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Anomalous Hall effect in ferromagnets with Gaussian disorder
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Using the Kubo formalism we derived expressions and implemented the method for calculating the anomalous
Hall conductivity (AHC) in ferromagnets with short-range Gaussian disorder directly from first-principles
electronic structure of the perfect crystal. We used this method to calculate the AHC in bcc Fe, fcc Co, L10-FePd,
L10-FePt as well as thin bcc Fe(001) films. Within our approach we can transparently decompose the conductivity
into intrinsic, side jump, and intrinsic skew-scattering (ISK) contributions. The existence of ISK, which originates
from asymmetric Mott scattering but is clearly distinguishable from conventional skew scattering in that it
converges to a finite value in clean limit, was pointed out by Sinitsyn et al. [Phys. Rev. B 75, 045315 (2007)].
Here, we collect all contributions to the AHC in ferromagnets which result in “scattering-independent” AHE in
clean limit, and analyze their relative magnitude from first-principles calculations. By comparing our results to
existing experiments we show that the Gaussian disorder is well suited to model various types of disorder present
in real materials, to some extent including the effect of temperature. In particular, we show that in addition to
intrinsic and side-jump AHE, the intrinsic skew scattering can be a major player in determining the magnitude
of the AHE in ferromagnets.
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I. INTRODUCTION

The anomalous Hall effect (AHE) [1] has been known and
experimentally investigated for a long time, but until recently
has eluded a rigorous quantum mechanical description. The
revival of interest in the AHE during the last few years
was mainly driven by the discovery of new applications in
spintronics, by the new interpretation of electronic properties
from the point of view of the Berry phase theory [2,3],
and also by the increasing computational resources which
made possible the computationally very expensive ab initio
assessment of the AHE in transition metals [4].

The reason why the theoretical description of the AHE,
and even more its calculation, is so challenging is that unlike
the ordinary Hall effect, which can be intuitively explained
in terms of the Lorentz force, the AHE originates from
a variety of elaborated physical mechanisms. Within the
semiclassical theory, three different contributions to the AHE
can be distinguished according to the underlying processes:
[4] the intrinsic contribution (IC), which is the topological
property of the band structure and exists even without disorder,
and two disorder-driven extrinsic contributions. These are
the skew scattering [5], which arises from an asymmetric
Mott scattering of electrons off impurities in the presence of
spin-orbit interaction, and the side jump (SJ) [6], which can be
formally defined as the remaining part of extrinsic scattering
and was historically interpreted as a sideways displacement of
electrons scattering off impurities when spin-orbit interaction
is present.

Experimentally, distinguishing different contributions from
their scaling behavior with the impurity concentration and
temperature does not present a trivial task [7–11]. In this
context ab initio calculations of the AHE play an important
role since in principle they allow us to access different
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contributions separately and explicitly investigate the effect of
disorder, thus presenting an important tool for understanding
and engineering the behavior of the AHE in real materials.
Previous ab initio calculations of the AHE have mainly focused
on the IC, for which an explicit expression in terms of the
Berry curvature of the perfect crystal has been known for
some time [4]. Calculations of the AHE including disorder
due to alloying or an alloy-analogy model for a set of
thermal lattice displacements have been performed using the
Korringa-Kohn-Rostoker (KKR) method in combination with
the coherent potential approximation (CPA) [12–14]. These
methods rely on exact knowledge of the disorder potential,
which has to be explicitly included in the ab initio calculation.
This makes the calculation of the disorder driven contributions
by far more complicated and expensive than the calculation of
the intrinsic part.

With vanishing disorder, a certain part of the AHE, which
we call the scattering-independent AHE, acquires a constant
value, which is believed to be disorder independent [4].
Treating disorder within a short-ranged Gaussian disorder
model, this scattering-independent contribution to AHE can
be identified in the clean limit [4]. The scattering-independent
AHE can be conveniently calculated from the electronic
structure of the pure crystal even for multiband metals [15] and
provides the dominant source of the AHE in transition-metal
ferromagnets which are moderately disordered [16]. In a
sense, the clean limit scattering-independent AHE presents
the ground-level value, around which the disorder-sensitive
contributions arise. The combination of the short-ranged
Gaussian disorder model with realistic electronic structure
calculations is thus a very attractive alternative approach
to treating the effect of disorder on the AHE and related
phenomena on the ab initio level.

