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We present the high-temperature expansion (HTE) up to tenth order of the specific heat C and
the uniform susceptibility χ for Heisenberg models with arbitrary exchange patterns and arbitrary spin
quantum number s. We encode the algorithm in a C++ program provided in the Supplemental Material
[http://link.aps.org/supplemental/10.1103/PhysRevB.89.014415] which allows to explicitly get the HTE series for
concrete Heisenberg models. We apply our algorithm to pyrochlore ferromagnets and kagome antiferromagnets
using several Padé approximants for the HTE series. For the pyrochlore ferromagnet, we use the HTE data for
χ to estimate the Curie temperature Tc as a function of the spin quantum number s. We find that Tc is smaller
than that for the simple-cubic lattice, although both lattices have the same coordination number. For the kagome
antiferromagnet, the influence of the spin quantum number s on the susceptibility as a function of renormalized
temperature T/s(s + 1) is rather weak for temperatures down to T/s(s + 1) ∼ 0.3. On the other hand, the specific
heat as a function of T/s(s + 1) noticeably depends on s. The characteristic maximum in C(T ) is monotonously
shifted to lower values of T/s(s + 1) when increasing s.
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I. INTRODUCTION

Magnetic systems described by the Heisenberg
Hamiltonian,

H =
∑

μ<ν

Jμνsμ · sν (1)

are an active field of theoretical and experimental research.1

The accurate description of these quantum many-body systems
is the basic aim of theoretical investigations. The comparison
with experimental studies typically requires the calculation of
the temperature dependence of physical properties, such as
the susceptibility χ and the specific heat C. For unfrustrated
spin systems, the quantum Monte Carlo (MC) technique is a
suitable tool to provide precise data, but it is not applicable
due to the sign problem for frustrated quantum spin models.2

Hence, reliable results for strongly frustrated quantum spin
models are notoriously rare. Since there is very active research
in the field of frustrated quantum magnetism, see, e.g.,
Refs. 1, 3, and 4, and references therein, theoretical methods
to calculate thermodynamic quantities in the presence of
frustration are highly desirable. One of the most interesting
systems is the kagome Heisenberg antiferromagnet, which we
will consider in Sec. III B. This highly frustrated magnetic
system has extensively been investigated theoretically for spin
quantum number s = 1/2, see, e.g., Refs. 5–17 and in the clas-
sical limit s → ∞, see, e.g., Refs. 18–22. On the experimental
side, several kagome compounds have s > 1/2, however,
the theoretical study of quantum models with s > 1/2 lags
behind.

A universal straightforward approach to calculate ther-
modynamic quantities for unfrustrated as well as frustrated
magnetic systems is the high-temperature expansion (HTE).
For Heisenberg models, this method was introduced in an
early paper by Opechowski,23 which is based on a method of

approximate evaluation of the partition function. In the 1950s
and 1960s, the method was further developed and was widely
applied to various Heisenberg systems, see, e.g., Refs. 24–28.

The HTE method is now well established, and its applica-
tion to magnetic systems is a basic tool in theoretical physics,
see Refs. 29 and 30, and references therein. Now, for the
Heisenberg model with nearest-neighbor (NN) interaction on
standard lattices, typically, the HTE is known up to high
orders, see, for example, Refs. 31, 32, and 33 where the
HTE up to 14th order for the triangular lattice and up to
16th order for the kagome and hyperkagome lattices were
published. On the other hand, often, magnetic compounds
and corresponding spin models are of interest where two,
three, or even more exchange constants are relevant. Typical
examples are magnetic systems with nearest-neighbor, next-
nearest-neighbor, and third-nearest-neighbor couplings, see,
e.g., Ref. 34. Moreover, in most of the quasi-low-dimensional
magnetic compounds, interchain or interlayer couplings play
a role, see, e.g., Ref. 35. Note further that available high-order
HTEs often are restricted to spin quantum number s = 1/2,
see, e.g., Refs. 31, 32, 33, 36, and 37 as examples. As a rule, for
such more complex exchange geometries and/or higher spin
quantum numbers s > 1/2, relevant for the interpretation of
experimental data, the HTE is not available in higher orders.
An earlier attempt to bridge this gap was published in Ref. 38
where general analytical HTE expressions were given for
arbitrary s and arbitrary Heisenberg exchange couplings up to
order three. Very recently, the present authors have published
a significant extension of this paper using computer algebraic
tools.39 In that paper, the HTE algorithm for general spin-s
Heisenberg models up to eighth order was presented. This
algorithm was encoded as a C++ program. The download40

