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Quantum theory of the inverse Faraday effect
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We provide a quantum theoretical description of the magnetic polarization induced by intense circularly
polarized light in a material. Such effect—commonly referred to as the inverse Faraday effect—is treated
using beyond-linear response theory, considering the applied electromagnetic field as external perturbation. An
analytical time-dependent solution of the Liouville–von Neumann equation to second order is obtained for the
density matrix and used to derive expressions for the optomagnetic polarization. Two distinct cases are treated,
the long-time adiabatic limit of polarization imparted by continuous wave irradiation, and the full temporal shape
of the transient magnetic polarization induced by a short laser pulse. We further derive expressions for the Verdet
constants for the inverse, optomagnetic Faraday effect and for the conventional, magneto-optical Faraday effect
and show that they are in general different. Additionally, we derive expressions for the Faraday and inverse
Faraday effects within the Drude-Lorentz theory and demonstrate that their equality does not hold in general,
but only for dissipationless media. As an example, we perform initial quantum mechanical calculations of the
two Verdet constants for a hydrogenlike atom and we extract the trends. We observe that one reason for a large
inverse Faraday effect in heavy atoms is the spatial extension of the wave functions rather than the spin-orbit
interaction, which nonetheless contributes positively.
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I. INTRODUCTION

In magneto-optics one studies the influence of the magne-
tization of a sample on the light traversing the sample. This
influence gives, e.g., rise to the Faraday effect (FE), which
is usually observed as a change in the light’s polarization
caused by a magnetically polarized material (see, e.g., Refs. [1]
and [2]). Optomagnetics [3], conversely, is concerned with
a different action of intensive light on a material: circularly
polarized light may induce a magnetic polarization in the
material. Such “inverse” action was first observed in the 1960s
through the discovery of the inverse Faraday effect (IFE) [4,5].

The IFE has been a popular topic in physics for a long time.
Its application in the field of plasma physics is established
[6–8]. However, in recent years it has gained a renewed
importance in the field of solid-state physics. A key discovery
was that of the all-optically induced magnetization which
was imparted by femtosecond laser pulses in a magnetic
material [9]. Since then the induced optomagnetic polarization
has been considered as a main possible driver of the ultrafast
magnetization response [3,10–16]. Its popularity increased
even more after it was recognized that it could offer a route to
ultrafast, all-optical magnetization reversal [11–13]. Helicity-
dependent all-optical switching of the magnetization has
meanwhile been demonstrated in several rare-earth transition-
metal alloys [17–19]. Optically induced magnetizations have
been also detected in other classes of materials [20], and they
have been proposed to be responsible for spin oscillations in
antiferromagnets [21–23].
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In spite of the significant technological applications, the
origin of the optomagnetic polarization and thus of the IFE
have remained unclear from a theoretical point of view. Several
semiclassical approaches [24–27] to describe it have been
attempted. Although these do provide very helpful physical
insight on the effect, they are not materials specific and lack
the ability to make numerical predictions on the ab initio
level. A first quantum-mechanical treatment of the effect was
proposed by Pershan et al. and dates back to the 1960s [5].
More recently, owing to the renewed interest in the field more
modern approaches were proposed [28–33], but these are still
limited to model systems and cannot address the question of
providing a materials-specific framework for the calculation
of the optomagnetic polarization.

Here we aim to derive a quantum-mechanically exact
expression for the IFE that can be implemented in an ab
initio code to perform materials-specific calculations. We use
a newly developed theoretical framework [34] to give the full
explicit expressions for the induced optomagnetic polarization.
This we do (in Sec. III) for the case of a constant magnetization
imparted by a continuous electromagnetic field in the adiabatic
limit. As a second result, given the current importance of the
IFE driven by femtosecond laser pulses, we provide in Sec. IV a
more specific expression for the optomagnetic response to a fs
light pulse. We furthermore derive expressions for the Verdet
constants of the Faraday and the inverse Faraday effect in
paramagnetic materials in Sec. VI. We stress that the provided
expressions are quantum mechanical and exact, since they are
derived by the very definition of the two effects—however,
with the restriction that the electric dipole approximation is
used for the interaction of the electrons with light, which
holds very well for the description of linear magneto-optical
effects at optical frequencies (see Ref. [2]). Moreover, these
expressions as well as those for the optically induced polar-
ization can be implemented in a density-functional theory
(DFT) band-structure code to describe the response of real
materials.
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In relation to the origin of the IFE, we are in addition
able to point out that there exists a difference between the FE
and IFE Verdet constants. Earlier theoretical and experimental
works suggested that these two constants would be of equal
strength. First, the two appearing constants are often (but
not always) experimentally similar in amplitude [4]. Second,
theoretical results [5,24] seemed to confirm this equality. The
classical treatment in Ref. [24] was unfortunately based on
a fundamental assumption, that of nondissipative materials.
This is not valid in a generic material and cannot be assumed
from the outset in a quantum treatment. Conversely, the
quantum treatment proposed in Ref. [5] made use of a
very crude approximation that hid the difference between
the two effects and could give only an order-of-magnitude
estimation of the process. The nonequivalence of the IFE
and FE became highlighted through recent experimental
investigations [35,36], which revealed significant differences
between the two effects [35], and a deviation of the IFE from
the classical expression for an absorbing medium [36].