In the past, based on the semiclassical Boltzmann equation
and Kubo-Streda formalism, it was argued by Sinitsyn and
co-workers [17,18] that an additional to IC and SJ scattering-
independent contribution to the AHE is provided by the
so-called intrinsic skew scattering (ISK). As the conventional

1098-0121/2014/89(1)/014411(9) 014411-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.75.045315
http://dx.doi.org/10.1103/PhysRevB.75.045315
http://dx.doi.org/10.1103/PhysRevB.75.045315
http://dx.doi.org/10.1103/PhysRevB.75.045315
http://dx.doi.org/10.1103/PhysRevB.89.014411


PHILIPPE CZAJA et al. PHYSICAL REVIEW B 89, 014411 (2014)

skew scattering, which is inversely proportional to the impurity
concentration and thus arises due to incoherent superposition
of scattering at each defect, ISK also originates from the
asymmetric part of the collision kernel, but it reflects the
interference between scattering at different impurities and it
scales the same as SJ and IC. Diagrammatically speaking,
while the conventional skew scattering is due to the vertex
corrections that involve correlators of more than two powers
of the disorder potential, the ISK is only due to Gaussian
disorder correlations [18]. The importance of ISK in terms
of its relation to other contributions on a model level or in
ferromagnetic materials was never investigated.

In this work, based on the formalism of Kovalev and
Weischenberg [15,16], we derive analytical expressions for
the AHE in the presence of finite Gaussian disorder which can
be evaluated solely from the electronic structure of the perfect
crystal. This is done by constructing the unperturbed Green
functions based on a preceding electronic structure calculation,
and then applying the Gaussian disorder model to obtain the
self-energy, from which the full Green function and the vertex
corrections can be calculated. In the clean limit we thus obtain
all scattering-independent contributions, which, in addition
to IC and SJ considered previously [16], also include the
intrinsic skew scattering. We implement derived expressions in
the first-principles full-potential linearized augmented plane-
wave (FLAPW) code FLEUR [19] which includes the effect
of spin-orbit interaction coming from the crystal potential
self-consistently, and calculate the AHE in the clean limit
and away from it in typical metallic ferromagnets studied
theoretically and experimentally: bcc Fe, fcc Co, L10-FePd,
L10-FePt, and thin films of bcc Fe(001).

Overall, we obtain a good agreement of our results with
experimental data, indicating that the Gaussian disorder model
is well suited for modeling the effect of impurities and
to some extent even the effect of temperature. Analyzing
the individual contributions, unambiguously distinguishable
within our approach, we find that in most materials neither
intrinsic nor extrinsic AHC shows a trivial behavior as a
function of resistivity or temperature. One of our key findings
is that ISK is just as important as the IC and SJ, and including
it into consideration systematically improves agreement with
experiment. We can also conclude that the main contribution
to the AHE, which completely drives its behavior with respect
to disorder in the investigated materials, comes from the Fermi
surface, whereas the Fermi sea provides a smaller contribution
that is quite insensitive to disorder.

II. METHOD

We can use the Kubo formalism to derive the expression for
the anomalous Hall conductivity (AHC) at zero temperature
in terms of the retarded and advanced Green functions G

R/A

0
of the perfectly periodic crystal and the velocity operator v.
This gives rise to a sum of two terms (throughout this section
we set e = � = 1),

σ I
αβ = 1

4π

∫
d3k

(2π )3
Tr

[
vαGR

0 (EF ,k)vβGA
0 (EF ,k)

− (α ↔ β)
]
, (1)

and

σ II
αβ = 1

2π

∫
d3k

(2π )3

∫ EF

−∞
dE

× Re
{
Tr

[
vαGR

0 (E,k)2vβGR
0 (E,k) − (α ↔ β)

]}
, (2)

where α and β are the Cartesian indices and EF is the Fermi
level. σ I

αβ we will refer to as the Fermi-surface term since
it has contributions coming only from the Fermi surface. σ II

αβ

accumulates the contributions from all occupied states and it is
therefore referred to as the Fermi-sea term. Together these two
terms yield the anomalous Hall conductivity of a disorder-free
crystal.

In order to treat disordered systems instead of G0 in
Eqs. (1) and (2) we have to consider the full Green function:

G = 1(
G−1

0 − �
) , (3)

which is obtained from G0 and the self-energy �, incorpo-
rating the effect of disorder. This is done using two different
models. Within the first model the self-energy is approximated
by a constant imaginary part �. Whereas this model does not
treat scattering explicitly and is thus not able to reproduce
the disorder driven contributions to the AHE, it is well
suited for studying the effect of finite temperatures on the
intrinsic contribution. In order to cover also the disorder driven
contributions, a short-range Gaussian disorder model together
with configurational averaging is used to account for impurity
scattering explicitly.

