressing the influence
of FMI thickness in Eq. (25) is ρ 	 1, while sample B has
tFM � lm and consequently ρ ≈ 1. However, while the original
version of this paper was in the review process, the authors
learned of the recent measurements by Kehlberger et al.
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FIG. 5. (Color online) Symbols represent data of Ref. [57] for
the normalized LSSE for three series of YIG(tFM)/Pt bilayers. The
solid line is a least-square deviation fit with Eq. (25).

of the YIG thickness dependence of the LSSE in YIG/Pt
bilayers done with very thin YIG layers [57].

Figure 5 shows data of Ref. [57] for the LSSE measured
by the ISHE voltage in three series of YIG/Pt bilayers with
varying YIG thickness normalized to the corresponding values
at large thicknesses. This normalized quantity corresponds
precisely to the thickness factor ρ of our model. We have
used the same symbol to represent the data obtained with the
three series of sample. The solid line in Fig. 5 represents
a least-square deviation fit of Eq. (25) to the data, which
yields a magnon diffusion length lm = 70 nm. The possible
explanation for this small diffusion length compared to the
one calculated before with Eq. (14) is that its relation with the
diffusion coefficient should involve the magnon lifetime and
not the spin-lattice relaxation time. In fact, with lm = 70 nm
and Dm = 6.6 cm2/s, we obtain l2

m/Dm ≈ 0.7 × 10−10 s,
which is on the same order of magnitude of the averaged
magnon lifetime calculated in the Appendix.

Now we can use Eq. (38) to calculate the spin-current
density created by a given temperature difference �T across
a YIG/Pt bilayer. For �T = 15 K in a sample that is 0.5 mm
thick, the temperature gradient is ∇T = 300 K/cm. Using
lm = 70 nm, km = 2 × 107 cm−1, BS = 2.2 × 10−4, B1 =
0.55, B2 = 5.1 × 10−3, 4πM = 1.76 kG, γ = 1.76 × 107 s−1

Oe−1, and g
↑↓
eff = 2 × 1014 cm−2, for tFM � lm and T = 300 K,

Eq. (38) gives a spin-current density J z
S (0) ≈ 10−8 erg/cm2.

Using this value for the spin-current density in Eq. (26); the
parameters for Pt of λN = 4 nm, θSH = 0.08, and w = 0.2 cm;
and the measured resistance RN = 166�, we obtain a voltage
V ≈ 5μV, which is on the order of magnitude agreement with
the experimental values.

The second set of experiments was conducted to test a
crucial feature of the model: the dependence of the ISHE
voltage on the sample temperature. A sample made of a
strip of Pt (6 nm)/YIG (8 μm)/GGG (0.5 mm) prepared
similarly to sample A, as described earlier, was mounted
directly on the copper base of a Displex closed cycle cryostat
and glued with General Electric varnish. The temperature
gradient is created by heating the Pt side with a heater, made
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FIG. 6. (Color online) Comparison of the experimental data with
calculated temperature dependence of ISHE voltage V created by the
LSSE in YIG/Pt. The symbols represent the voltage measured with
�T = 3 K (blue) and 7 K (red). The dotted lines are calculated with
the interfacial thermal spin pumping mechanism [38], while the solid
lines are calculated with the magnon spin-current model presented
here. The inset shows the measured resistance of the Pt layer and the
linear fit used in the calculation of the voltage.