To address the question of the relation between the FE
and IFE also on the classical level we show in Sec. II how
even a treatment based on the Drude-Lorentz model (see, e.g.,
Ref. [25]) reveals that the two Verdet constants are different,
and can provide physical intuition as to what their difference
has to be ascribed to.

Lastly, in Sec. V we perform numerical calculations of the
IFE in hydrogenlike atoms. We perform an initial investigation
of how the IFE is influenced by the shape of the electronic
orbitals. These investigation suggest that the extent of the
wave function could play a role: more delocalized electrons
contribute more to the IFE, which is found, for a hydrogen-type
atom, to grow quadratically with the radius of the electronic
orbit. We also exemplify how the spin-orbit interaction (SO)
favors the IFE.

II. CLASSICAL TREATMENT OF FARADAY
AND INVERSE FARADAY EFFECTS

The Drude-Lorentz model has been very successful in
providing a general physical understanding of the processes
involved in conduction in metals. Here, as a premise to the
quantum treatment, we use similar concepts to show how
the Faraday and the inverse Faraday effect can be described
by the same constant only in nondissipative media, and to
provide physical insight in the origin of their difference.

The equation of motion of the electron in the Drude-Lorentz
approximation is (see, e.g., Ref. [25])

d2r(t)

dt2
+ γ

dr(t)

dt
+ ω2

0r(t) = F(t)

m
,

(1)

r(0) = r0;
dr (0)

dt
= v0,

where m is the electron effective mass, r represents its position,
F is the external force acting on it, and v0 and r0 are its initial
velocity and position. The term γ dr(t)/dt and the one ω2

0r(t)
represent phenomenologically, respectively, the randomization
with average 0 of the linear momentum coming from the
scatterings and the presence of a resonance in the system.

Before computing the Verdet constant for the FE it needs
to be recalled that in the literature there are two different
effects called by the same name of FE. The first one is the
magneto-optical Faraday rotation or ellipticity generated in
ferromagnetic materials. In this case, for an isotropic material,
where ε0

xx denotes the diagonal element of the dielectric tensor
and ε0

xy the small off-diagonal term induced by the presence of
a magnetic moment oriented along the z axis, the generalized
Faraday rotation is given by

θFE + i εFE ≈ iπL

λv

ε0
xy√
ε0
xx

, (2)

where θFE is the rotation of the polarization plane of the light
traversing the material, εFE is the induced ellipticity, L is the
distance the light travels inside the material, and λv is the
wavelength of the light in vacuum. Traditionally, no Verdet
constant is defined for this type of Faraday effect.

The common definition of the Verdet constant VFE applies
to the second related case: the Faraday rotation of linearly
polarized laser light traversing a material subjected to an
externally applied magnetic field. The Verdet constant VFE

for the FE is defined as the rotation of the polarization axis of
linearly polarized light after traversing a unit depth of material
subject to a unit of magnetic field. In the case of an isotropic
material the Faraday rotation angle induced by a magnetic
field along the z axis on linearly polarized light propagating
along z can be computed from the dielectric tensor of the
material. Again, if ε0 is the unperturbed dielectric tensor of
the material and 	εB

xy is the small change of the off-diagonal
term of the dielectric tensor induced by the presence of the
external magnetic field B = Bẑ, then the generalized Faraday
rotation is given by

θFE + i εFE = VFE LB ≈ iπL

λv

	εB
xy√

ε0
xx

. (3)

The commonly used Verdet constant is the real part of the
complex Verdet constant VFE defined above. Note that Eq. (3)
reduces to the more ordinarily used expression [4,5] for nearly
transparent materials.

To compute the FE we compute the dielectric tensor and
how it is modified by an external magnetic field. We therefore
assume as external force

F(t) = eE0 sin(ωt) + e(dr(t)/dt) × B, (4)

where e is the electron charge, E0 the amplitude of the linearly
polarized electric field oscillating with frequency ω, and B
a static magnetic field. Without loss of generality we use
B = Bẑ. Of the solution of Eq. (1) one is interested only
in the asymptotic behavior for t → ∞. One can thus obtain
the component of r(t) that oscillates with frequency ω and
calculate as a function of E0 the electric dipole moment, using
P = eNr with N the electron density. This gives the dielectric
tensor ε of the system. Expanding the susceptibility in series
with respect to the external magnetic field we obtain for the
diagonal elements

εxx = 1 + Ne2

m
(
ω2

0 + iγ ω − ω2
) + O(B2) = ε0

xx + O(B2),

(5)
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while the off-diagonal term εxy is given by

εxy = iNe3ω

m2
(
ω2

0 + iγ ω − ω2
)2 B + O(B3) = 	εB

xy + O(B3).