A. Constant broadening

Setting �(E,k) to −i� · I , where I is the identity matrix,
results in a Green function that is diagonal in the eigenspace
of the Hamiltonian:

GR(E,k)mn = δmn

E − εnk + i�
, (4)

where εnk are the single-electron eigenenergies. Inserting G

instead of G0 into (1) and (2), respectively, yields

σ I
αβ = − 1

2π

∫
d3k

(2π )3

∑
mn
m�=n

Im
{
vα

mn(k)vβ
nm(k)

}

× (εmk − εnk)�

((EF − εmk)2 + �2)((EF − εnk)2 + �2)
, (5)

and

σ II
αβ = 1

π

∫
d3k

(2π )3

∑
mn
m�=n

Im
{
vα

mn(k)vβ
nm(k)

}

×
(

�

(εmk − εnk)((EF − εmk)2 + �2)

− 1

(εmk − εnk)2
Im

{
ln

EF − εmk + i�

EF − εnk + i�

})
, (6)

where all matrices are given in the eigenbasis of H . In the
clean limit � → 0 the sum of both terms converges to the
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well-known Berry curvature expression for the intrinsic AHE,

σαβ →
occ∑
m

∫
d3k

(2π )3

∑
n�=m

2Im
{
vα

mn(k)vβ
nm(k)

}
(εmk − εnk)2

. (7)

B. Gaussian disorder

In order to derive the scattering-originated contributions to
the AHE we use the model potential,

V̂ = U

Nimp∑
i

δ(r̂ − Ri), (8)

which consists of a number Nimp of delta functions at positions
Ri . We calculate the averaged Green function Gav = 〈G〉c,
which is obtained by taking the configurational average over
all possible distributions of Nimp impurities. In the following
we will refer to Gav as G and treat it as a regular Green function
which fulfills the Dyson equation (3). In order to obtain an
expression for the self-energy �, we expand it in powers of
the potential V and perform the configurational average, which
yields an infinite series of diagrams, each describing a multiple
scattering event:

Σ = + + + + . . . (9)

Here, a single line represents a disorder-free Green function G0

and a scattering amplitude is represented by a dashed line and
a cross, where the cross stands for an impurity. The first-order
term only gives a constant energy shift that can be hidden in
the chemical potential and is thus irrelevant. Truncating the
series after the first nontrivial term yields

�(E,k) = V
∫

d3k′

(2π )3
Okk′G0(E,k′)Ok′k, (10)

where V = U 2nimp is a disorder parameter containing the
disorder strength U and the disorder concentration nimp, and
Ok,k′ are the overlap matrices of the lattice periodic parts
of the Bloch states: (Ok,k′)mn = 〈km|k′n〉. This truncation is
justified by the fact that the self-consistent evaluation of (10)
reproduces all higher order terms which are important at low
impurity concentrations.

For a complete description of the AHE we also need to
include the vertex corrections, i.e., all the terms which are not
obtained when the full Green function is inserted into (1) and
(2). Which terms these are can be made clear diagrammatically.
In terms of Feynman diagrams the Fermi-surface term is
represented as a bubble,

R

A

vα vβ (11)

where open circles represent velocity vertices. When G0 is
replaced by G, represented by a double line, we obtain

= + + +. . .

(12)

This series does not contain processes where the top and the
bottom Green function are connected by one or more scattering
lines. These processes are, however, equally important and
therefore have to be taken into account, which is done by
replacing the velocity vertex v by a vertex function �(E,k)
(represented by a gray triangle). Again neglecting processes
with more than two scatterings from the same impurity, we
find that the vertex function is given by an infinite series of
so-called ladder diagrams:

= + + + . . . (13)

This can be written in the form of a self-consistent equation,

= + , (14)

or in integral form,

�(E,k) = v(k) + V
∫

d3k′

(2π )3
Okk′GA(E,k′)�(E,k′)

×GR(E,k′)Ok′k, (15)

which can be solved either iteratively or via matrix inversion.
Equally, scalar vertices have to be replaced by a scalar vertex
function γ for which we obtain a similar equation:

γ (E,k) = I + V
∫

d3k′

(2π )3
Okk′GR(E,k′)γ (E,k′)

×GR(E,k′)Ok′k. (16)

The full AHC is now obtained by replacing in (1) and (2) G0

by G and the scalar and velocity vertices by the respective
vertex functions:

σ I
αβ = 1

4π

∫
d3k

(2π )3
Tr[�α(EF )GR(EF )vβGA(EF )

− (α ↔ β)], (17)

and

σ II
αβ = 1

2π

∫
d3k

(2π )3

∫ EF

−∞
dERe{Tr[�α(E)GR(E)γ (E)

×GR(E)�β(E)GR(E) − (α ↔ β)]}, (18)

where for clarity the k dependence was omitted for all
operators. This leads to the following diagrammatic picture
of the AHE, which allows for a clear distinction of its different
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contributions:

σαβ =
vβ R

RR

vα

− (α ↔ β) +

R

A

vα vβ

σint
αβ

+

R

A

+

R

A

+ . . .

