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We present a combined experimental and theoretical study of the spin- 1
2 compound CuP2O6 that features a

network of two-dimensional (2D) antiferromagnetic (AFM) square planes, interconnected via one-dimensional
(1D) AFM spin chains. Magnetic susceptibility, high-field magnetization, and electron spin resonance (ESR)
data, as well as microscopic density-functional band-structure calculations and subsequent quantum Monte Carlo
simulations, show that the coupling J2D � 40 K in the layers is an order of magnitude larger than J1D � 3 K in
the chains. Below TN � 8 K, CuP2O6 develops long-range order, as evidenced by a weak net moment on the 2D
planes induced by anisotropic magnetic interactions of Dzyaloshinsky-Moriya type. A striking feature of this
3D ordering transition is that the 1D moments grow significantly slower than the ones on the 2D units, which
is evidenced by the persistent paramagnetic ESR signal below TN . Compared to typical quasi-2D magnets, the
ordering temperature of CuP2O6 TN/J2D � 0.2 is unusually low, showing that weakly coupled spins sandwiched
between 2D magnetic units effectively decouple these units and impede the long-range ordering.
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I. INTRODUCTION

According to the central theorem by Mermin and Wagner,1

low-dimensional Heisenberg magnets with sufficiently short-
ranged isotropic interactions do not order magnetically at
any finite temperature in one or two spatial dimensions.
The standard way in which real systems eventually evade
this theorem is via weak interplane or interchain interactions
which, no matter how weak, are enough to mitigate the
entropic fluctuations and stabilize long-range order (LRO)
below a characteristic temperature TN . By now, many aspects
of this important ordering transition are theoretically well
understood2–9 and tested by many experiments.10–12 For
example, one of the key factors affecting the value of TN is
the fluctuation strength of the low-dimensional units (planes or
chains) and, hence, their dimensionality. This aspect is already
exposed by mean-field theory,2,3 which shows that for weakly
coupled antiferromagnetic (AFM) planes (or chains), TN is
given by

χs(TN (J ′)) = 1

zJ ′ , (1)

where J ′ is the interlayer (resp. interchain) coupling, χs is
the staggered susceptibility χs

2D (resp. χs
1D), and z = 2 (resp.

z = 4) is the coordination number.
Here, we study what happens when magnetic units of

different dimensionality are brought together in a single
material and, in particular, when successive AFM layers
couple to each other only via intermediate AFM chains. This
situation is realized in the spin- 1

2 compound CuP2O6, where
a 2D sublattice with stronger magnetic couplings coexists
with a 1D sublattice featuring weaker magnetic couplings.
Systems of this type have been scarcely studied in the past,
both experimentally and theoretically, yet they raise a number
of interesting and so far unresolved questions. What is the

nature of the transition and the magnetic behavior of the two
sublattices below TN ? Which energy scale determines the value
of TN?

The experiments presented below show clearly that the
coexistence of two dimensionalities hinders the overall three-
dimensional (3D) magnetic order in CuP2O6 and, additionally,
leads to a very peculiar situation where the 1D sublattice
remains partly paramagnetic below TN . This physics can be
accounted for by a mean-field treatment of the problem which,
in particular, generalizes Eq. (1) to

χ̄ s(TN (J ′)) = 1

zJ ′ , (2)

where χ̄ s = √
χs

1Dχs
2D is the geometric mean of the two

staggered susceptibilities. As we discuss below, the physical
meaning of this equation can be understood in terms of an ef-
fective, temperature-dependent interlayer coupling J ′

eff,⊥(T ),
mediated by the chains.

Regarding the crystal structure of CuP2O6, this compound
features two crystallographically inequivalent positions of the
magnetic Cu2+ ions. Despite the similar local environment,
which is well described by CuO4 planar units, the two
Cu sites possess different connectivities (Fig. 1). Shortest
Cu1–Cu1 contacts form a planar sublattice, which is topolog-
ically equivalent to the square lattice: despite the lack of the
overall fourfold symmetry, the monoclinic symmetry C2/c

renders all nearest-neighbor exchange pathways equivalent
(J2D). The Cu2 sites, on the other hand, form buckled chains
stretched along the c direction. The shortest Cu2–Cu2 distance
along b (8.09 Å) is nearly twice larger than the intrachain
separation of 4.86 Å along c. Therefore, a 1D sublattice of Cu2
spins is expected (Fig. 1, right). In the following, we will verify
this picture by a model treatment of the experimental data
(Sec. III A) and by a direct microscopic analysis (Sec. III C).
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FIG. 1. (Color online) Crystal structure of CuP2O6 (left) and the relevant magnetic model (right). Note two different Cu positions that
form planar 2D units in the bc plane (Cu1, green), and buckled chains stretched along the c direction (Cu2, brown). For details of the Cu1 and
Cu2 sublattices see Figs. 9 and 8, respectively. Weak couplings Ji1 (thin solid line) and Ji2 (dotted line) are leading interactions between the
sublattices. Crystal structures are visualized using the VESTA software (Ref. 13).

Some magnetic properties of CuP2O6 have been reported
before,14,15 but no conclusive information regarding the nature
of magnetism and magnetic order in this compound is
available. While magnetic susceptibility and electron spin
resonance (ESR) show signatures of a magnetic transition
around 8 K, a neutron diffraction experiment failed to detect
any magnetic reflections below this temperature.14 In the fol-
lowing, we report a combined experimental and computational
study of CuP2O6. In contrast to previous studies that focused
only on phenomenological aspects of this material, we provide
a detailed microscopic scenario of CuP2O6 and establish the
combination of 1D and 2D magnetism taking place on different
energy scales, thus leading to a magnetic ordering transition
around 8 K with a remarkably low TN/J � 0.2. We argue that
the coupling of 2D sublattices through the 1D sublattices is
responsible for this effect.

II. METHODOLOGY

Polycrystalline samples of CuP2O6 were prepared by
the conventional solid-state reaction technique using CuO
(Aldrich, 99.999%) and NH4H2PO4 (Aldrich, 99.999%) as
starting materials.16 The stoichiometric mixtures were ground
and fired at 400 ◦C for 24 h. The product was not uniform
in color. The sample was given subsequent firings at 450 ◦C
and 500 ◦C for 24 h each. Phase purity of the samples were
checked using powder x-ray diffraction (PANalytical) with
CuKα radiation (λ = 1.54060 Å). Powder x-ray diffraction
was done after each firing. At 450 ◦C, a single-phase sample
was obtained. The firing at 500 ◦C resulted in an impurity phase
of Cu2P2O7. Therefore, all our measurements were done on
the 450 ◦C sample.