(6)

The complex Verdet constant can then be written using Eq. (3)
as

VFE ≈ − πNe3

m2λvn0

ω(
ω2

0 + iγ ω − ω2
)2 , (7)

where we used n0 = √
ε0
xx(ω).

The IFE on the other hand is obtained by using in Eq. (1)
circularly polarized light as external electric force (in SI units)

F(t) = eE0[x̂ sin(ωt) + ŷ cos(ωt)]. (8)

Again one looks for the asymptotic response and can compute
the magnetization simply as

M = e

2
r(t) × dr(t)

dt
. (9)

Asymptotically, for t → ∞, the electron moves on an elliptic
trajectory. The constant component of the asymptotic behavior
of M gives the amplitude of the magnetization induced by the
circularly polarized light as

MIFE = −Ne3

2m2

ω(
ω2 − ω2

0

)2 + γ 2ω2
E2

0 . (10)

It is now possible to provide the expression for the Verdet
constant of the IFE by using its definition

MIFE = λv n0

2π
VIFE E2

0 , (11)

where n0 = √
ε0
xx(ω) is the refractive index in the absence of

the external field. This leads to the expression for the Verdet
constant of the IFE

VIFE = − πNe3

m2λvn0

ω(
ω2 − ω2

0

)2 + γ 2ω2
. (12)

Taking the difference of the two complex constants one
obtains

VIFE − VFE

VIFE + VFE
= − iγ ω

ω2 − ω2
0

, (13)

which is proportional to γ and hence appears only if the
dissipative term is included in the treatment. Note that, even
though the normalized ratio is purely imaginary, the two
constants differ both in the real and the imaginary part
since their sum appearing in the denominator is not purely
real. As the earlier derivation of Pitaevskii [24] was based
on the assumption of a dissipationless medium (γ = 0),
the equivalence of the two Verdet constants was concluded.
Our derivation highlights on the one hand the fundamental
difference between the FE and IFE and on the other hand
pinpoints that, in realistic dissipative materials, they are in
general not equivalent.

Expression (10) for the induced magnetization provides
additional insight in connection to recent experiments. A

previous derivation [26] of the IFE for a conductive plasma
predicted that the induced magnetization would scale as ω−3;
however, recent experiments [37] could not confirm this.
Equation (10) exemplifies that in the absence of a resonance
(ω0 = 0) and of dissipation (γ = 0) one obtains MIFE ∝ ω−3.
However, such conditions are rarely met in lossy materials
with plentiful interband transitions. In particular, as Eq. (13)
illustrates, the difference between the FE and IFE is most
pronounced near a resonance ω ≈ ω0.

III. THE OPTOMAGNETIC POLARIZATION
OF THE INVERSE FARADAY EFFECT

The quantum-mechanical response to an external field
interacting with a material leads to a change of related
physical quantities such as electrical polarization, magnetic
polarization, and population of a given level. The frequency of
the response, its order in the amplitude of the perturbing field,
and of course the physical observable under consideration
are used to classify the phenomenon of interest. The IFE
is defined as the static magnetic polarization induced in the
material by the interaction with circularly polarized light and
being proportional to its intensity (i.e., second order in the
electric field). Following the approach introduced in Ref. [34]
we will decompose the response of the system into orders of
the perturbation and collect for the static term of the induced
magnetic moment all contributions at the second order in
the electric field of the light. The system’s Hamiltonian, Ĥ0,
is supposed to be known and diagonalizable. The external
perturbation is assumed to be due to a continuous wave that is
switched on at t = 0,

V̂ (t) = eE0 [x̂ cos(ωt) + ŷ sin(ωt)] 
 (t) , (14)

where e is the electronic charge, x̂ and ŷ the components of
the position operator, E0 the amplitude of the electric field,
ω the angular frequency of the light, and 
(t) the Heaviside
function. The Laplace transform of the temporal shape V̂ (t) of
the external perturbation corresponding to circularly polarized
light is

V̂ (E) = − i� e r̂ · E+
E + �ω

− i� e r̂ · E−
E − �ω

, (15)

where we introduced E+ = E∗
− = E0(x̂ − iŷ)/2 and E is the

Laplace transform variable. The (bilateral) Laplace transform
is defined through f̃ (ε) = ∫ +∞

−∞ f (t) exp [i ε
�
t]dt , with ε =

E + iε, and E and ε real. The second-order correction to the
density matrix of the system is denoted as ρ̂[2] (t). Hence, the
Laplace transformed induced magnetization is the expectation
value of the magnetization operator M̂,

〈M[2] (E)〉 = Tr{M̂ ρ̂[2] (E)}, (16)

where M̂ = μB(gs Ŝ + L̂) is the operator for the total
moment, i.e., due to the spin operator Ŝ and orbital angular
momentum operator, L̂. In a first step we will neglect
the transient behavior, which will be treated in Sec. IV.
To obtain the corresponding expression for the imparted
polarization, we have to isolate the expectation value of
the magnetic moment operator on the second-order static
correction to the asymptotic value of the density matrix.
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As discussed in Ref. [34], one can extract the static part
of the second-order response, i.e., the zeroth harmonic
generation (ZHG), which consists of three terms, ρ̂