σsj
αβ

+

R

A

σisk
αβ

− (R ↔ A) .

(19)
The first term is the Fermi-sea part, which is usually considered
to be of an intrinsic origin [4] since it does not show
any scattering-driven behavior, i.e., its disorder dependence
can be captured by a simple broadening. Together with the
disorder-free part of the Fermi-surface term it forms the
intrinsic AHC σ int, which in the clean limit converges to
the Berry curvature expression (7). The side jump σ sj is
defined by the disorder-driven terms which emerge when
replacing G0 by G in the Fermi-surface term. In the clean
limit it converges to the scattering-independent side-jump
contribution [15,16]. The remaining part, which corresponds
to the vertex corrections, is called intrinsic skew scattering
σ isk [17,18]. Similar to the SJ, it converges to a finite value
in the clean limit and thereby differs from the conventional
skew scattering. The latter is divergent in the clean limit but
it is negligible in the region of impurity concentrations which
are usual for moderately disordered metals [4]. In our work
the conventional skew scattering is not considered since it
does not arise from the Gaussian disorder model that we use.
Speaking diagrammatically, the conventional skew scattering
consists of more elaborated vertex corrections which depend
on internal details of impurity potential and which are missing
in the representation above [4,18].

C. Implementational aspects and computational details

In practice the Brillouin zone integrals are replaced by a
sum over a discrete k-point grid. Since the convergence of the
Fermi-surface term requires a large number of k points, we
use the method of Wannier interpolation [20] to interpolate
all the necessary quantities on a sufficiently dense grid.
For this purpose we construct a set of maximally localized
Wannier functions (MLWF) |Rn〉 = 1/

√
Nk

∑
k e−ik·R |ψW

nk〉
on a coarse k-point grid, where |ψW

nk〉 = ∑
m Uk

mn |ψmk〉 are
the Bloch states in the Wannier gauge, obtained by a unitary
mixing of the eigenstates |ψmk〉. We then calculate the
Hamiltonian H (R) in the Wannier basis and perform an inverse
Fourier transformation to obtain the Hamiltonian HW (k) in the
Wannier gauge, i.e., in the basis {|ψW

nk〉}. The matrix elements
of the velocity operator are then obtained according to

v(k)Wmn =
(

∂H (k)W

∂k

)
mn

≈ ∂H (k)Wmn

∂k
, (20)

where the approximation made in (20) becomes valid by as-
suming that ∂k |kn〉W ≈ 0, where |kn〉W is the lattice periodic
part of the Bloch wave function in the Wannier gauge (constant
basis approximation). For the evaluation of the AHC in the con-
stant broadening model both H and v are rotated into the eigen-
basis of H , whereas in the Gaussian disorder model all matrices
are evaluated in the Wannier gauge. Due to the constant basis
approximation the overlap matrices in the Wannier gauge
simplify to unit matrices. The only input quantity remaining
is therefore the Hamiltonian in the Wannier basis. The energy
integrals in the Gaussian disorder model are evaluated numer-
ically using a complex energy grid [21] with 15 or 31 points.

The electronic structure calculations were carried out within
the full-potential linearized augmented plane-wave method
using the Jülich density-functional theory FLAPW code FLEUR

[19]. For bulk calculations we used experimental lattice
constants and between 7700 and 9300 k points in the full
Brillouin zone together with a plane-wave cutoff kmax between
3.7 and 4.5 bohr−1 to ensure convergence of the charge density.
In all cases the ferromagnetic magnetization was pointing
along the [001] axis. The construction of Wannier orbitals was
performed with the WANNIER90 code [22] and our interface
between FLEUR and WANNIER90 [23]. In all bulk calculations
we constructed a set of 18 MLWFs per atom on an 8 × 8 × 8
grid using dxy-, dxz-, dyz-, and sp3d2 orbitals as first guesses.
For the film calculations we used the two-dimensional version
of FLEUR [19] with a distance of a/2 = 2.71 bohr between
the Fe layers, 5.1 bohr between the surface layer and the
vacuum boundary, and 6.8 bohr between the surface layer and
the z boundary used to generate the plane waves along the
z axis, normal to the film plane. All film calculations were
performed with 784 k points in the full Brillouin zone and
kmax = 3.8 bohr−1. For the three-layer film we constructed 18
MLWFs per layer using the same first-guess orbitals as in the
bulk case. For the other films we constructed only 12 MLWFs
per layer, starting from s and d orbitals. In all cases an 8 ×
8 grid was used. In order to calculate the AHE in a film the
expressions in the previous sections can be straightforwardly
adapted to two dimensions, with the only difference that the
conductance is calculated instead of the conductivity. The
AHC is then obtained from dividing by the film thickness,
which was approximated by (Nlayers + 1)a/2.