and use are free. Thus, this algorithm provides a flexible tool
for the community to compute the HTE for the susceptibility
and the specific heat, which can be used to analyze the
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thermodynamics of spin models, to check approximations,
and, last but not least, to compare experimental data with model
predictions.

In our previous paper,39 we considered several mod-
els. Our results demonstrated that the eighth-order HTE
with a subsequent Padé approximation is able to cor-
rectly describe the maximum of the susceptibility of a
square lattice s = 1/2 Heisenberg antiferromagnet, can yield
better results for spin systems in dimension d > 1 than
full exact diagonalization, and gives good agreement with
Monte Carlo data for the classical pyrochlore antiferromag-
net down to temperatures of about 40% of the exchange
coupling.

The aim of the present paper is twofold. On one hand,
we will extend our earlier approach39 up to tenth order for
general Heisenberg Hamiltonians (Sec. II). Again, we provide
this new extended tool as a freely accessible C++ program, see
Supplemental Material41 and Ref. 42, where, except for the
code, a manual on how to use the code can also can be found.
On the other hand, results for the susceptibility and the specific
heat for the spin-s Heisenberg model on the pyrochlore and
the kagome lattices are provided (Sec. III), which we will use
to discuss the influence of the spin quantum number on the
thermodynamics of these models. In Appendixes A and B,
we explicitly present the HTE series for the pyrochlore and
the kagome spin-s Heisenberg magnets. In the Supplemental
Material,41 we present the detailed results for the tenth-order
HTE of specific heat and susceptibility and the auxiliary
quantities to be introduced in Sec. II.

II. BRIEF EXPLANATION OF THE METHOD

We consider the HTE expansion of extensive quantities f ,
e.g., susceptibility χ or specific heat C, of the form

f �(β) =
∞∑

n=0

c�,f
n βn. (2)

Here β is the inverse dimensionless temperature β = J
kBT

,
where J is a typical exchange energy, and the index � indicates
the dependence on the spin system �, which is given by the
Hamiltonian (1) and the value of the spin quantum number s.
A further dependence on the magnetic field is possible but is
neglected in this paper. As mentioned in the Introduction, we
do not consider special systems � but rather look for a general
HTE expansion valid for arbitrary Heisenberg systems.

Interestingly, the coefficients c
�,f
n in (2) can be written in

the form of scalar products between two vectors Q and p

such that the first vector Q only depends on the spin system
� but not on s, and the second one p only depends on the
considered quantity f and the spin quantum number s. The
index set of vectors p and Q can be identified with finite sets
G

f
n of multigraphs, see Ref. 39 for the details. Thus, the scalar

product of Q and p is a sum over multigraphs G ∈ G
f
n ,

c�,f
n =

∑

G∈G
f
n

Q�(G)pf (G). (3)

To give an elementary example, consider f = χ , the zero-field
uniform susceptibility. Simplifying the notation a bit, we may

write

χ (β) = Q(G0)p0β + Q(G1)p1β
2

+ [Q(G2)p2 + Q(G3)p3]β3 + O(β4). (4)

Here

p0 = 1
3 r, r ≡ s(s + 1), (5)

p1 = − 2
9 r2, p2 = − 1

18 r2, p3 = 2
27 r3, (6)

G0 = •, G1 = , G2 = , G3 = , (7)

Q(G0) = N (number of spins), (8)

Q(G1) =
∑

μ<ν

Jμν, Q(G2) =
∑

μ<ν

J 2
μν, (9)

Q(G3) =
∑

λ<μ<ν

JλμJμν. (10)

In this example, the pf (G)’s are polynomials in the variable
r ≡ s(s + 1) of the form pf (G) = ∑n

ν=0 aν rν , where n is the
order of HTE in (3). This holds, in general. Also, generally, the
Q�(G)’s are polynomials in the coupling constants Jμν that can
be calculated by considering the various ways of embedding
graphG into the spin system. For example, each mapping of the
three-chain onto three spins with numbers λ < μ < ν

gives rise to a term JλμJμν in Q�(G). The condition λ <

μ < ν guarantees that different embeddings resulting from
symmetries of G are counted only once. Also this is typical for
the general situation.