[2]
ZHG(E) =

(ρ̂[2]
ZHG, o + ρ̂

[2]
ZHG, dA + ρ̂

[2]
ZHG, dB + H.c.) i�

E . This consequently
leads to three contributions for the optically induced static
magnetization, MIFE = (MIFE

o + MIFE
dA + MIFE

dB + c.c.)E2
0 ,

with

MIFE
o = e2

∑
n 	= m

〈m|M̂|n〉〈n|
〈2〉
[
r̂+,

〈2′ 〉
[r̂− ,ρ̂0]

�
〈1′ ,3′ 〉

�̌−�ω

]

�
〈1,3〉

�̌
|m〉,

MIFE
dA = − e2

∑
n

〈n|M̂|n〉〈n|
[
r̂+,

〈2〉
[r̂−,ρ̂0](

�
〈1,3〉

�̌−�ω
)2

]
|n〉,

MIFE
dB = − e2

∑
n

〈n|M̂|n〉〈n|
[
r̂+,

〈2〉
[r̂+,ρ̂0]

�
〈1,3〉

�̌−�ω

]
2�ω

|n〉,

(17)

where |m〉 and |n〉 are eigenstates of Ĥ0. Since we assumed for
simplicity that the direction of propagation of the circularly
polarized light is along the z axis the optical transition
operators are defined as r̂+ = (x̂ + iŷ) /2 and r̂− = r̂+†. The
order notation (denoted here by superscripts 〈· · ·〉) gives the
position of the operator in a product of operators; see Ref. [34].
The superoperator �̌ in the formulas above is defined in
Eq. (33) of Ref. [34].

The three terms above underline different physical effects.
The term MIFE

o arises from the appearance of off-diagonal
terms in the perturbed density matrix due to the coherence
between different levels which has been induced by the
circularly polarized light. The second term MIFE

dA is a diagonal
contribution to the magnetic moment stemming from the
occurring population of empty levels due to the circularly
polarized light. The third term MIFE

dB originates as well from a
repopulation of levels, but it is a static diagonal contribution
coming from the part of the response that leads to the second
harmonic generation. Note how this term diverges for ω → 0,
i.e., when the frequency of the second harmonic 2ω coincides
with the field frequency ω.

We remark that the above analysis underlines that the origin
of the IFE is equivalent to that of the optical rectification [38],
in which an intense laser field induces an electric polarization
P in a material. Both the IFE and optical rectification
(cf. Ref. [34]) are second-order processes in the applied
electromagnetic field, and can be described by the static
contribution in the second-order density matrix, ρ̂

[2]
ZHG.

It is now possible to provide the quantum expression for the
Verdet constant of the IFE by using its definition in Eq. (11).
The frequency-dependent Verdet constant VIFE of the IFE
is hence given by an expression identical to Eq. (17), but
with the prefactor 2π/(λv

√
ε0
xx) where the diagonal element

of the dielectric tensor without the external field ε0
xx can be

explicitly computed using conventional first-order response
theory [2,34] but, for sake of shortness, it will only be left
indicated. The expression in Eq. (17) can be rewritten using

the matrix element notation,

MIFE
o = e2

∑
n	=m; l

Mmn

r+
nl r

−
lm(ρ0

mm−ρ0
ll)

El−Em+i�
lm−�ω
− r−

nl r
+
lm(ρ0

ll−ρ0
nn)

En−El+i�
nl−�ω

En − Em + i�
nm

,

MIFE
dA = e2

∑
n,l

Mnn

(
r+
nlr

−
ln

(
ρ0

ll − ρ0
nn

)
(El − En + i�
ln − �ω)2

(18)

+ r−
nlr

+
ln

(
ρ0

ll − ρ0
nn

)
(En − El + i�
nl − �ω)2

)
,

MIFE
dB = e2

∑
n,l

Mnnr
+
nlr

+
ln

(
ρ0

nn − ρ0
ll

)
(i�
ln − �ω)

�ω[(El − En)2 + (�
ln + i�ω)2]
,

where the matrix elements are defined as r±
nm = 〈n|r̂±|m〉.

The matrix 
 in the formulas above is defined in Eq. (29) of
Ref. [34]; it takes into account the dephasing due to the open
nature of the quantum system. Its matrix elements 
nm are
positive parameters which are usually determined phenomeno-
logically and often approximated to be state independent.

Expression (18) is suitable for implementation in ab initio
band-structure calculations. For comparison with previous
work, we mention that a classical treatment for a nonabsorbing
medium gave [24]

MIFE = Im
[
ε0
xy

]
4π

E2
0 , (19)

with ε0
xy(ω) the off-diagonal dielectric tensor component

responsible for the magneto-optical Faraday effect and where
Im[ ] stands for the imaginary part. For both the classi-
cal nonabsorbing expression (19) and the general quantum
case (18) the laser-induced optomagnetic field, which has
been used in recent spin-dynamics simulations [14,16], can be
obtained from H = M/χ , with χ the material’s static magnetic
susceptibility.