III. RESULTS

The method which we introduced above was used to
calculate the AHE in disordered ferromagnets solely based
on the ab initio electronic structure of the perfect crystal.
This approach has already been successfully used by Kovalev
[15] and Weischenberg [16] to calculate the SJ in clean limit.
In this work we extend the latter approach by introducing
finite disorder in the form of a single disorder parameter
into the calculation. This has the advantage that a systematic
treatment and an easy tuning of disorder, which enables
the straightforward application of the method to any new
material, is possible. Moreover, our approach allows us to
unambiguously separate the AHE into different contributions
according to (19). This could be particularly beneficial for
comparison with the model studies [4] and for establishing
the AHE scaling laws relevant experimentally [10,11,24–26].
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FIG. 1. (Color online) AHC in bcc Fe (top row) and fcc Co (bottom row). (Left and middle panels) Additive decomposition of the total
AHC (σ tot), into intrinsic (σ int), side jump (σ sj), and intrinsic skew scattering (σ isk) contributions, presented as a function of longitudinal
resistivity (left) and temperature (middle). (Right panel) ρyx/ρxx vs ρxx . Labels “Tian et al.” and “Hou et al.” refer to experimental data in
Refs. [10] and [24], respectively.

In particular, this allows us to investigate the importance of
the intrinsic skew scattering contribution in ferromagnets both
at finite disorder and in the clean limit, which has not been
considered so far.

For the calculation of the IC the effect of disorder was
simulated by broadening of the bands, as described in Sec. II.
Whereas the ISK is calculated directly, the SJ results from the
difference between the total AHC without vertex corrections
and the IC. In order to be able to compare our results
at finite disorder to experimental values it is necessary to
relate the abstract disorder parameter to an experimentally
accessible quantity. This was done by additionally calculating
the diagonal conductivity, which allows one to plot σαβ as a
function of the longitudinal resistivity ραα .

It is clear that in reality the AHC as well as the resistivity
depend on a variety of factors such as the impurity concentra-
tion, the type of disorder and its microscopic details. Thus, the
description in terms of a single parameter describing disorder
can be only a rough approximation. In this respect, when the
objective is to simulate the effect of a particular source of
disorder, our approach is inferior to methods where disorder is
explicitly considered in the ab initio calculation, such as KKR
plus CPA approach [12–14]. However it seems more general in
the sense that it takes into account all kinds of disorder sources
and bundles them in an average disorder potential. In how far
this is a reasonable description of the experimental situation,
where one usually also deals with a variety of (often unknown)
sorts of disorder acting together, and in how far our method
is able to simulate the effect of particular sources of disorder,
can be found out only via comparison to experimental data.

One of the objectives of this work is tackling the question of
how well the Gaussian disorder model is capable of modeling
the effect of temperature on the AHE. For this purpose we

use the values of experimental resistivity as a function of
temperature to derive the temperature dependence of the AHC
from its resistivity dependence. The results are then compared
to experiments. One has to note that although the temperature
dependence of the AHC can come from various sources,
probably the most important source of scattering which our
approach is meant to reproduce is the scattering at phonons,
since we compare our calculations to experiments performed
quite far from the Curie temperature for considered materials.

The temperature as well as the resistivity dependence of the
AHC and its individual contributions will now be discussed
separately for each investigated material.