If the spin system is an infinite lattice, the Q�(G)’s have
to be redefined by first considering finite realizations of �

and then dividing by the number of spins N and considering
the thermodynamic limit N −→ ∞. If G is not connected,
then Q�(G) would scale with Nc, where c is the number
of connected components of G. Hence, for the sake of
consistency, the sets G

f
n must only consist of connected graphs.

Keeping this in mind, the coefficients c
�,f
n obtained represent

rigorous results on infinite spin lattices that are notoriously
rare.

For the determination of Q�(G), there exist effective
computer programs. On the other hand, we have determined
the universal polynomials pf (G) for f = χ,C and γ (G) � 10,
see Ref. 41. The method used has been explained to some detail
in Ref. 39 and will only be sketched here. The crucial auxiliary
data are the polynomials p(t)(G)(r) resulting from the moments
of the Heisenberg Hamiltonian (1) via

t̃n ≡ Tr Hn = (2s + 1)n
∑

G∈G
(t)
n

Q�(G)p(t)(G). (11)

In this case, the polynomials can be shown to be of the
form p(t)(G) = ∑γ

ν=g aνr
ν , where g = g(G) is the number of

vertices of G and γ = γ (G) is the number of edges. These
polynomials have essentially been determined by numerically
calculating Tr Hn and Q�(G) for a suitable number of
randomly chosen spin systems and then solving the linear
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system of equations (11) for p(t)(G). This has to be repeated
for different values of s = 1/2,1,3/2, . . ., in order to estimate
the rational coefficients of the polynomials p(t)(G)(r), r =
s(s + 1). Additionally, partial analytical results from Refs. 29
and 39 have been used, and various cross checks have been
performed.

As described in Ref. 39, from p(t)(G), one deduces the
“magnetic moments,”

μ̃n ≡ Tr
(
S2

3Hn
) = (2s + 1)n

∑

G∈G
(m)
n

Q�(G)p(m)(G), (12)

and, from t̃n and μ̃n, the HTE series for C(β) and χ (β).
In this last step, products of Q�(Gμ) will occur as well as
contributions from disconnected graphs. In order to obtain
manifestly extensive quantities, these various nonextensive
terms have to cancel by means of certain “product rules” of
the form

Q�(Gμ)Q�(Gν) =
∑

λ

cλ
μνQ

�(Gλ). (13)

All calculations described in this section involve a total number
of 7355 graphs. Especially, those steps leading from the
moments to the HTE series have been performed with the
aid of the computer algebra system MATHEMATICA 8.0.

III. APPLICATIONS

The region of validity of the HTE can be extended by Padé
approximants43 (see also, Refs. 29 and 30). The Padé approxi-
mants are ratios of two polynomials [m,n] = Pm(x)/Rn(x) of
degrees m and n, and they provide an analytic continuation of a
function f (x) given by a power series. As a rule, approximants
with m ∼ n provide the best results. Since we have a power
series up to tenth order, here we use the corresponding [4,6],
[5,5], and [6,4] Padé approximants. As in our previous paper,39

we will present the temperature dependence of physical
quantities using a renormalized temperature T/s(s + 1).

A. The pyrochlore Heisenberg ferromagnet

The pyrochlore antiferromagnet has attracted much atten-
tion over the past years as an example of a highly frustrated
three-dimensional (3D) magnetic system, see, e.g. Refs. 44–
46, and references therein. In our previous paper,39 we have
already presented the analytical expressions for χ and C up
to order eight as well as the temperature dependence of the
susceptibility for the pyrochlore Heisenberg antiferromagnet
where very good agreement of the [4,4] Padé approximant
with classical Monte Carlo results down to temperatures
of about 40% of the exchange coupling was found. The
new terms of HTE in orders nine and ten can be found in
Appendix A.