The magnetic susceptibility (χ ) was measured as a function
of temperature (1.8 K � T � 380 K) and at different applied
magnetic fields (H ). Zero-field-cooled (ZFC) and field-cooled
(FC) magnetic susceptibility was measured at an applied field
of 100 Oe and at low temperatures. Magnetization isotherms
(M vs H ) were also measured at T = 1.8–2.0 K while
both increasing and decreasing fields. All these magnetic
measurements were performed using a SQUID magnetometer
(Quantum Design MPMS) and the vibrating sample magne-
tometer option of a Quantum Design PPMS. Our continuous
attempts to measure the heat capacity failed due to difficulties

in making a hard sintered pellet. High-field data were collected
using a pulsed magnet installed at the Dresden High Magnetic
Field Laboratory. Details of the experimental procedure can
be found elsewhere.17

The ESR measurements were carried out with a commercial
ESR spectrometer at the X-band frequency (9.4 GHz) in the
4.2–300 K temperature range. The magnetic couplings in
CuP2O6 were evaluated by density-functional (DFT) band-
structure calculations performed in the FPLO9.01-3718 and
VASP5.219 codes. The local density approximation (LDA)20

and generalized gradient approximation (GGA)21 of the
exchange-correlation potential were used. In addition to model
analysis on top of the LDA band structure, we calculated
isotropic exchange couplings and magnetic anisotropy param-
eters using GGA + U calculations with the on-site Coulomb
repulsion Ud = 8.5 eV, on-site Hund’s exchange Jd = 1 eV,
and the double-counting correction obtained in the atomic
limit.22–24 The mean-field GGA + U procedure provides
a reasonable correction for effects of strong correlations in
the Cu 3d shell, and facilitates a precise evaluation of the
magnetic couplings. We estimate parameters of the following
spin Hamiltonian:

H =
∑
ij

(Jij Si · Sj + Dij · Si × Sj + Si · �ij · Sj ), (3)

where the summations are over all interacting pairs of
spins Si and Sj , Jij is the isotropic (Heisenberg) exchange
coupling, Dij is the antisymmetric Dzyaloshinsky-Moriya
interaction, and �i j is the symmetric and traceless portion
of the anisotropy. Details of the computational procedure are
described in Sec. III C; see also Refs. 25 and 26.

Thermodynamic properties were evaluated by quantum
Monte Carlo (QMC) simulations with the loop27 and
dirloop sse28 algorithms implemented in the ALPS simula-
tion package.29 The simulations for CuP2O6 were performed
on 3D L × L × L/8 finite lattices with periodic boundary
conditions and L up to 32. Additionally, properties of indi-
vidual 1D and 2D units were calculated for low-dimensional
1D lattices with L up to 8192 and 2D L × L lattices with
L up to 768. This choice of L ensures that the uniform
magnetic susceptibility, specific heat, and field-dependent
magnetization reported in this work are free from finite-size
effects for all relevant temperatures. In the case of the staggered
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FIG. 2. (Color online) Left panel: Magnetic susceptibility (χ ) of CuP2O6 measured in the applied fields of 0.1 T, 0.5 T, and 2 T. The inset
shows the magnetization curve at 2 K, with a tiny hysteresis and the remnant magnetization Mr � 1.5 × 10−3 μB/f.u. Dotted lines are guides
for the eye. Right panel: Inverse susceptibility (1/χ ). The inset shows the field-cooled and zero-field-cooled susceptibility measured at 10 mT.
In both panels, the solid line is the QMC fit with the two-sublattice model, and the dashed line (right panel) is the Curie-Weiss fit. See text for
details.

susceptibility of the 2D lattice, we were able to reach size
convergence down to T/J2D � 0.21, which is sufficient for
fixing the value of TN from mean-field theory; see below.

III. RESULTS

A. Magnetization

Bulk magnetic susceptibility χ as a function of temperature
in different applied fields is shown in Fig. 2. With decreasing
temperature, χ (T ) increases in a Curie-Weiss manner down
to 20–25 K and shows a faster increase at lower temperatures.
The data measured in low fields additionally show a kink
around TN � 8 K. Below this kink, the susceptibility increases
abruptly, which indicates the formation of a net magnetic
moment, as typical for systems with canted AFM order. The
transition at 8 K is also visible in the low-field FC and ZFC
data (right panel of Fig. 2, inset) that eventually diverge
around 7.5 K. At low temperatures, the ZFC susceptibility
is negative, because the system orders in zero field, whereas
the small external field applied after cooling the system
through TN is insufficient for changing the direction of the
net moment. The net magnetization of CuP2O6 is quite small.
The M(H ) curve at 2 K (left panel of Fig. 2, inset) shows a
hardly visible hysteresis and yields the remnant magnetization
of Mr � 1.5 × 10−3 μB/f.u., as found from linear fits of the
M(H ) data between 0.1 and 0.5 T.

We carefully checked for a possible extrinsic origin of
this weak net moment. First, several samples were measured,
and all showed the same transition temperature and same net
moment. Second, possible magnetic impurities in CuP2O6

were considered. Those are restricted to CuO and several
Cu2+ phosphates, but none of them show magnetic transitions
around 8 K. For example, Cu2P2O7, which is a typical impurity
phase in CuP2O6 samples, orders antiferromagnetically at 27 K
and lacks any net magnetic moment.30 Finally, our ESR data
(Sec. III B) evidence an intrinsic change in CuP2O6 around 8 K.
Note that previous studies also reported the formation of the
weak net moment in CuP2O6 below 8 K.14 In the following,
the microscopic origin of this weak ferromagnetism will be
elucidated (Sec. III C 2).

To fit the bulk susceptibility data at high temperatures, we
use the expression

χ = χ0 + C

T + θCW
, (4)

where χ0 is the temperature-independent contribution and
consists of diamagnetism of the core electron shells (χcore)
and van Vleck paramagnetism (χVV) of the open shells of
the Cu2+ ions present in the sample. The second term is
the Curie-Weiss (CW) law with the Curie constant C =
NAμ2

eff/3kB and Curie-Weiss temperature θCW. Our fit in
the temperature range from 100 K to 380 K yields χ0 �
−9.5 × 10−5 emu/mol, C � 0.470 emu K/mol, and θCW �
20 K. The positive value of θCW suggests that the dominant
interactions are AFM in nature. The C value corresponds
to an effective moment μeff = gμB

√
S(S + 1) � 1.91μB ,

yielding g � 2.21. This value matches the powder-averaged
ḡ � 2.22 from ESR (Sec. III B). The temperature-independent
contribution χ0 is below the core diamagnetic susceptibility
χcore � −8.5 × 10−5 emu/mol expected for individual ions.31

Therefore, the van Vleck contribution is likely very small (we
expect χVV � 1.5 × 10−5 emu/mol according to Refs. 32 and
33), while the remaining discrepancy between χcore and χ0 is
due to the weak diamagnetic signal of the sample holder.