A. bcc Fe

The results of our calculations of the AHE in bcc Fe are
presented in the upper panel of Fig. 1. As we can see, the AHE
in Fe is largely driven by the intrinsic contribution σ int over a
wide range of diagonal resistivity ρxx . The dependence of the
AHC on ρxx is quite pronounced, with an overall reduction
by a factor of 3 as ρxx reaches 80 μ�cm. The SJ part σ sj

is much smaller when compared to the intrinsic conductivity
values, which is in accordance with Weischenberg’s clean limit
calculation for Fe [16]. The ISK contribution to the AHC,
σ isk, is also small, although it becomes dominant over side
jump in the vicinity of the ρxx where side jump changes
sign. Both extrinsic contributions do not exceed 150 S/cm
in absolute value for the whole considered resistivity range.
In the clean limit, adding all contributions to the AHC results
in the value of about 950 S/cm, which is very close to the
value of about 1000−1100 S/cm for the “intrinsic,” or, as it
should be properly addressed, scattering-independent AHC in
bcc Fe, obtained from carefully crafted recent measurements
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FIG. 2. (Color online) AHC in FePd (top) and FePt (bottom). Presentation of data is analogous to Fig. 1. Labels “He et al.” and “Seemann
et al.” refer to experimental data in Refs. [26] and [25], respectively.

by Tian et al. [10] In this respect, the inclusion of the intrinsic
skew scattering improves the agreement between theory and
experiment [16].

Converting the ρxx dependence into a temperature (T )
dependence using experimental resistivity data from Ref. [27],
we obtain a relatively small decrease of the AHC over
temperature leading to a room-temperature value of 800 S/cm.
The decrease of the AHC by about 20% as compared to zero
T can be solely attributed to a decrease in σ sj , whereas the IC
and ISK contributions remain basically constant over T below
300 K. Noticeably, at 300 K the scattering is dominated by
intrinsic skew scattering.

Since experimental values for the AHC as a function of
temperature are not available for iron, we instead plot ρyx/ρxx

vs ρxx , where ρyx ≈ σxyρ
2
xx is the transverse resistivity. In this

representation we can compare our results to experimental
data by Tian et al. in Ref. [10], who measured ρyx and ρxx at
varying temperatures (see right panel of Fig. 1). Qualitatively,
the calculated values of ρyx/ρxx show an almost linear
behavior that is experimentally also observed in iron at higher
temperatures, and while theory and experiment agree very well
for lower values of ρxx , at higher T the experimental line has
a higher slope than the calculated one. One of the conclusions
we can make from this plot is that the performance of the
fits and identification of extracted parameters with different
sources of the AHE has to be done with care, especially
when the ρxx is tuned by varying T . For example, in bcc
Fe the slope of the linear fit of the theoretical data in the
above plot gives the value of 730 S/cm, which is even lower
than the room-temperature value of the calculated AHC. The
corresponding fit of the experimental data yields the value of
1280 S/cm, also obviously off the experimental value for the
scattering-independent AHC in Fe.

In Sec. II we have decomposed the AHC into Fermi-sea and
Fermi-surface terms which can be calculated separately. The

calculation of these two terms in bcc Fe yields that the behavior
of the AHC as a function of resistivity is purely driven by the
Fermi-surface term. This is in accordance with the observation
that the main origin of the variation of the AHC with ρxx is the
side jump. The Fermi-sea contribution on the other hand varies
very slowly as a function of ρxx , but, unlike in other materials
considered in the following, is not negligible in Fe, where it
contributes approximately 20%–30% to the total AHC.

B. fcc Co

The AHC in fcc Co shows a behavior close to that in bcc
Fe (see lower panel of Fig. 1) in that it exhibits similar decay
rate with ρxx . Also the clean limit values of total AHC are
very close in both materials. However, unlike in iron, all three
contributions to the AHC are of the same order of magnitude
and it is mostly the SJ and the ISK which are responsible for
the ρxx dependence, whereas the IC does not vary with ρxx

significantly. The Fermi-sea contribution to the AHC in fcc
Co lies well below 10% of the total value and hardly changes
with diagonal resistivity.

In order to compare our calculations to experiment, we
use the experimental data for fcc Co by Hou et al. given in
Ref. [24]. We construct the temperature dependence of the
AHC using the experimental ρxx resistivity data taking into
account the residual resistivity of ρxx(0K) ≈ 4 μ�cm. At low
temperatures the agreement of our results with experiment is
excellent, with the AHC value of about 750 S/cm, which is
smaller than the zero-disorder limit value due to the offset in
ρxx by ρxx(0K) in resistivity dependence of the AHC in Fig. 1
(left). In Ref. [24] the extracted scattering-independent value
of the AHC in fcc Co is reported to be 727 S/cm, and it is
compared there to the intrinsic theoretical value of the AHE
of about 250 S/cm, reported in Ref. [28]. Our calculations
show that the agreement between theory and experiment in
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estimation of the scattering-independent value of the AHC in
fcc Co can be improved significantly, if the side jump and the
intrinsic skew scattering are taken into consideration. At room
temperature the deviation between theory and experiment is
also quite small, and constitutes about 15%. Both in theory and
experiment, the AHC is relatively constant with respect to tem-
perature. As in the case of Fe, the ρyx/ρxx dependence in Fig. 1
(right) displays a linear behavior, with a very good agreement
to experimental data both in the values and the slope.