Here we consider the ferromagnetic case. We consider only
nearest-neighbor bonds and set Jμν = J = −1 for neighboring
sites μ and ν. We want to demonstrate that the tenth-order HTE
is an appropriate tool to determine the critical (Curie) tem-
perature Tc for 3D ferromagnets. In Fig. 1, we show the Padé
approximant [4,6] of the inverse susceptibility 1/χ . We see the
typical behavior of a 3D ferromagnet. The extreme quantum
case s = 1/2 is somewhat separated from the other curves, but
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FIG. 1. (Color online) Padé approximant [4,6] of the inverse
susceptibility 1/χ of the pyrochlore Heisenberg ferromagnet for
various spin quantum numbers s.

for s > 1, the curves are very close to each other. The zeros
of the 1/χ (T ) curves can be understood as an estimate of
the critical temperature. More sophisticated methods exploit
the behavior of the expansion coefficients cn, see Eq. (2), for the
susceptibility to determine Tc, see, e.g., Refs. 24, 26, and 47.
One variant is to analyze the quotient qn = cn/cn−1. If the
critical behavior of χ is given by χ (T ) ∝ (T − Tc)−λ, T →
Tc + 0, in the limit n → ∞, this quotient depends linearly on
1/n according to qn = kTc

J
+ (λ − 1) kTc

Jn
. Hence, we get kTc

J
by

limn→∞ qn = kTc

J
.

We performed a linear fit of our HTE data for qn including
data points for n = 5, . . . ,10 to get an approximate value for
Tc. Our results for Tc are shown in Fig. 2. For comparison,
we also show Tc data for the simple-cubic ferromagnet where
precise Monte Carlo data are available for s = 1/2 (Ref. 48)
and for s → ∞ (Ref. 49), which yield an impression of the
accuracy of the HTE estimate of Tc. Except for the (s = 1/2)-
pyrochlore case, the qn data follow a straight line reasonably
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FIG. 2. (Color online) Curie temperature Tc in dependence on
the inverse spin quantum number 1/s of the pyrochlore Heisenberg
ferromagnet for s = 1/2, 1, 3/2, 2, 5/2, 15/2, and s → ∞. For
comparison, we also show the Tc values for the simple-cubic
Heisenberg ferromagnet. The Monte Carlo data (MC) for s = 1/2
and s → ∞ are taken from Refs. 48 and 49, respectively.
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FIG. 3. (Color online) (a) Specific heat C and (b) susceptibility χ

of the s = 1/2 kagome Heisenberg antiferromagnet. For comparison,
we show the raw data of the 15th/16th-order HTEs and the
corresponding Padé [7,8] approximant taken from Ref. 32.

well (see also, the error bars in Fig. 2). For the (s = 1/2)-
pyrochlore ferromagnet, the linear fit of the qn data due to
extremely large fluctuations in the data fails.50 The comparison
with the Monte Carlo data for the simple-cubic ferromagnet
demonstrates that, indeed, the HTE series up to order ten for
the susceptibility may yield accurate values for Tc. Already
the poles in the Padé approximants provide reasonable results
(we have about a 14% deviation from Monte Carlo data for
s = 1/2 and about 9% for s → ∞). The linear fit of qn is
even very close to the Monte Carlo results. Unfortunately, we
did not find data for Tc of the pyrochlore ferromagnet in the
literature to compare with our HTE data.

Comparing the pyrochlore and simple-cubic lattices, we
find that Tc is significantly lower for the pyrochlore lattice.
(Note that a simple molecular-field approximation would
lead to identical values of Tc since both lattices have the
same coordination number.) A similar finding was reported
in Ref. 51 where the Curie temperatures of the stacked
square and a stacked kagome ferromagnet were compared.
In analogy to the discussion in Ref. 51, we may attribute
the lower Tc values of the pyrochlore lattice to geometric
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FIG. 4. (Color online) (a) Specific heat C and (b) susceptibility χ

of the classical kagome Heisenberg antiferromagnet. For comparison,
we show the Monte Carlo data (MC) taken from Ref. 20.

frustration. For the ferromagnetic ground state, frustration is
irrelevant, i.e., the ground-state energies are identical for the
pyrochlore and simple-cubic ferromagnets. However, due to
frustration, the upper bound of the eigenenergies (related to the
absolute value of the ground-state energy of the corresponding
antiferromagnet) is much lower for the pyrochlore ferromagnet
than that for the simple-cubic lattice. Hence, one can expect
that excited states with antiferromagnetic spin correlations
have lower energy for the pyrochlore ferromagnet, resulting
in a larger contribution to the partition function at a certain
finite temperature T in comparison with the simple-cubic
ferromagnet.