The magnetization of CuP2O6 increases with the field and
bends around 6 T (Fig. 3). In higher fields, the magnetization
continues increasing, yet with a much lower slope, and shows
linear behavior up to at least 55 T.34 The extrapolation of
this linear trend to zero field yields M0 � 0.53 μB/f.u.,
which is about half of the full magnetization Ms = gSμB �
1.11 μB/f.u. Therefore, half of the Cu2+ spins are saturated
in low fields, whereas the remaining Cu2+ spins are strongly
coupled and cannot be saturated even at 55 T. This phenomeno-
logical analysis is well in line with our above picture of two
different Cu sublattices in CuP2O6 with different energy scales.

We successfully fitted the data by a simple sum of the
uniform-chain and square-lattice contributions, both simulated
by QMC. Note that the χ (T ) and M(H ) curves are described
by the same set of parameters: J2D � 40 K, J1D � 3 K,
g � 2.22, and χ0 = −9.5 × 10−5 emu/mol, where χ0 has
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FIG. 3. (Color online) Magnetization isotherm of CuP2O6 mea-
sured at T � 1.8 K in static and pulsed fields. Solid line is the fit
with the two-sublattice model, as described in the text, whereas
short-dashed (brown) and long-dashed (green) lines denote individual
contributions of the 1D and 2D sublattices, respectively. Dotted line
shows the extrapolation of the linear region to zero field.

the same meaning as in Eq. (4) and conforms to the value
from the Curie-Weiss fit. The fitted g value matches the
powder-averaged ḡ = 2.22 from ESR (Fig. 5), whereas J2D

and J1D are in excellent agreement with the DFT results
presented in Sec. III C. The saturation field of CuP2O6 is
expected at μ0Hs = 4J2D × kB/(gμB) � 105 T, which is also
confirmed in our QMC simulations.

Remarkably, the susceptibility of CuP2O6 does not reveal
the low-dimensional AFM behavior of this compound. The
susceptibility follows the CW law down to 25–30 K and
keeps increasing down to TN , in contrast to expectations for a
low-dimensional (i.e., purely 1D or purely 2D) AFM spin
system. Indeed, the Cu2 spins in spin chains feature only
weak magnetic couplings and remain in the paramagnetic state
even in the temperature range T � J2D, where the Cul spins
develop a 2D short-range order, which in a simple 2D magnet
will manifest itself by a susceptibility maximum around
T � J2D � 40 K. This effect is not seen in the susceptibility,
because the susceptibility of CuP2O6 is dominated by the
paramagnetic contribution of the Cu2 spins. On the other
hand, the short-range order in individual sublattices could
be pinpointed by the specific-heat data. Our heat-capacity
measurements were so far unsuccessful. Nevertheless, we
demonstrate the effect clearly in the simulated specific heat;
see Fig. 10 and Sec. III D.

B. Electron spin resonance

The ESR spectra of CuP2O6 can be fitted with a powder-
averaged Lorentzian line for the case of easy-plane anisotropy
of the g tensor. Individual lines corresponding to the Cu1
and Cu2 positions could not be distinguished (Fig. 4). The
easy-plane anisotropy implies two different g values, g‖ and
g⊥, respectively, which are evaluated from the line positions.
We also monitor the linewidth (�B) and the line intensity
(I ) as a function of temperature. Above 20 K, the g-values
and �B are nearly temperature-independent, while I slightly
decreases following the decreasing magnetic susceptibility χ
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FIG. 4. (Color online) ESR spectra measured at 5 K and 293 K
and fits with powder-averaged Lorentzian lines assuming the easy-
plane anisotropy. Note that at low temperatures the shape of the
spectral line becomes more complex than at high temperatures, and
additional terms beyond the single powder-averaged line may be
required for a good fit.

(Fig. 5). At lower temperatures, we observed a conspicuous
effect at 8 K, where all parameters of the ESR lines change
abruptly. Such abrupt changes are expected at a magnetic or-
dering transition, where the paramagnetic ESR signal usually
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disappears. However, in our case the ESR signal could be also
observed below 8 K, yet with a different resonance field g‖.

The persistence of the paramagnetic ESR signal below TN

is rooted in the different behavior of the two sublattices in
CuP2O6. The standard situation in AFM resonance35–38 is that
below TN the resonance frequencies ωres shift far away from
the paramagnetic value ω0 = gμBH , owing to the presence of
anisotropy and the buildup of strong local exchange fields. This
is exactly what we expect here for the Cu1 spins, since their
moments grow quickly below TN and the anisotropy field is
effectively induced by the DM interactions (or equivalently by
the weak ferromagnetic moments; see Sec. III C 2 below). The
Cu2 spins on the chains, on the other hand, have a qualitatively
different behavior: (i) there is no DM anisotropy along the
chains due to inversion symmetry, and (ii) the moments
grow significantly slower than those on Cu1 in the layers,
because thermal fluctuations remain strong in a finite T range
J1D � T � TN . Therefore, the persistence of the paramagnetic
ESR signal below TN is essentially a fingerprint of this partly
paramagnetic behavior of Cu1 spins. However, their resonance
field, in particular g‖, is modified because of internal fields
developed in CuP2O6 below TN .

C. Microscopic magnetic model

1. Isotropic part

Isotropic exchange couplings Ji can be obtained from the
dispersions of relevant LDA bands. The LDA band structure
of CuP2O6 (Fig. 6) resembles that of other Cu2+ oxides and
phosphates.22,30,39 The broad oxygen band between −9 and
−1.5 eV is followed by mixed Cu 3d–O 2p bands above
−1.5 eV. These Cu 3d states show additional structure related
to the crystal-field levels of Cu2+. In a local coordinate frame
defined by the x and y axes directed along Cu–O bonds in
the CuO4 plane and the z axis perpendicular to this plane,
the bands between −1.5 eV and −0.8 eV have the xy,yz,
and xz origin. Narrow bands around −0.5 eV are due to the
3z2 − r2 orbitals, and the bands straddling the Fermi level have
the x2 − y2 origin. The latter band complex consists of four
bands according to four Cu atoms in the primitive cell, two for
each of the crystallographic positions. Note that the LDA band