IV. THE INVERSE FARADAY EFFECT TRIGGERED
BY FEMTOSECOND LASER PULSES

In the above formulation we exploited the static part of the
second-order density matrix to compute the adiabatically in-
duced magnetic polarization. An extension of this formulation
to the transient magnetic polarization induced by a fs laser
pulse can be obtain by employing the time-dependent second-
order density matrix. We have already shown in Ref. [34] how
it is possible to obtain an explicit expression for the temporal
evolution of the system as a response at the second order. In
that treatment, the modeling of the laser pulse was somewhat
simplified, as it was assumed that the pulse resulted from
a stepwise on-switching of the electromagnetic field, and a
stepwise off-switching of the same after a time T . Here we
aim to present a more sophisticated approach which will lead
to better results without increasing the computational effort.
To this end we use a more physically meaningful temporal
shape of the pump pulse. In spite of the fact that this will
lead to an apparently more complex expression, the same
number of matrix elements as for the simpler approach have to
be numerically computed while the time evolution is derived
completely analytically.
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ω0
ω

V ω 2
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ω

V ω 2(a) (b) 

FIG. 1. (Color online) Temporal shapes of the perturbing fem-
tosecond laser pulses. The shape used in Ref. [34] for a block-shaped
perturbative pulse is shown in (a). The inset in (a) shows its Fourier
transform. In (b) the temporal shape of the pulse as given by Eq. (20)
is shown and the inset shows its Fourier transform.

The temporal shape for a perturbation pulse used in
Ref. [34] is shown in Fig. 1(a): the perturbation is abruptly
switched on at time 0 and switched off at time T . The
advantage is that the Laplace transform has a very simple
shape and leads to simple analytical formula for the response.
The disadvantage is that the spectrum is unphysically broad:
in the inset in Fig. 1(a) the Fourier transform of the temporal
shape of the perturbing potential shows finite spectral weight
at frequencies farther from the central frequency ω0. At the
second order, interference between these frequencies and the
central wavelength of the light arises. To avoid this unphysical
effect we propose a better approximation for the temporal
shape of the perturbing pulse:

V̂ (E) =
∑
j=±1

�
2γ
(
e

i(E+j�ω0)T
� − 1

)
(E + j�ω0) (E + j�ω0 + iγ �)

V̂j , (20)

where V̂j = −er̂ · E0(x̂ − j iŷ)/2, ω0 is the central frequency
of the laser, T is the length of the pulse, and γ gives how fast
the time profile reaches the maximum after the switching on
and controls the bandwidth. This temporal shape is shown in
Fig. 1(b), and its Fourier spectrum is shown in the inset.

Explicit expressions for the response of the system can
be now analytically derived. The first-order correction to the
density matrix induced by the laser pulse in Eq. (20) is

ρ̂
[1]
P (E) =

∑
j=±1

〈2〉
[V̂j ,ρ̂0]

E − �
〈1,3〉

�̌

�
2γ
(
e

i(E+j�ω)T
� − 1

)
(E + j�ω) (E + j�ω + i�γ )

.

(21)

The second order, in spite of being a lengthier expression,
can still be explicitly written; this response is given in
Eq. (A1) of the Appendix. It is then possible to compute the
expectation value of the magnetization operator M̂. Note that
the coefficients in Eq. (A1) can be computed numerically,
but no numerical integration of the time dependence is
required since the complete time evolution has already been
obtained analytically. This gives a double advantage: (1) it
is possible to have an arbitrary time resolution without an
increase in computational cost and, more importantly, (2)
the computational cost is equivalent to the one of a static

t

Mz
2

2 Π

Ωres Ω

Laser profile

Magnetic moment

FIG. 2. (Color online) Calculated shape of the optomagnetic
polarization response to a pulse in arbitrary units.

second-order effect, which would make these calculations
feasible for real materials and not only model systems. In
Fig. 2 we report a typical behavior of the second-order
optomagnetic polarization induced by circularly polarized
light, and computed, as explained in the following paragraph,
for a hydrogenlike atom.

The amplitude of the peak increases the closer the frequency
of the laser pulse is to the resonance [as expressed in Eq. (22)
below]. Conversely, the oscillations have a frequency given
by the detuning ωres − ω (see Fig. 2) and an amplitude that
increases with increasing oscillation frequency ωres − ω.

V. THE INVERSE FARADAY EFFECT FOR
HYDROGENLIKE ATOMS

We report here actual calculations for the IFE in the simplest
real system: an atom with hydrogenlike wave functions.
Because of their elemental structure, they have been chosen
as first examples of numerical application of the expressions
derived so far. Obviously, this represents a very simplistic
system and the study of real materials is required to make
material-dependent predictions. However, this case can pro-
vide a basic physical picture to extract trends, albeit with
limitations. We study here the case of the valence electron
being in different hydrogenlike levels.