B. The kagome Heisenberg antiferromagnet

The two-dimensional kagome antiferromagnet is one of
the most interesting and challenging spin models. There
are numerous papers investigating the ground state of the
s = 1/2 case, see, e.g., Refs. 5–17, 52, and 53, and references
therein, but so far, no conclusive answer on the nature of the
ground state and the existence of a spin gap has been found.
The finite-temperature properties also are widely discussed
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FIG. 5. (Color online) HTE data for the susceptibility χ of the
spin-s kagome Heisenberg antiferromagnet, (a) Padé [4,6] and
(b) Padé [5,5]. For comparison, we show the Monte Carlo data (MC)
taken from Ref. 20.

for the spin-1/2 model, including the analysis of the HTE
series.32,54–60 On the other hand, there are several kagome
compounds with spin quantum number s > 1/2. We mention
the jarosite compounds with s = 5/2 (see, e.g., Refs. 61
and 62), the magnetic compounds KCr3(OD)6(SO4)2 (Ref. 63)
and SrCr9pGa12−9pO19 (Ref. 64) with s = 3/2, and the
recently synthesized BaNi3(OH)2(VO4)2 (Ref. 65) compound
with s = 1. For s = 5/2, one may expect that a classical Monte
Carlo approach18–22 might be reasonable, but for s = 1 and for
s = 3/2, certainly quantum effects are important. However, we
will see that at least for the specific heat, the classical Monte
Carlo data significantly deviate from the data for s = 5/2, see
below.

We present the HTE series for χ and C up to order ten and
for arbitrary s in Appendix B. Remember that, in Ref. 32, the
HTE series for s = 1/2 for χ (C) was given up to order 15
(16).66 As a benchmark test, in Figs. 3 and 4, we first compare
our HTE-Padé data with available data for the s = 1/2 model32

and for the classical model.20 This comparison leads to the
conclusion that: (i) the [4,6] and [5,5] Padé approximants are
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FIG. 6. (Color online) Specific heat C of the spin-s kagome
Heisenberg antiferromagnet, (a) Padé [4,6] and (b) Padé [5,5].
For comparison, we show the Monte Carlo data (MC) taken from
Ref. 20.

favorable and that (ii) our HTE-Padé data are quite accurate
down to temperatures T/s(s + 1) ∼ 0.5 (T ∼ 0.4) for s = 1/2
(classical limit). In particular, the maximum in C, present for
the s = 1/2 model at T/s(s + 1) ∼ 0.9, cf. Refs. 32 and 54–
59, is correctly described by our Padé approximants. Note,
however, that for s = 1/2, there are indications for a second
low-temperature maximum in C(T ) below T/s(s + 1) = 0.1,
see Refs. 32, 55, 56, and 58, which is not covered by our
HTE approach. Another characteristic feature is the shoulder
present in χ (T ) for s = 1/2 at about T/s(s + 1) = 1, which
also is well described by our Padé approximants.