30

20

10

0
0

EF

Energy (eV)
2�2�4�6�8�10

40

50
Total
Cu

O
P

dxy xz yz, ,d d

d 23z r2−

d 2x y2−

60

D
O

S
(e

V
)

�
1

FIG. 6. (Color online) LDA density of states (DOS) for CuP2O6.
The Fermi level (EF ) is at zero energy. Note well-defined crystal-field
levels of Cu2+ in the planar CuO4 local environment.
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FIG. 7. (Color online) LDA band structure of CuP2O6 in the
vicinity of the Fermi level. Green (dark) and gray (light) circles
show the contributions of Cu1 and Cu2 dx2−y2 orbitals, respectively.
Note the different bandwidths that indicate different energy scales
within the Cu1 and Cu2 sublattices. The k path is defined as
follows: �(0,0,0), X(0.5,0,0), M(0.5,0.5,0), Y (0,0.5,0), Z(0,0,0.5),
T (0.5,0,0.5), R(0.5,0.5,0.5), A(0,0.5,0.5), where the coordinates are
given in units of the respective reciprocal lattice parameters.

structure of CuP2O6 is metallic, because correlation effects,
which are responsible for opening the band gap, are heavily
underestimated in LDA. The missing part of the correlations
is introduced in the model analysis or using the mean-field
DFT + U method. The DFT + U calculations yield the large
band gap of about 3.7 eV and magnetic moments of 0.9 μB on
the Cu atoms.

The different energy scales of the Cu1 and Cu2 sublattices
are clearly visible from the different widths of the energy bands
related to the Cu1 and Cu2 sites (Fig. 7). The dispersions of
the LDA bands are quantified using Wannier functions based
on the Cu dx2−y2 orbital character.40 The resulting hopping
parameters ti are introduced into a Hubbard model with the
effective on-site Coulomb repulsion Ueff � 4.5 eV.30,39,41 As
ti � Ueff , the limit of strong correlations is well-justified,
and lowest-lying (magnetic) excitations can be described
with the Heisenberg model parametrized by AFM exchanges
J AFM

i = 4t2
i /Ueff . The resulting values are listed in Table I and

confirm our qualitative assessment of the CuP2O6 structure in
terms of two different magnetic sublattices. The largest AFM
coupling J AFM

2D � 80 K is found in the Cu1 sublattice (2D,
square lattice). The couplings J AFM

1D � 23 K between the Cu2

TABLE I. Isotropic magnetic couplings in CuP2O6: Cu–Cu
distances dCu−Cu (in Å), LDA hoppings ti (in meV), and ensuing AFM
exchanges J AFM

i = 4t2
i /Ueff (in K), where we use Ueff = 4.5 eV for

the effective on-site Coulomb repulsion. The total exchange couplings
Ji (in K) are obtained from GGA + U calculations with Ud = 8.5 eV
and Jd = 1 eV.

dCu-Cu ti J AFM
i Ji

J2D 6.264 −0.088 80 38
J1D 4.864 −0.047 23 4
Ji1 3.303 −0.015 2.3 0.5
Ji2 8.454 −0.017 3.0 0.2
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FIG. 8. (Color online) Comparison of the chain sublattices in
CuP2O6, Na2CuP2O7, and Sr2CuP2O8. Note the flat and linear chain
in Sr2CuP2O8 (large exchange J � 140 K), buckled linear chain
in Na2CuP2O7 (moderate exchange J � 27 K), and buckled zigzag
chain in CuP2O6 (weak exchange J1D � 4 K).

sites are much weaker and form the chain sublattice (1D). The
weak couplings Ji1 and Ji2 link the sublattices.

The LDA results are supported by DFT + U calculations.
Here, we obtain individual couplings Ji by calculating
total energies of several collinear spin configurations and
mapping these energies onto a Heisenberg model. This
way, we find J2D � 38 K and J1D � 4 K in excellent
agreement with the experimental estimates of J2D � 40 K
and J1D � 3 K. Note that all Ji values are reduced compared
to J AFM

i . This reduction is typical for cuprates, where even
long-range couplings feature nonnegligible ferromagnetic
(FM) contributions to the exchange.42,43 However, the total
couplings Ji are rather different from those found in Cu2+
compounds with similar structural units.

The geometry of the Cu2 spin chain resembles double-
bridged spin chains in other Cu2+ phosphates (Fig. 8). In
Sr2CuP2O8 and K2CuP2O7, the coupling through the double
bridges of PO4 tetrahedra exceeds 100 K,33,44–46 whereas in
CuP2O6 it is only 4 K, well below J2D, even though the Cu–Cu
distance for J2D is much longer (Table I). The very low value
of J1D is related to two geometrical effects. First, the chain is
buckled, so that the CuO4 plaquettes of the neighboring Cu2
atoms do not lie in the same plane. Second, these plaquettes
are displaced with respect to each other, thus leading to
a displacement of �d = 0.88 Å compared to �d = 0 in
Sr2CuP2O8 and K2CuP2O7. Both effects reduce the orbital
overlap along the Cu–O–O–Cu pathways and, therefore,
impede the magnetic coupling. The role of these effects is
additionally illustrated by Na2CuP2O7,43 where the chains
are strongly buckled,47 but all Cu atoms lie on the same line, as
in Sr2CuP2O8. The resulting coupling of 27 K is intermediate
between 100 and 150 K in linear and flat chains (Sr2CuP2O8,
K2CuP2O7) and 4 K in buckled zigzag chains (CuP2O6).

Regarding the Cu1 sublattice (Fig. 9), its structural unit
resembles Ba2CuGe2O7, where the leading in-plane coupling
is around 11 K,48 about 4 times lower than J2D in CuP2O6. This
difference can be traced back to different orientations of the
neighboring CuO4 plaquettes. The structure of Ba2CuGe2O7

features notable in-plane rotations of the CuO4 plaquettes with
the rotation angle of ϕ � 40◦. In CuP2O6, the plaquettes are
connected via single tetrahedra instead of the double Ge2O7

Ba CuGe O72 2

b

a

b

c

1
12 2

3

5 5

4 4

�

3

CuP O62

D12

D12

D23

D23

D24 D42

D52 D25

FIG. 9. (Color online) Comparison of the 2D sublattices in
CuP2O6 (left) and Ba2CuGe2O7 (right). Large arrows show the spatial
arrangement of the DM vectors (only in-plane components), which
are uniform in Ba2CuGe2O7 and alternate in CuP2O6. Dotted lines
denote the rotation of the neighboring CuO4 plaquettes by an angle
ϕ � 40◦. In CuP2O6, this rotation is very weak (ϕ � 0◦); hence
the Cu–O bonds are nearly co-aligned, and the isotropic coupling
J2D � 40 K is much larger than J � 11 K in Ba2CuGe2O7. In
CuP2O6, the crystallographic axes b and c match, respectively, the
directions y and z for the DM vectors.

groups in Ba2CuGe2O7. Therefore, the rotations are eliminated
(ϕ � 0), individual Cu–O bonds are nearly co-aligned, and a
more efficient Cu–O–O–Cu superexchange occurs.