The behavior of the IFE with the frequency ω of the
circularly polarized laser can be extracted immediately. If �ωres

is the energy difference between the energy of the valence state
and the first conduction state, then

VIFE ∝ 1

(ω − ωres)2 , (22)

which means that even though the IFE is enhanced by being
close to resonance, it does not vanish away from the resonance.

Similarly, optical absorption can be present even at fre-
quencies that are off resonance. The energy window where
absorption is still present is proportional to the dephasing
factor appearing in the superoperator �̌ as defined in Eq. (33)
of Ref. [34]. Note that the mentioned dephasing factor is the
same broadening as conventionally used in the Kubo formula
for the optical conductivity [2]. Conversely, the decay of the
IFE away from resonance is not dependent on the dephasing
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TABLE I. Amplitude (in arbitrary units) of the IFE for atoms with
hydrogenlike valence electron depending on the orbital character of
the wave function of the last occupied state. The left-hand columns
give the amplitude of the effect for the case in which no spin-orbit
(SO) interaction is taken into account. The right-hand columns give
the values for the case in which SO is included in the wave function
of the valence states.

VIFE (ω − ωres)
2

no SO with SO

l = 0 l = 1 l = 2 l = 0 l = 1 l = 2

n = 1 1.00 1.19
n = 2 5.65 9.16 6.74 9.29
n = 3 17.90 24.10 38.06 21.42 24.39 38.06

times. By choosing a material with a small broadening at the
lowest absorption energy, one could try to tune the frequency
close enough to resonance to have a significant amplification
of the IFE, but far enough to have negligible absorption.

In Table I we provide the value of the Verdet constant
VIFE multiplied by (ω − ωres)2 to exclude the already treated
behavior in Eq. (22) and normalized to the value obtained
for the case that the only occupied state is the 1s orbital.
The two parts of the table refer to calculations done with
hydrogen wave functions without SO and with hydrogen wave
functions modified by the inclusion of SO. Each row gives
the principal quantum number n of the orbital occupied by the
valence electrons, while columns pertain to the different orbital
quantum number l. In the calculations all the states at higher
n’s are considered empty and allowed for the transitions.

To extract trends, the behavior of the IFE coefficient
has been studied for modified hydrogenlike wave functions.
Using the Bohr radius a0 as a parameter in the analytical
expression of the hydrogen wave functions, we obtain wave
functions having the same angular character and same radial
dependence, but that are either contracted or expanded (since
for a given orbital the average radius is 〈r̂e−n〉 ∝ a0). This
can be used as a first approximation of the influence of the
contraction of valence states for heavy elements. The analytical
expression (18) of the IFE suggests a quadratic dependence on
the Bohr radius used as a parameter; i.e., the wider the orbit is
the more effective the IFE becomes.

Considering various n and l quantum numbers in the
calculations we find that the IFE Verdet constant shows a
slightly more than linear dependence on the average electron
radius 〈r̂e−n〉 [with 〈r̂e−n〉 ∝ 3n2 − l(l + 1)], instead of the
expected quadratic one. This suggests that the presence of
nodes in the wave function reduces the efficiency of the
IFE. Needless to say, the here-indicated trend requires further
investigation in future studies of periodic solids.

A final remark can be made on the effect of SO. Its inclusion
always enhances the IFE even if, in the case of hydrogenlike
states, its effect is small compared to other contributions. The
increase of the Verdet constantVIFE due to SO is proportional to
the SO splitting of the levels. It is thus small and nonnegligible
only when the first empty states are very close to the nucleus.
This is expected since we are studying hydrogenlike atoms. In

more complex materials the SO coupling is expected to play a
larger role. As is well known, this small coupling of spin and
orbital momentum gives rise to the magneto-optical FE. In the
case of the IFE of real materials future ab initio calculations
will be required to shed light on its precise dependence on the
SO interaction.

VI. COMPARISON OF THE FARADAY AND INVERSE
FARADAY EFFECTS

It is instructive to consider the FE with the aim of comparing
its Verdet constant VFE with the one of the IFE, VIFE. We recall
that the Verdet constant is defined for the Faraday rotation
induced to the light’s polarization plane upon traversing a
material to which an external magnetic field has been applied.
In the following we derive ε0

xx and 	εB
xy within the theoretical

framework of Ref. [34] and compute VFE from Eq. (3).
We have to compute the response of a system with

Hamiltonian Ĥ0 to the perturbation V̂ (t) coming from the
simultaneous application of an external static magnetic field
and a linearly polarized laser field. The Laplace transform of
V̂ (t) is

V̂ (E) = V̂M

i�

E + V̂L

(
i�

E + �ω
+ i�

E − �ω

)
, (23)

where V̂M = −M̂ · B, with B the external magnetic field, and
V̂L = −er̂ · E/2.