C. L10 FePd and FePt

In the ferromagnetic L10-ordered alloys FePd and FePt all
contributions to the AHE are of equal importance, as can be
seen in Fig. 2. In both compounds the total AHC is relatively
constant as a function of ρxx , with the values in FePt by a factor
of two larger than in FePd. This has been previously attributed
to the different spin-orbit strength of Pt and Pd atoms, which
greatly influences the IC and SJ contributions, providing a
characteristic crossover [16]. Indeed, in FePt in clean limit
σ int is by far larger than the extrinsic contributions, while the
situation changes to the opposite in FePd [25,26]. In contrast
to previously presented calculations for bcc Fe, the ISK in the
clean limit is very important for these alloys: It is of the same
magnitude as the SJ in FePd, and it is much larger than SJ
in FePt, which leads to an underestimation of AHC in both
alloys if σ isk is not included [16,25]. As the ρxx is increased,
the intrinsic skew scattering in FePd is significantly decreased,
while in FePt the SJ grows considerably in magnitude. As can
be seen from Fig. 2, in FePd the ρxx dependence is mainly
influenced by σ sj , while in FePt it is the competition of the
ρxx dependence of all contributions which results in a flat
total AHC. In both alloys the Fermi-sea contribution remains
relatively unaffected by disorder, being ≈60 S/cm in FePd
and ≈100 S/cm in FePt.

In order to reconstruct the T dependence and compare to
experiment we use two sets of available data: measurements
of Seemann et al. on highly ordered alloys in Ref. [25], and
data of He et al. in Ref. [26] on samples with a lower degree
of ordering and smaller film thickness. As follows from our
calculations, the total AHC in both alloys is quite constant
up to room temperature. The agreement with the experimental
data of Seemann et al. on FePd is overall very good, and even
excellent for smaller temperatures, which signifies that in this
alloy the AHE is driven mainly by SJ and, importantly, ISK
contribution. In agreement with experiment, the AHC as a
function of temperature below 150 K exhibits a slow rise with
T . The degree of agreement is also visible in the ρyx/ρxx plot,
given on the right of Fig. 2.

On the other hand, at first sight the agreement with
Seemann’s values for FePt seems to be much worse, at least at
low temperatures. However, here one has to take into account
that in these particular samples of FePt the skew-scattering
angle of about 1% is extremely large, as can be also seen
from the ρyx/ρxx plot, in which extrinsic skew scattering
corresponds to a shift of the whole curve along the y axis.
This leads to a conventional skew scattering σ

exp
sk of about

800 S/cm at 4 K, decreasing towards higher temperatures.
Since the conventional skew scattering is not taken into account
within our model, it makes sense to compare theoretical

-1000

 0

 1000

 2000

σ x
y 

[S
/c

m
]

3 layers

σtot

σint

σsj

σisk

-1000

 0

 1000

 2000

σ x
y 

[S
/c

m
]

5 layers

-1000

 0

 1000

 2000
σ x

y 
[S

/c
m

]

7 layers

-1000

 0

 1000

 2000

0 20 40 60 80

σ x
y 

[S
/c

m
]

ρxx [μΩcm]

11 layers

 0

 2

 0  40  80

10
2 ρ y

x/
ρ x

x

ρxx [μΩcm]

 0

 2

 4

 0  40  80

10
2 ρ y

x/
ρ x

x

ρxx [μΩcm]

 0

 2

 4

 0  40  80

10
2 ρ y

x/
ρ x

x

ρxx [μΩcm]

 0

 2

 4

 0  40  80

10
2 ρ y

x/
ρ x

x

ρxx [μΩcm]

FIG. 3. (Color online) AHC in bcc Fe(001) films of three-,
five-, seven-, and 11-layer thickness. Shown are the total and the
decomposed AHC as a function of the longitudinal resistivity. The
insets show ρyx/ρxx as a function of ρxx .

values to σ
exp
tot − σ

exp
sk , finding that our calculations actually

overestimate Seemann’s values by 10%–15% at lower T , thus
providing overall a rather good agreement. Noticeably, the
slopes of the ρyx/ρxx curves are almost identical between
theory and experiment, and the corresponding curves lie very
close to each other.