The Cu1 and Cu2 sublattices are stacked on top of each
other and alternate along the a direction. No substantial
Cu2–Cu2 interchain coupling in the bc plane has been found.
The three-dimensional (3D) magnetic order should be rather
driven by the Cu1–Cu2 couplings Ji1 and Ji2 connecting the
sublattices. These weak couplings are frustrated, because both
are weakly AFM and together with J2D form triangles (Fig. 1,
right). However, the magnitude of the frustration is somewhat
difficult to estimate, as both Ji1 and Ji2 are below 1 K and, thus,
well within the typical error bar of DFT estimates. A perfect
frustration is very unlikely, because Ji1 and Ji2 are not related
by symmetry. While a competition between these couplings
may be detrimental for the 3D magnetic order, magnetic
ordering is far from being trivial even in a nonfrustrated system
of this type (see Sec. III D for further discussion).

2. Magnetic anisotropy

Let us now consider anisotropic terms in the spin Hamil-
tonian [Eq. (3)]. The values of Di and �i are obtained from
DFT + U calculations, similar to the isotropic couplings Ji .
The main difference between the evaluation of Ji and Di or
�i is the spin-orbit coupling that relates the spin direction to
a certain crystallographic direction. For the DM vectors Di

and nondiagonal terms of the �i tensor, orthogonal rather than
collinear spin configurations should be used. We evaluate the
anisotropy terms for the leading exchange pathway (J2D) only.
Other couplings are weak; hence their anisotropies are likely
well below 1 K and, thus, can not be addressed by our present
computational method. Note also that the neighboring Cu2
sites are linked by an inversion symmetry that eliminates the
DM anisotropy for J1D.

The in-plane component of the DM vector (D) is
nearly perpendicular to the Cu–Cu bonds and amounts to
Dyz � 0.7 K.49 The out-of-plane component is not forbidden
by symmetry but it is much smaller, Dx � 0.1 K. The
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symmetric anisotropy � is also very weak. All components
of the � tensor are below 0.1 K. The spatial arrangement
of the DM vectors can be inferred from the crystallographic
symmetry of the Cu1 sublattice. The Cu1 atom is located in the
inversion center. Therefore, the directions of the DM vectors
alternate on the neighboring bonds as follows (see Fig. 9, left):
D12 = −D23 and D52 = −D24. The bonds 1–2 and 2–4 are
related by the c glide plane (reflection followed by the c/2
translation), which is perpendicular to the b axis and results in
D

y

12 = D
y

24, Dz
12 = −Dz

24. As |Dy

12| � |Dz
12|, the DM vectors

change their directions for about 90◦ between the adjacent
Cu–Cu bonds and remain roughly perpendicular to the Cu–Cu
bonds on the square lattice.

These results should be compared to Ba2CuGe2O7, where
the in-plane component of the DM vector is also perpendicular
to the Cu–Cu bonds (Dxy � 1.9 K),48 and additionally a weak
out-of-plane component Dz � 0.08 K is present50,51 (note the
exchanged crystallographic directions, because the bc plane
of CuP2O6 corresponds to the ab plane of Ba2CuGe2O7).
Compared to CuP2O6 with |D|/J � 0.018, Ba2CuGe2O7 fea-
tures a weaker isotropic exchange and an order-of-magnitude
larger DM anisotropy of |D|/J � 0.18. This difference is again
related to in-plane rotations of the CuO4 plaquettes (Fig. 9)
that reduce electron hoppings between orbitals of the same
symmetry (dx2−y2 → dx2−y2 responsible for J ) and amplify the
hoppings between orbitals of different symmetry (dx2−y2 →
dyz,dxz,dxy responsible for different components of D).52

Another difference between CuP2O6 and Ba2CuGe2O7

pertains to the mutual arrangement of the DM vectors. The
lack of inversion symmetry in Ba2CuGe2O7 implies that the
in-plane components of the DM vectors on neighboring bonds
do not alternate, hence Dxy

12 = Dxy

23 and Dxy

25 = Dxy

42 .53 This
uniform arrangement of the DM vectors leads to a weak spin
canting and ensuing helical modulation seen experimentally.48

In CuP2O6, the canting will rather produce a net magnetic
moment, similar to the low-temperature phase of La2CuO4,
where the DM vectors show the same staggered arrangement
and lead to a canted AFM order.54–56

Using the theoretical framework56 established for
La2CuO4, we conclude that the Cu1 sublattice of CuP2O6

forms a canted AFM order in the bc plane, with the net moment
pointing approximately along the a direction49 perpendicular
to the DM vectors. The primary spin direction lies in the
bc plane and depends on a subtle balance between the
in-plane components of �, which are difficult to determine
from DFT. The canting angle is56 θ = 1

2 tan−1(|D|/√2J2D) �
0.35◦, given that the symmetric anisotropy � is neglected
(|�αβ | � 0.1 K). The resulting net moment Mr = M0 sin θ �
3.7 × 10−3 μB/Cu1� 1.8 × 10−3 μB/f.u., where M0 �
0.6 μB is the ordered magnetic moment in a quasi-2D system
of weakly coupled square planes,57 and we took into account
that the Cu2 spins do not contribute to the net moment. This
estimate is in excellent agreement with the experimental value
of Mr � 1.5 × 10−3 μB/f.u. (Sec. III A). This way, we confirm
microscopically that the symmetry of the Cu1 sublattice of
CuP2O6 entails the canted AFM order. Therefore, the exper-
imental observation of the net moment below 8 K is a direct
evidence for the long-range order of spins in the Cu1 sublattice.