Next, we compute the time evolution of the system at the
first order. Transient terms of the expansion are neglected since
the Verdet constant does not include effects coming from the
non-adiabatic switching on of the magnetic field or the probing
laser. At the first order the asymptotic responses to the laser
and to the external magnetic field do not interfere and give two
contributions to the response that simply add up:

ρ̂
[1]
ASY (E) = ρ̂

[1]
Zeeman

i�

E + ρ̂
[1]
FHG

(
i�

E + �ω
+ i�

E − �ω

)
, (24)

where the Zeeman effect is given by

ρ̂
[1]
Zeeman (E) = −

〈2〉
[V̂M,ρ̂0]

�
〈1,3〉

�̌

i�

E , (25)

and the first harmonic generation (FHG) of the laser,

ρ̂
[1]
FHG (E) = −

∑
j=±1

〈2〉
[V̂L,ρ̂0]

�
〈1,3〉

�̌ + j�ω

i�

E + j�ω
, (26)

is the part of the response used to compute the dielectric tensor
without the perturbation coming from the external magnetic
field (see Ref. [34] for details).

At the second order the electric and the magnetic parts of
the perturbation can interfere with each other:

ρ̂
[2]
ASY (E) = ρ̂

[2]
Zeeman2

i�

E + ρ̂
[2]
ZHG

i�

E + ρ̂
[2]
ABS

(
i�

E

)2

+ ρ̂
[2]
SHG

i�

E + 2�ω
+ ρ̂

[2]†
SHG

i�

E − 2�ω

+ ρ̂
[2]
INT

i�

E + �ω
+ ρ̂

[2]†
INT

i�

E − �ω
. (27)
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We can hence distinguish second-order responses to the
magnetic field or to the light alone and an interference term. To
second order in the perturbation V̂M we obtain the second-order
Zeeman effect:

ρ̂
[2]
Zeeman2 (E) =

〈2〉
[
V̂M ,

〈2′ 〉
[V̂M ,ρ̂0]

�
〈1′ ,3′ 〉

�̌

]

�
〈1,3〉

�̌

i�

E . (28)

At the second order in V̂L we find the second harmonic
generation (SHG) with poles in 2�ω and −2�ω, the zero-th
harmonic generation with pole in 0, and the absorption with
a double pole in 0. All these contributions to the response are
identical to the case without the external magnetic field [34].
The remaining second-order asymptotic term (first order in the
perturbation V̂M and first in V̂L) has poles in �ω and −�ω and
is given by

ρ̂
[2]
INT =

〈2〉
[
−M̂·B,

〈2′ 〉
[−e r̂·E

2 ,ρ̂0]

�
〈1′ ,3′ 〉

�̌+�ω

]

�
〈1,3〉

�̌
+

〈2〉
[
−e r̂·E

2 ,
〈2′ 〉

[−M̂·B,ρ̂0]

�
〈1′ ,3′ 〉

�̌

]

�
〈1,3〉

�̌+�ω
. (29)

We now recall that the dielectric tensor represents the
proportionality constant between the oscillating electric field
and the electric polarization induced in the material and
oscillating with the same frequency. Since ρ̂

[2]
INT oscillates at

the same frequency of the laser it gives a contribution to the
dielectric tensor. One can thus write

εαβ = ε0
αβ + 	εB

αβ = Tr
{− e r̂α ρ̂

[1]
FHG(Eβ)

}
/Eβ

+ Tr
{− e r̂α ρ̂

[2]
INT(Eβ,B)

}
/Eβ, (30)

where α,β = x,y, or z stand for Cartesian components of the
matrix or vector. The change in the dielectric tensor induced
by the magnetic field is

	εB
αβ = −e2

2

⎛
⎝Tr

⎧⎨
⎩r̂α

〈2〉[
r̂β ,

〈2′ 〉
[M̂·B,ρ̂

[0]
th

]

�
〈1′ ,3′ 〉

�̌

]
�

〈1,3〉
�̌+�ω

⎫⎬
⎭

+ Tr

⎧⎨
⎩r̂α

〈2〉[
M̂·B,

〈2′ 〉
[r̂β ,ρ̂

[0]
th

]

�
〈1′,3′ 〉

�̌+�ω

]
�

〈1,3〉
�̌

⎫⎬
⎭
⎞
⎠ . (31)

It is now possible to compute the complex Verdet constant (for
simplicity we assume again that the external magnetic field is
along z, the linear polarization of the light is along x, and the
measured Faraday rotation is in the x-y plane):

VFE = iπe2μB�
2

2m2λv

√
ε0
xx

∑
n,m,l

⎡
⎣xmn

(
ynlM

z
lm(ρ0

m−ρ0
l )

El−Em+i�
lm
− ylmMz

nl(ρ0
l −ρ0

n)
En−El+i�
nl

)
En − Em + i�
nm + �ω

+
xmn

(
ylmMz

nl(ρ0
m−ρ0

l )
El−Em+i�
lm+�ω

− ynlM
z
lm(ρ0

l −ρ0
n)

En−El+i�
nl+�ω

)
En − Em + i�
nm

⎤
⎦ , (32)

where we have rewritten the formula in the usual notation. For
ab initio calculations it can be rewritten in terms of the canon-
ical momenta operators using the relation �̂α = m

i�
[Ĥ0,r̂α].