of a resistive wire in zigzag between two sheets of Kapton
(polyimide), while the opposite GGG side is maintained at the
base temperature Tb of the cryostat. The temperature difference
�T across the Pt/YIG/GGG structure was measured with
a Cu-constantan-Cu differential thermometer made of two
thermocouple junctions, one in contact with a thin copper
strip placed between the heater and the Pt layer and the
other in contact with the base. The Pt/YIG temperature used
to plot the data is T = Tb + �T , where Tb is the cryostat
base temperature. The ISHE voltage was measured with a
nanovoltmeter by means of two Cu wires attached with silver
paint to the ends of the Pt layer. The Cu wires were also used
to measure the resistance RN of the Pt layer as a function of
temperature. The symbols in Fig. 6 represent the ISHE voltage
measured with �T = 3 and 7 K under a transverse magnetic
field of H = 1 kOe. The residual contribution from contacts
and pickup is removed by subtracting the voltages measured
with the fields in opposite directions. In order to compare the
data with the results of the model, it is necessary to take into
account that the Pt layer resistance and the spin-Hall angle
vary with T . The measurements shown in the inset of Fig. 6
are fit with RN (T ) ≈ RN (300)[0.7 + 0.3(T/300)]. Since there
are no systematic data for the temperature dependence of
the spin-Hall angle [67], we consider that the origin of
RN and the ISHE rely on the scattering of the conduction
electrons in Pt and assume that θSH(T ) follows the same
T dependence as RN (T ). The diffusion length λN also may
vary with temperature. However, in the thickness range of our
experiments, λN in the numerator of Eq. (26) approximately
cancels out the one in the denominator of the tanh function. The
curves in Fig. 6 were calculated with Eq. (26) using the spin
currents shown in Fig. 3 and RN (T ), θSH(T ) above, adjusted
to the measured ISHE voltages at T = 300 K. While the
dotted lines representing the mechanism of interfacial thermal
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spin pumping falling off with temperature much faster than
with the data, the solid lines corresponding to the magnon
spin-current model presented here are in good agreement with
the experimental data.

In summary, we have shown that the mechanism behind the
LSSE observed in bilayers made of a FMI and a NM relies
on the bulk magnon spin current created by the temperature
gradient across the thickness of the FMI. The spin current
pumped into the NM layer provides continuity for the spin
current at the FMI/NM interface, and it is essential for the
existence of the SSE and its detection by the voltage created
by the ISHE. The results of the model are in good quantitative
agreement with the measured dependences of the ISHE voltage
due to the LSSE in bilayers of YIG/Pt on the YIG thickness
and on the sample temperature.
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Amparo à Ciência e Tecnologia do Estado de Pernambuco
and in Chile by the Millennium Science Nucleus “Basic
and Applied Magnetism” Contract No. P10-061-F and Fondo
Nacional de Desarrollo Cientı́fico y Tecnológico Contract
No. 1130705.

APPENDIX: CALCULATION OF THE MAGNON
RELAXATION RATE IN YIG

The lifetime of magnon plays an important role in their
transport properties. The relaxation rate, which is the inverse
of the lifetime, has been investigated for low wave number
magnons in YIG both theoretically and experimentally [62].
Detailed measurements of the relaxation rate have been
made for magnons with wave numbers k < 106 cm−1 using
microwave parametric pumping techniques [74]. In single-
crystal YIG, the relaxation rate varies linearly with k and is
the range ηk ≈ 106 − 108 s−1 at room temperature. The data
are well explained by 3-magnon relaxation processes [62]
that predict a linear variation with k and with temperature,
ηk3m ∝ kT . However, the magnons that contribute most to the
integrals appearing in the transport properties have larger wave
numbers, and their relaxation rates have not been investigated
in detail. Some experiments with large microwave frequen-
cies [75,76] indicate that 4-magnon processes dominate the
relaxation for k > 106 cm−1. The spin-wave relaxation due to
4-magnon processes has been investigated in antiferromagnets
[77,78], which have data obtained with inelastic neutron
scattering [79,80], but to the authors’ knowledge there are
no experimental data or calculations for ferromagnets. Here,
we present a calculation of the 4-magnon relaxation for YIG.
The 4-magnon interaction Hamiltonian is dominated by the
exchange interaction [62,77,78,81] that has parameters well
characterized for YIG. The relaxation rate of a magnon with
frequency ωk and wave vector �k due to a process in which
two magnons are annihilated and two magnons are created

is [77,78]

ηk = 2π

�
(e�ω1/kBT − 1)

∑
k2,k3,k4

|C1234|2

× e�ω2/kBT n̄k2n̄k3n̄k4�(k)δ(ω), (A1)

where �(k) = �(�k + �k2 − �k3 − �k4) and δ(ω) = δ(ωk + ω2 −
ω3 − ω4) are the Kroenecker delta and the Dirac delta function
of the momentum and energy conservation, respectively; n̄k is
the occupation number of the k magnon given by the Bose-
Einstein distribution; and C1234 is the interaction coefficient
given by