We also attempted to assess qualitatively the anisotropy of
the g tensor. The interaction with the magnetic field activates

a further anisotropy contained in the Zeeman term of the
Hamiltonian:

Hmag = H +
∑

i

μBSi · gi · H, (5)

where H is the spin Hamiltonian in zero field [Eq. (3)], gi is
the g tensor at site i, and H is the applied magnetic field. ESR
data indicate a sizable easy-plane anisotropy of the g tensors
of both Cu1 and Cu2. While a full DFT-based evaluation of the
g tensor is presently difficult, at least for periodic systems, we
can estimate a closely related quantity by calculating orbital
moments of Cu2+ for different directions of the spin moment.
This way, we obtain tensors L that are composed of orbital
moments (in units of μB) calculated for spins directed along
x,y, and z:

LCu1 =
⎛
⎝

0.214 0.005 −0.024
0.001 0.101 −0.005

−0.027 −0.005 0.092

⎞
⎠ ,

LCu2 =
⎛
⎝

0.211 0.001 −0.033
0.001 0.097 0.003

−0.036 0.001 0.106

⎞
⎠ .

Larger orbital moments imply larger components of the g

tensor, because g defines the transformation from the spin
moment to the full moment, i.e., to the sum of spin and orbital
moments.

Our computed orbital moments are in agreement with
the easy-plane anisotropy, as Lxx > Lyy � Lzz. The hard
axis of the Cu2+ ion is directed (approximately) along the
crystallographic a direction perpendicular to the CuO4 plane.
This is similar to other Cu2+ square-lattice compounds: for
example, in Ba2CuGe2O7 gab � 2.04 and gc � 2.47.58 The
Cu1 and Cu2 sites feature very similar matrices L. Therefore,
their g tensors are likely similar, in agreement with the
experimental ESR data, where the signals of the Cu1 and Cu2
atoms could not be distinguished (Sec. III B).

D. Long-range magnetic order

1. QMC simulations

Having established the relevant microscopic couplings in
the Cu1 and Cu2 sublattices, we now address the problem of
the long-range magnetic ordering in CuP2O6. This ordering
should, at least to some extent, involve both sublattices,
because the interactions between the Cu1 sublattices take place
via the Cu2 atoms, and the other way around (see Fig. 1).
Now, as discussed above, including both Ji1 and Ji2 leads
to frustration. Then the problem is not amenable to a low-
temperature QMC study owing to the notorious sign problem.
On the other hand, frustration is not expected to affect the
essential aspects of the 3D ordering since Ji1 
= Ji2. Therefore,
in the following we shall neglect the smallest coupling Ji2 and
consider the effect of Ji1 only.

We performed QMC simulations for a nonfrustrated 3D
spin lattice with J1D/J2D = 0.075 and Ji1/J2D = 0.01, ac-
cording to the DFT results (Table I) and the fits to the
thermodynamic properties. Simulated magnetic specific heat
shows two maxima arising from two spin sublattices of
CuP2O6 (Fig. 10). These maxima are well described by the
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FIG. 10. (Color online) Simulated magnetic specific heat
(Cmag/R) per lattice site for the spin lattice of CuP2O6 (circles) and
individual contributions of the 1D and 2D sublattices shown by
short-dashed and long-dashed lines, respectively.

contributions of individual chains and square planes and, thus,
clearly indicative of the low-dimensional magnetic behavior.
Surprisingly, no kinks or anomalies are seen down to at least
T/J2D = 0.1, even though the experimental magnetic ordering
temperature is TN/J2D � 0.2. In fact, at low temperatures
specific-heat anomalies become diminutively small, because
a very low amount of entropy is released at the magnetic
transition. For example, Sengupta et al.59 have shown that
in quasi-2D systems the transition anomaly vanishes already
at TN/J2D � 0.35, which is also in agreement with the
experimental studies.60 Therefore, it is quite natural that we
are unable to track the magnetic transition in the simulated
specific heat.

QMC simulations are done for finite lattices that, as
such, do not show LRO at any finite temperature. On the
other hand, we did observe characteristic increase in the
spin stiffness and staggered magnetization below T/J2D =
0.3–0.4. These observations are compatible with the fact that
CuP2O6 undergoes LRO at TN/J2D � 0.2. A detailed QMC
study of the ordered state in this material lies beyond the
scope of the present work and should be addressed in future
studies. Presently, we restrict ourselves to a simple mean-field
picture that clarifies the mechanism of the LRO in this type of
spin system, where 1D and 2D spin sublattices coexist.

2. Mean-field theory

Here, we discuss the mean-field treatment of the coupling
between the Cu1 and Cu2 spins. Figure 11 shows two
successive Cu1 square planes and a single Cu2 spin σ 0 in
between. The exchange coupling between σ 0 and the Cu1
spins S1 and S2 is denoted here by J ′ (i.e., J ′ = Ji1), and
is assumed to be much weaker than the intralayer coupling
J2D. Note also that we should keep the J1D coupling along the
Cu2 chains, since J1D � 4 K in CuP2O6. We also assume an
external field H0 which is conjugate to the order parameter,
i.e., staggered along the Cu1 layers, along the Cu2 chains, and
also along the a direction, which is perpendicular to both the
planes and the chains (see Fig. 11).

The physics that we want to capture by mean-field theory
refers to the wide high-temperature range T � J ′. In this

FIG. 11. (Color online) A Cu2 spin chain sandwiched between
two successive Cu1 square-plane antiferromagnets.

range, the fluctuations of σ 0 are essentially identical with those
of a paramagnetic spin- 1

2 in the field H0. These fluctuations
induce an effective, T -dependent coupling between the Cu1
layers, Jeff,⊥(T ), which (no matter how small) induces the 3D
ordering transition of the Cu1 spins at TN . In principle, the Cu2
spins should also become polarized at TN , but the polarization
is very weak as long as the internal fields (∝J ′) exerted from
the Cu1 spins are much smaller than T . This means that Cu2
spins partly retain a paramagnetic behavior in a finite T -range
below TN .

In the mean-field treatment of J ′, the effective fields on
the spins S1, S2, and σ 0 read, in units of kB = gμB = 1,
Heff,1 = Heff,2 = H0 − zJ ′〈σ 0〉 and Heff,0 = −H0 − zJ ′〈S1〉,
where 〈S1〉 = 〈S2〉 and z = 2, since each Cu1 spin interacts
with two Cu2 spins (one above and one below the plane), and
vice versa. In the linear response regime, we have

〈σ0〉 = χs
1D[H0 − zJ ′〈S1〉], 〈S1〉 = χs

2D[−H0 − zJ ′〈σ0〉],
(6)

where χs
1D and χs

2D are the exact staggered susceptibilities of
the AFM spin- 1

2 chain and square lattice, respectively. Solving
for χs

0 ≡ −〈σ0〉/H0 and χs ≡ 〈S1〉/H0, yields

χs = 1 + zJ ′χs
1D

1 − (zJ ′)2χs
1Dχs

2D

χs
2D, χs

0 = 1 + zJ ′χs
2D

1 − (zJ ′)2χs
1Dχs

2D

χs
1D.