One should note how the expressions in Eqs. (17)—together
with Eq. (11)—and (32) are different. This emphasizes that
a quantum treatment shows that there exists a fundamental
difference between the Verdet constants of the IFE and of

the FE. To obtain detailed information on what the values of
the two Verdet constants for a specific material would be, ab
initio calculations are required which are beyond the scope of
the present work. Nonetheless, insight in the origin of their
difference could already be provided on the classical level of
the Drude-Lorentz theory. As shown in Sec. II, already at the
level of the Drude-Lorentz theory the difference of the two
constants is evident, and can be ascribed to the presence of
dissipation within the material. The inequality of the Verdet
constants in the presence of dissipation is consistent with a
recent experiment [35], in which differences between the IFE
and FE were observed for absorbing materials. Also, it has
been noted recently that the classical expression for the IFE
did not match well to helicity-dependent measurements [36].

VII. CONCLUSIONS AND OUTLOOK

We have investigated the quantum origin of the optomag-
netic polarization that is induced by circularly polarized light
in a material. Using perturbation theory to second order in the
radiation field, we have evaluated second-order corrections
to the density matrix, from which analytical expressions for
the optomagnetic polarization have been derived. This has
been done for two cases of interest, the optically induced
magnetization due to continuous radiation, and the transient
magnetization induced by a short laser pulse. We have further
derived the most general quantum mechanical expressions for
the Verdet constants of the IFE and of the FE. Comparing these
expressions we have observed that the two effects are not equal.
Their difference is further exemplified by a classical derivation
within the Drude-Lorentz theory, which predicts equivalence
of the the two effects only in the absence of dissipation.

The derived expressions for the optomagnetic polarization
Eq. (18), which is proportional to the Verdet constant of the
IFE, and the Verdet constant of the FE of a paramagnetic
material, Eq. (32), have a wide applicability range to real
materials. In a similar way as the Kubo linear-response formula
for the frequency-dependent dielectric tensor or the FE these
quantities can be computed using ab initio methods. The
obtained expressions are lengthy, but their implementation in
a DFT-based band-structure code appears straightforward. In
particular, the transient optomagnetic polarization is provided
without requiring the numerical integration of the full time
dependence of the electronic system. Finally, we have shown
how to analytically derive the time response to a perturbation
pulse, making the analysis of fs response straightforwardly,
since the time evolution is already explicitly given and only
the materials-dependent coefficients and poles need to be
computed numerically.
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APPENDIX: SECOND-ORDER RESPONSE TO LASER PULSE

We report here the explicit expression of the second-order response to a fs laser pulse:

ρ̂
[2]
P (E) = i�

∑
j = ±1
l = ±1

1

E − �
〈1,3〉

�̌

⎛
⎜⎝i�γ

〈2〉

⎡
⎢⎣V̂l,

〈2′ 〉
[V̂j ,ρ̂0]

(
1 − e

i(E+l�ω−�
〈1′ ,3′ 〉

�̌)
�

T
)

(j�ω + �
〈1′ ,3′ 〉

�̌)(j�ω + i�γ + �
〈1′ ,3′ 〉

�̌)(E + l�ω − �
〈1′ ,3′ 〉

�̌)

⎤
⎥⎦

− i�γ
〈2〉

⎡
⎢⎣V̂l,

〈2′ 〉
[V̂j ,ρ̂0]

(
1 − e

i(E+l�ω−�
〈1′,3′ 〉

�̌)
�

T − e
i(E+(j+l)�ω+i�γ )

�
T + e

i(E+(j+l)�ω)
�

T
)

(j�ω + �
〈1′ ,3′ 〉

�̌)(j�ω + i�γ + �
〈1′,3′ 〉

�̌)(E + l�ω + i�γ − �
〈1′ ,3′ 〉

�̌)

⎤
⎥⎦

− 〈2〉
[
V̂l,

〈2′ 〉
[V̂j ,ρ̂0]

(j�ω + �
〈1′,3′ 〉

�̌)

](
1 − e

i(E+(j+l)�ω)
�

T

E + (j + l)�ω
− 1 − e

i(E+(j+l)�ω+i�γ )
�

T

E + (j + l)�ω + i�γ

)

+〈2〉
[
V̂l,

〈2′ 〉
[V̂j ,ρ̂0]

(j�ω + i�γ + �
〈1′,3′ 〉

�̌)

](
1 − e

i(E+(j+l)�+i�γω)
�

T

E + (j + l)�ω + i�γ
− 1 − 2e

i(E+(j+l)�ω+i�γ )
�

T + e
i(E+(j+l)�ω)

�
T

E + (j + l)�ω + 2i�γ

)⎞⎟⎠ . (A1)

The expression is complicated because the shape of the starting pulse is in itself complicated. Nonetheless the reader should
appreciate that the whole time response is explicitly given (since the inverse Laplace transform of simple poles is straightforward)
and there is no need to do any numerical time integration. The computation of the coefficients has the cost of multiplication of
three matrices.
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