C1234 = zJ

2N
(γk + γk2 + γk3 + γk4 − 4γk4−k2), (A2)

where z and J are the nearest-neighbor number and exchange
interaction constant, related to magnon zone boundary energy
by zJ = �ωZB/(4Sal); S is the spin per unit cell; N is the
number of cells (with volume a3

l ); and γk = cos(πk/2km) is a
geometric factor. The relaxation rate in Eq. (A1) was calculated
numerically, similarly to what was done for antiferromagnets
[78]. We assume spherical energy surfaces in the k space with
a maximum radius km and dispersion relation ωk = ωZB(1 −
γk), and we define �kS = �k + �k2 = �k3 + �k4 so that the energy
delta function can be transformed as

δ(ω) = 2kmk4δ(u − u0)

ωZBπkSk3 sin(πk4/2km)
, (A3)

where u = cos θ3, θ3 being the angle between �k3 and �kS ; u0

is the value of u for which energy is conserved ωk + ω2 =
ω3 + ω4. The calculation proceeds as follows: The sum over
k4 is eliminated by momentum conservation, and the other
sums are converted into integrals over the Brillouin zone with∑→ N�/(2π )3

∫
d3k. Then the integrals over the azimuthal

angles ϕ3 and ϕ4 are freely evaluated, giving (2π )2, so that the
relaxation rate becomes

ηk1 = (e�ωk/kBT − 1)
N2a6

l

�(2π )3

∫
k2

2dk2

∫ π

−π

sin θ2dθ2

×
∫

k2
3dk3

∫ 1

−1
duδ(u − u0)|C1234|2n̄k2n̄k3n̄k4

× 2kmk4

ωZBπkSk3 sin(πk4/2km)
. (A4)

The integrals in k2, k3, and θ2 were evaluated numerically
by coarse sums over a spherical Brillouin zone for a fixed
temperature T and varying wave number k, or for fixed
k and varying T . The sums were carried out by dividing
the integration range in 300–1000 points, letting k2, k3, and
θ2 assume all possible values and considering to the sums
only those values for which |u0| � 1, where u0 is calculated
from k2

4 = k2
S + k2

3 − 2kSk3u0. The calculation reveals that the
relaxation rate increases monotonically with k, but drops near
the zone boundary. This drop can be eliminated by considering
umklapp processes, in which the momentum conservation
assumes the form �k + �k2 = �k3 + �k4 + �G, where �G is a vector
of the reciprocal lattice. The difficulty in defining �G in a
spherical Brillouin zone is resolved by assuming it is either
parallel or perpendicular to �k and has the amplitude 2km.
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FIG. 7. (Color online) The dotted curve represents the calculated
relaxation rate of magnons in YIG at T = 300 K as a function of the
normalized wave number q = k/km. The solid curve is a polynomial
fit. The temperature dependence of the relaxation rate for q = 0.5 is
shown in the inset.

Figure 7 shows the calculated relaxation rate for magnons
in YIG as a function of the wave number for T = 300 K. It

is noticeable that the relaxation rate for k ∼ 107 cm−1 is on
the order of ηk ∼ 1010 s−1, which corresponds to a magnon
lifetime of τk ∼ 10−10 s, much shorter than the values usually
quoted in the literature [38,53,54]. In Fig. 7, we also show
a polynomial fit to the calculated 4-magnon relaxation rate
described by

ηk4m = (10.2q2 − 6.5q3) × 1010 s−1. (A5)

Calculation of the relaxation rate for fixed k in the middle
of the Brillouin zone shows that it varies with temperature
approximately as T 2.2, as shown in the inset of Fig. 7.
Considering 3- and 4-magnon processes, one can write the
total magnon relaxation rate at T = 300 K as

ηk = (1.0q + 10.2q2 − 6.5q3) × 1010s−1, (A6)

where the coefficient of the 3-magnon term was obtained
from experimental data at q ∼ 10−2. Considering a relaxation
rate at the zone center η0 ∼ 2 × 107 s−1 and the temperature
dependences of the 3- and 4-magnon relaxations, one can write

ηk = 1.0 + 500q

(
T

300.

)
+ (5100q2 − 3250q3)

(
T

300.

)2

,

(A7)

which is the expression used in the integrations in Eqs. (33)
and (37).
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