(7)

At TN , the susceptibilities diverge, leading to

√
χs

1Dχs
2D ≡ χ̄ s = 1

zJ ′ . (8)

The last equality is the well-known RPA condition,2,3,7,9

where χ̄ s plays the role of a “geometric mean susceptibility.”
To probe its physical meaning we rewrite it as

χs
2D(TN ) = 1

zJeff,⊥(TN )
, Jeff,⊥(T ) = zJ ′2χs

1D(T ), (9)

which is now the RPA condition for the case of AFM planes
that are coupled directly by Jeff,⊥(T ). The latter can be thought
of as an effective coupling, mediated by the (paramagnetic)
fluctuations of the Cu2 spins and, as such, it is T -dependent
(via χs

1D(T )) and scales quadratically with J ′.
Figure 12 shows χ̄ s(T ) for CuP2O6 and for two reference

systems representing standard quasi-1D and quasi-2D regimes
of weakly coupled spin chains and square planes, respectively.
In the case of CuP2O6, we used J1D/J2D = 0.075 similar to
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FIG. 12. (Color online) Staggered susceptibilities of the uniform
spin chain (1D), square lattice (2D), and their combination, as
observed in CuP2O6, where χ̄ s = √

χs
1Dχs

2D. Dashed line shows
(zJi1/J2D)−1 = 50 according to Ji1/J2D = 0.01 and z = 2 in CuP2O6.
The susceptibility of the uniform chain is multiplied by a factor of 2 to
account for z = 4 in a quasi-1D system. The truncation of the data at
T/J2D = 0.21 marks the lowest temperature where the convergence
with respect to the lattice size could be obtained for the 2D system.

QMC. In both reference systems, we assumed J1D = J2D = 1.
The ordering temperature TN is the point, where χ̄ s(T )
reaches (zJi1/J2D)−1 = 50. Then the reference quasi-2D
system should order at TN/J2D � 0.35 that compares quite
well to the accurate QMC result TN/J2D � 0.326 for the
same interlayer coupling Ji1/J2D = 0.01.9 We also get a
reasonable agreement with QMC for the reference 1D system,
where our mean-field theory (with z = 4) predicts TN/J �
0.029, and the QMC result is TN/J � 0.021.9 Finally, the
LRO in CuP2O6 should appear below TN/J2D � 0.236, which
is again in good agreement, but now with the experimental
value of TN/J2D � 0.2.

More generally, our mean-field analysis elucidates the
mechanism of the long-range ordering in CuP2O6 and in any
system comprising both 1D and 2D sublattices. For a given
interchain/interlayer coupling Ji1, the ordering temperature
TN is determined by spin fluctuations in the 1D/2D units.
The drastic difference between the ordering temperatures of
quasi-1D and quasi-2D magnets is reflected by the large
difference in their staggered susceptibilities. In a composite
2D + 1D system, the relevant quantity is the geometric mean
value of the staggered susceptibilities for 1D and 2D.

IV. DISCUSSION AND SUMMARY

CuP2O6 shows a rare example of coexisting spin sublattices
with mixed dimensionalities and energy scales. Thermody-
namic properties of this compound are well explained by
a superposition of the 1D and 2D sublattices. However, a
phenomenological analysis of the data is not straightforward.
For example, CuP2O6 does not show the broad maximum in
the susceptibility, which would be typical for low-dimensional
antiferromagnets. Nevertheless, this compound is clearly a
low-dimensional antiferromagnet, as evidenced by our micro-
scopic analysis and by the magnetic specific heat (Fig. 10).
Surprisingly, the decomposition of the overall 3D spin lattice

into two low-dimensional sublattices remains valid at low
temperatures, even below the Néel temperature TN , where the
LRO state involving both sublattices is formed.

The Néel temperature of TN/J2D � 0.2 is remarkably
low for a quasi-2D antiferromagnet. A simple mean-field
treatment shows that the coupling of 2D units via 1D units
or, more generally, via any spin units with strong spin
fluctuations will reduce the ordering temperature dramati-
cally. This system follows an “averaged” scenario, which
is intermediate between 2D and 1D. More precisely, the
ordering is described at the mean-field level by the geometrical
mean of the staggered susceptibilities of the 1D and 2D spin
sublattices.

Another interesting aspect is the ordered state of CuP2O6.
The ordering in the 2D sublattice manifests itself by the weak
net moment observed below TN . Although this order has not
been seen by neutron diffraction,14 both ESR and the formation
of the net moment confirm the onset of the long-range magnetic
order at 8 K, whereas the lack of the magnetic reflections
may be ascribed to an insufficient sensitivity of the neutron
experiment. Indeed, in a quasi-2D system, an ordered moment
of only 0.6 μB is expected.57 The persistent paramagnetic ESR
signal below TN gives strong evidence for the very weak Cu2
moments along the chains. Further studies of the ordered state
of CuP2O6 with neutron scattering and/or 31P nuclear magnetic
resonance are highly desirable and are presently underway.

Surprisingly, only a few systems combining different types
of spin lattices have been reported so far. The combination
of spin chains and 2D square-lattice units is typical for the
family of YBa2Cu3O6+δ high-temperature superconductors,
but the relevant charge-ordered state has never been achieved
there. Indeed, at δ = 0.5 all Cu ions should be in the 2+
spin- 1

2 state, but residual charge transfer leads to a doping and
superconductivity,61 so that the purely spin physics of a mag-
netic insulator cannot be probed. We also note an interesting
albeit purely phenomenological similarity between CuP2O6

and CuB2O4, where three consecutive magnetic transitions
have been observed.62–64 Although several studies consider
the spin system of CuB2O4 as a combination of square planes
with strong couplings (compare to the Cu1 planes in CuP2O6)
and interstitial Cu+2 sites with weak couplings (compare to the
Cu2 chains in CuP2O6),65 details of the microscopic magnetic
model are far from being understood. Moreover, some of the
magnetic structures are incommensurate and likely influenced
by substantial DM couplings. The case of CuP2O6 should be
more simple, because only one of the couplings features the
DM component. This component is quite small and leads to
a trivial spin canting without the complex helical modulation
observed in CuB2O4.