The agreement with the experimental data of He et al.
is worse, on the other hand, which we can attribute to the
smaller thickness of the samples and their smaller ordering
parameter, the effect of which could result in a systematic shift
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to lower values by about 30% as compared to our theoretical
results, also visible in ρyx/ρxx dependence. As apparent from
comparison of corresponding XRD spectra [26,29], another
reason for discrepancy here could be the difference in the
structure which goes beyond the degree of ordering of the
samples used by Seemann et al. [25] and He et al. [26]
Nevertheless, one has to note that the overall trend of the
AHC with temperature is the same from theory as it is in
experiments. Moreover, from careful inspection of the curves
for the total AHC in Fig. 2 for both alloys we can state that
even fine features of the T dependence in experiments of He
et al. are well reproduced with our calculations, e.g., the rise of
the AHC up to 150 K for FePd, or the slight decay of the AHC
at around 200 K for FePt are clearly noticeable in both alloys.
This suggests that the Gaussian disorder model can reproduce
the effect of temperature on the AHE in these alloys rather well.

D. Fe films

Finally, in addition to bulk Fe we also investigate the AHE
in thin bcc Fe(001) films of three-, five-, seven-, and 11-layer
thickness. This approximately corresponds to the thickness of
0.6, 0.9, 1.2, and 2 nm, respectively. To our knowledge, no
experimental data exists for such ultrathin Fe films. As can be
seen from our calculations, presented in Fig. 3, the behavior
of the AHE for bcc Fe in the limit of ultrathin films is very
different from that in bulk, given in Fig. 1. The side-jump
contribution in the three-layer film is very small, but it rises
in magnitude significantly as the film thickness is increased,
reaching as much as −700 S/cm for 11 layers, and exhibiting
a change of sign at small values of ρxx . Increasing thickness
further towards the bulk limit will bring the magnitude of
σ sj down, and the change-of-sign point to higher values of
ρxx (see Fig. 1). The intrinsic skew scattering contributes
mostly in three- and five-layer films, while its magnitude gets
significantly smaller as the thickness is increased (see also
Fig. 1). Remarkably, for three- and five-layer films σ isk hits as
much as 1000 S/cm in magnitude, and its dependence on ρxx

determines the behavior of overall AHC, which even exhibits a
change of sign for three layers. On the other hand the intrinsic
part of the AHC determines the total AHE with increasing
thickness, both in magnitude and behavior, in consistency
with the calculations for bulk Fe. And while the three-layer
σ int does not depend on ρxx , this dependence is quantitatively
consistent with that in bulk Fe for larger thickness, although it
is much more pronounced. Overall, one has to point out that the
intrinsic values in clean limit are rather far off the bulk value,
except for the five-layer film. The insets in Fig. 3 show that
unlike in most of the bulk ferromagnets considered previously

the behavior of ρyx/ρxx is strongly nonlinear, which indicates
that the common scaling laws which predict linearity do not
hold in ultrathin films.

To conclude, in the limit of ultrathin films one can expect
large changes in the total value of the AHE, its sign, and
the magnitude of the contributions of different origin. This
marks the few-layer thin nanostructures of ferromagnets as
an exciting type of system to study in the future, both
experimentally and theoretically.

IV. CONCLUSIONS

In summary, we have implemented a method for calculating
the AHC in disordered ferromagnets solely from the electronic
structure of the perfect crystal. We used the Gaussian model
for disorder potential that allows us to tune disorder via a
single parameter, presenting thus a significant simplification
as compared to more elaborated schemes. In the clean limit,
within our approach we arrive at all scattering-independent
contributions to the AHE: intrinsic, side jump, and intrinsic
skew-scattering contributions. In particular the latter has been
never evaluated in real materials.

We implemented our method within the FLAPW code
FLEUR and applied it to a number of bulk ferromagnets and
thin films. We found that in most materials our model is able
to reproduce the correct qualitative behavior of ρyx/ρxx as
a function of the longitudinal resistivity, generally providing
also rather good quantitative agreement with experiments. In
particular, we were able to describe the temperature depen-
dence of the AHE from the knowledge of the experimental
ρxx . Within our approach we transparently separated the
intrinsic, side jump, and intrinsic skew-scattering contributions
to the AHE and studied their respective resistivity/temperature
dependencies, finding that in most cases they all exhibit a
nontrivial behavior. In particular we demonstrated that in
most ferromagnets the intrinsic skew scattering improves
agreement with experiments in that it provides a significant
contribution that can even exceed the intrinsic and the side-
jump contributions at low resistivities.
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