In Figs. 5 and 6, we compare the χ (T ) (Fig. 5) and C(T )
data (Fig. 6) for spin quantum numbers s = 1/2,1, . . . ,7/2,∞.
The susceptibility data clearly show that all curves for s > 1/2
form a narrow bundle in the temperature range accessible
by our approach. Only for s = 1/2 is the χ (T ) curve out of
this bundle. Hence, one can argue that, for s > 1/2, quantum
effects in χ are almost negligible at normalized temperatures
T/s(s + 1) � 0.4. The situation is quite different for the
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FIG. 7. (Color online) (a) Height Cmax and (b) position Tmax of the
maximum in the specific heat C in dependence on the inverse spin
quantum number 1/s of the kagome Heisenberg antiferromagnet. The
Monte Carlo results for s → ∞ are taken from Ref. 20 (MC I) and
Ref. 21 (MC II). Note, however, that the maximum in C(T ) for the
classical model is not well pronounced, rather there is a fairly broad
region of high values of C.21

specific heat C, cf. Fig. 6. The maximum in C(T ), already
mentioned above for s = 1/2, is evidently dependent on the
spin quantum number s: Its position Tmax/s(s + 1) is shifted to
lower normalized temperatures, and its height Cmax increases
with growing s. Hence, the quantum effects seem to also be
important for quite large values of s. The basic difference
in the influence of s on χ (T ) and C(T ) can be attributed
to an exceptional density of low-lying singlet excitations,
see, e.g., Ref. 6. These nonmagnetic excitations are irrelevant
for χ but are important for C. Hence, our HTE-Padé data
for C(T ) can also be understood as an indirect indication
for the existence of an unusual large density of low-lying
singlet excitation for s > 1/2. In Fig. 7, we show the position
Tmax/s(s + 1) and the height Cmax as a function of 1/s. From
Fig. 6(a), it is obvious that, for the [4,6]-Padé approximant,
a maximum exists only for s < 5/2. The tendency of how
the classical limit is approached is clearly visible from our

HTE data. There is, indeed, a remarkably strong dependence
on the spin quantum number. The slope of the corresponding
curves shown in Fig. 7 is even increasing when approaching
the classical limit 1/s = 0. Let us mention that, for the
above discussion of the maximum of the specific heat, the
eighth-order HTE presented in our previous paper39 is not
appropriate since the corresponding [4,4]-Padé approximant
exhibits an unphysical pole in the vicinity of the maximum
for s > 1/2.

IV. CONCLUSIONS

In this paper, we present the HTE series up to tenth order
of the specific heat C and the uniform susceptibility χ for
Heisenberg models with arbitrary exchange patterns Jμν and
spin quantum number s. Our HTE scheme is encoded in a
C++ program using, as input, the exchange matrix Jμν and
spin quantum number s. Using Padé approximants for the
HTE series, the scheme can be used to discuss thermodynamic
properties of general Heisenberg systems down to moderate
temperatures of about T/s(s + 1) ∼ 0.4 · · · 0.5 and, thus, for
the interpretation of experimental data in a rather wide temper-
ature range, especially, if other precise methods, such as the
quantum Monte Carlo method or the finite-temperature density
matrix renormalization-group approach are not applicable.
We apply our scheme to the 3D pyrochlore ferromagnet to
calculate the Curie temperature Tc in dependence on the
spin quantum number s. Comparing Tc of the pyrochlore
ferromagnet with corresponding values for the simple-cubic
ferromagnet, we find that the triangular configuration of bonds
present in the pyrochlore lattices leads to a noticeable lowering
of Tc. Using our HTE scheme for the kagome antiferromagnet,
we discuss the influence of s on the temperature dependence
of C and χ . Although the effect of s on χ in the accessible
temperature range is rather weak, there is a well-pronounced
shift in the maximum in the temperature dependence of specific
heat to lower renormalized temperatures T/s(s + 1) when
increasing s.
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APPENDIX A : THE HIGH-TEMPERATURE EXPANSION
FOR THE SUSCEPTIBILITY AND THE SPECIFIC HEAT

FOR THE HEISENBERG MODEL ON THE
PYROCHLORE LATTICE

The general formulas for the susceptibility and the specific
heat for the Heisenberg model on the pyrochlore lattice with
NN exchange constant J up to eighth order can be found in
Ref. 39. For the sake of consistency with this reference, we
have set β = 1

kBT
in Appendixes A and B, which is slightly

different from the definition in Sec. II. The formulas for the
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ninth and tenth orders read for the susceptibility,

χ (β) = N

J

∞∑

n=1

cn(Jβ)n,

c9 = 1

5143 824 000
r2(−2710 665 + 142 840 908r − 2195 288 001r2 + 14 497 581 366r3 (A1)