In summary, we have studied thermodynamic properties
and developed a microscopic magnetic model for CuP2O6.
This compound features two weakly coupled spin sublattices
with different dimensionalities and different energy scales.
It undergoes a long-range ordering transition at TN � 8 K
corresponding to TN/J2D � 0.2, which is unusually low for a
quasi-2D spin system. The DM couplings in the Cu1 sublattice
induce a weak but clearly visible spin canting. Moreover, the
paramagnetic ESR signal below 8 K puts forward substantial
fluctuations that persist even below TN . We argue that the
coupling of 2D sublattices via 1D spin units hinders an overall
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3D long-range magnetic order. Details of the long-range-
ordered state in CuP2O6 deserve further investigation.
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B. Ouladdiaf, E. Leliévre-Berna, U. Staub, and G. A. Petrakovskii,
Phys. Rev. B 68, 024405 (2003).

64A. Fukaya, I. Watanabe, K. Yamada, and K. Nagamine, J. Phys.
Soc. Jpn. 75, 113705 (2006).

65For example, S. N. Martynov and A. D. Balaev, JETP Lett. 85, 649
(2007).

014407-11

http://dx.doi.org/10.1103/PhysRevB.74.174435
http://dx.doi.org/10.1103/PhysRevB.74.174435
http://dx.doi.org/10.1103/PhysRevB.74.174435
http://dx.doi.org/10.1103/PhysRevB.74.174435
http://dx.doi.org/10.1103/PhysRevB.77.134451
http://dx.doi.org/10.1103/PhysRevB.77.134451
http://dx.doi.org/10.1103/PhysRevB.77.134451
http://dx.doi.org/10.1103/PhysRevB.77.134451
http://dx.doi.org/10.1103/PhysRevB.54.15163
http://dx.doi.org/10.1103/PhysRevB.54.15163
http://dx.doi.org/10.1103/PhysRevB.54.15163
http://dx.doi.org/10.1103/PhysRevB.54.15163
http://dx.doi.org/10.1103/PhysRevB.84.180406
http://dx.doi.org/10.1103/PhysRevB.84.180406
http://dx.doi.org/10.1103/PhysRevB.84.180406
http://dx.doi.org/10.1103/PhysRevB.84.180406
http://dx.doi.org/10.1103/PhysRevB.86.024417
http://dx.doi.org/10.1103/PhysRevB.86.024417
http://dx.doi.org/10.1103/PhysRevB.86.024417
http://dx.doi.org/10.1103/PhysRevB.86.024417
http://dx.doi.org/10.1103/PhysRevB.88.064421
http://dx.doi.org/10.1103/PhysRevB.88.064421
http://dx.doi.org/10.1103/PhysRevB.88.064421
http://dx.doi.org/10.1103/PhysRevB.88.064421
http://dx.doi.org/10.1103/PhysRevB.78.195110
http://dx.doi.org/10.1103/PhysRevB.78.195110
http://dx.doi.org/10.1103/PhysRevB.78.195110
http://dx.doi.org/10.1103/PhysRevB.78.195110
http://dx.doi.org/10.1103/PhysRevB.65.064433
http://dx.doi.org/10.1103/PhysRevB.65.064433
http://dx.doi.org/10.1103/PhysRevB.65.064433
http://dx.doi.org/10.1103/PhysRevB.65.064433
http://dx.doi.org/10.1103/PhysRevB.42.6509
http://dx.doi.org/10.1103/PhysRevB.42.6509
http://dx.doi.org/10.1103/PhysRevB.42.6509
http://dx.doi.org/10.1103/PhysRevB.42.6509
http://dx.doi.org/10.1103/PhysRevB.44.10112
http://dx.doi.org/10.1103/PhysRevB.44.10112
http://dx.doi.org/10.1103/PhysRevB.44.10112
http://dx.doi.org/10.1103/PhysRevB.44.10112
http://dx.doi.org/10.1103/PhysRevLett.69.836
http://dx.doi.org/10.1103/PhysRevLett.69.836
http://dx.doi.org/10.1103/PhysRevLett.69.836
http://dx.doi.org/10.1103/PhysRevLett.69.836
http://dx.doi.org/10.1103/PhysRevB.47.174
http://dx.doi.org/10.1103/PhysRevB.47.174
http://dx.doi.org/10.1103/PhysRevB.47.174
http://dx.doi.org/10.1103/PhysRevB.47.174
http://dx.doi.org/10.1103/PhysRevB.50.3767
http://dx.doi.org/10.1103/PhysRevB.50.3767
http://dx.doi.org/10.1103/PhysRevB.50.3767
http://dx.doi.org/10.1103/PhysRevB.50.3767
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevLett.78.4857
http://dx.doi.org/10.1103/PhysRevLett.78.4857
http://dx.doi.org/10.1103/PhysRevLett.78.4857
http://dx.doi.org/10.1103/PhysRevLett.78.4857
http://dx.doi.org/10.1103/PhysRevB.68.094423
http://dx.doi.org/10.1103/PhysRevB.68.094423
http://dx.doi.org/10.1103/PhysRevB.68.094423
http://dx.doi.org/10.1103/PhysRevB.68.094423
http://dx.doi.org/10.1103/PhysRevB.75.094421
http://dx.doi.org/10.1103/PhysRevB.75.094421
http://dx.doi.org/10.1103/PhysRevB.75.094421
http://dx.doi.org/10.1103/PhysRevB.75.094421
http://dx.doi.org/10.1103/PhysRevB.41.1863
http://dx.doi.org/10.1103/PhysRevB.41.1863
http://dx.doi.org/10.1103/PhysRevB.41.1863
http://dx.doi.org/10.1103/PhysRevB.41.1863
http://dx.doi.org/10.1016/S0304-8853(99)00449-7
http://dx.doi.org/10.1016/S0304-8853(99)00449-7
http://dx.doi.org/10.1016/S0304-8853(99)00449-7
http://dx.doi.org/10.1016/S0304-8853(99)00449-7
http://dx.doi.org/10.1103/PhysRevLett.86.1885
http://dx.doi.org/10.1103/PhysRevLett.86.1885
http://dx.doi.org/10.1103/PhysRevLett.86.1885
http://dx.doi.org/10.1103/PhysRevLett.86.1885
http://dx.doi.org/10.1103/PhysRevB.68.024405
http://dx.doi.org/10.1103/PhysRevB.68.024405
http://dx.doi.org/10.1103/PhysRevB.68.024405
http://dx.doi.org/10.1103/PhysRevB.68.024405
http://dx.doi.org/10.1143/JPSJ.75.113705
http://dx.doi.org/10.1143/JPSJ.75.113705
http://dx.doi.org/10.1143/JPSJ.75.113705
http://dx.doi.org/10.1143/JPSJ.75.113705
http://dx.doi.org/10.1134/S0021364007120132
http://dx.doi.org/10.1134/S0021364007120132
http://dx.doi.org/10.1134/S0021364007120132
http://dx.doi.org/10.1134/S0021364007120132