− 45 972 407 664r4 + 77 794 619 872r5 − 82 650 432 896r6 + 46 730 617 088r7),

c10 = − 1

169 746 192 000
r2(51 519 240 − 2994 073 848r + 51 386 055 291r2

− 396 940 170 060r3 + 1579 391 570 694r4 − 3442 568 263 344r5 + 4692 701 814 464r6

− 4374 573 206 272r7 + 2124 654 831 616r8).

and for the specific heat,

C(β) = Nk

∞∑

n=2

dn(Jβ)n,

d9 = − 1

285 768 000
r2(−1807 110 + 91 861 560r − 1255 862 151r2 + 6268 644 864r3

− 8882 615 472r4 − 1691 186 688r5 − 21 317 760r6 + 1042 017 280r7), (A2)

d10 = − 1

6286 896 000
r2(−25 759 620 + 1451 298 330r − 22 610 800 701r2

+ 142 189 820 847r3 − 349 296 723 134r4 + 154 955 752 848r5

+102 919 717 624r6 + 82 927 576 960r7 − 11 100 907 520r8),

where r = s(s + 1).

APPENDIX B : THE HIGH-TEMPERATURE EXPANSION FOR THE SUSCEPTIBILITY AND THE
SPECIFIC HEAT FOR THE HEISENBERG MODEL ON THE KAGOME LATTICE

The general formulas for the Heisenberg model on the kagome lattice with NN exchange constant J read for the susceptibility,

χ (β) = N

J

∞∑

n=1

cn(Jβ)n,

c1 = 1

3
r,

c2 = −4

9
r2,

c3 = 1

9
r2(−1 + 4r),

c4 = − 4

405
r2(3 − 28r + 37r2),

c5 = 1

4860
r2(−45 + 702r − 1892r2 + 1328r3), (B1)

c6 = − 1

510 300
r2(1728 − 35 946r + 164 289r2 − 207 896r3 + 102 576r4),

c7 = 1

6123 600
r2(−8694 + 218 916r − 1401 381r2 + 2888 772r3 − 2251 248r4 + 909 184r5),

c8 = − 1

22 963 500
r2(15 390 − 446 256r + 3538 764r2 − 10 535 337r3 + 12 202 552r4 − 7318 640r5 + 2416 640r6),

c9 = 1

7715 736 000
r2(−2710 665 + 87 954 822r − 807 482 331r2 + 3091 042 674r3 − 5118 502 560r4 + 4009 481 184r5

− 2113 197 952r6 + 518 354 176r7),
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c10 = − 1

1273 096 440 000
r2(257 596 200 − 9180 862 110r + 93 799 827 171r2 − 426 255 134 022r3 + 931 126 345 494r4

− 977 085 756 168r5 + 621 427 831 616r6 − 280 517 703 040r7 + 48 779 713 280r8),

and for the specific heat,

C(β) = Nk

∞∑

n=2

dn(Jβ)n,

d2 = 2

3
r2,

d3 = −1

9
r2(−3 + 4r),

d4 = − 2

45
r2(−3 + 23r + 3r2),

d5 = 1

162
r2(9 − 126r + 116r2 + 48r3), (B2)

d6 = − 1

68 040
r2(−1728 + 33 426r − 102 969r2 − 19 464r3 + 2144r4),

d7 = − 1

97 200
r2(−1242 + 29 556r − 150 039r2 + 96 676r3 + 64 544r4 + 20 992r5),

d8 = 1

1093 500
r2(7695 − 213 084r + 1435 806r2 − 2537 523r3 − 539 132r4 + 58 400r5 + 186 680r6),

d9 = 1

214 326 000
r2(903 555 − 28 196 370r + 227 949 579r2 − 634 514 526r3 + 285 950 568r4 + 230 120 832r5

+ 135 526 080r6 + 14 890 240r7),

d10 = − 1

18 860 688 000
r2(−51 519 240 + 1775 187 630r − 16 326 321 219r2 + 59 250 202 038r3 − 69 170 925 596r4

− 15 707 506 528r5 − 728 311 984r6 + 9196 378 240r7 + 3884 989 440r8).
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