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Influence of structural changes in a periodic antidot waveguide on the spin-wave spectra
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We demonstrate that the magnonic band structure, including the band gap of a ferromagnetic antidot waveguide,
can be significantly tuned by a relatively weak modulation of its structural parameters. We study the magnonic
band structure in nanoscale spin-wave waveguides with periodically distributed small antidots along their central
line by two independent computational methods, namely, a micromagnetic simulation and a plane-wave method.
The calculations were performed with consideration of both the exchange and dipolar interactions. For the
exchange dominated regime, we discuss, in details, the impact of the changes of the lattice constant, size, and
shape of the antidots on the spin-wave spectra. We have shown that a precise choice of these parameters
is crucial for achieving desired properties of antidot waveguides, i.e., a large group velocity and filtering
properties due to existence of magnonic band gaps. We discuss different mechanisms of magnonic gap opening
resulting from Bragg scattering or anticrossing of modes. We have shown that the dipolar interactions start
to assert their role in the spin-wave spectrum when the waveguide is scaled up, but even for a period of
few hundreds of nanometers, the magnonic band structure preserves qualitatively the properties found in the
exchange dominating regime. The obtained results are important for future development of magnonic crystal based
devices.
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I. INTRODUCTION

The possibility for fabrication of metallic magnetic materi-
als with nanoscale precision has opened the way for tailoring
the dispersion of high-frequency spin waves (SWs). This can
be done also with the use of magnonic crystals (MCs), which
are magnetic counterparts of photonic crystals.1,2 The first
bicomponent MCs have been realized at nanoscale (a few
hundred nanometers period) and the opening of magnonic
gaps was proved experimentally.3–5 Two-dimensional (2D)
antidot lattices (ADL) formed by a periodic array of holes
in a ferromagnetic film can be much easily fabricated than
bicomponent structures. These systems have been intensively
studied in recent years on length scales from micrometers
down to few tens of nanometers.6–11 In the larger scale, the
inhomogeneity of the internal demagnetizing field is decisive
for the formation of the magnonic band structure in ADL.12,13

With decreasing period of ADL, the Brillouin zone (BZ)
boundaries move to larger wave vectors and the exchange
interactions at some point will start to play a primary role in
the formation of a magnonic band structure and opening of
magnonic band gaps.

Basic magnonic devices have already been demonstrated
to be promising for technological applications14–17 but the
scaling down of magnonic elements to tens of nanometers
in size and tens of gigahetz of operating frequencies are still
a challenge. Recently, the spin-torque nano-oscillators were
shown as a promising source of high frequency SWs.18–20

To transmit the signal from the source, a waveguide needs
to be properly designed. Thus a magnonic waveguide is an
important component in most magnonic devices14 and has been
realized experimentally, so far, only for SWs in the frequency
range up to few gigahertz.8,21–26,33 To predict properties of
magnonic devices at nanoscale, more basic research needs to
be conducted. Therefore a theoretical investigation of the SW

waveguides operating in the range of tens of gigahetz is a
frontier field of research in magnetism.

The periodic waveguide gives the possibility to design se-
lective leads that possess the filtering properties for transmitted
SWs due to the presence of magnonic gaps. The position and
the width of those gaps can be controlled by the structural
parameters of the waveguides or by the bias magnetic field.
It is also possible to design frequency dependent delay lines
by exploiting the significant reduction of SW group velocity
in the vicinity of magnonic gaps. The subject of periodic
waveguides for SWs was extensively studied for the following
geometries: (i) comblike structures and loop structures, where
the SWs interference at the junctions in the brunched structures
is crucial for a magnonic band gap opening.27 (ii) Waveguides
with periodically corrugated edges where the periodic change
of the width is the main factor responsible for the generation
of the magnonic band structure.28 (iii) Ferromagnetic stripes
where the periodicity of the magnetization is introduced by ion
implantation29 or (iv) a periodic bias magnetic field.30 (v) SWs
waveguides with periodicity introduced by a regular repetition
of the bent sections where the bending induces a periodic
anisotropy field.31 Another class of periodic waveguides are
systems with periodically placed antidots (holes),32 which is
not challenging for fabrication even with a resolution in the
range of few nanometers.11

In this paper, we numerically investigate an antidot
waveguide (ADW) made of permalloy (Py) with air holes
(i.e., antidots) placed equidistantly along the wire in its
center. The considered antidot waveguide having a width
and period at the nanoscale will then operate in a frequency
range of few tens of gigahertz. Here, we use two differ-
ent computational techniques, a relatively fast plane-wave
method4,9 (PWM) to perform systematic studies and extensive
micromagnetic simulations28,30,34–36 (MSs) (with the aid of
OOMMF software)37 to verify the obtained results. Similar
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ADW structures were already investigated in previous papers
showing that ADWs have interesting properties that are
relevant for technological applications.32,38,39

In Ref. 39, ADWs with comparable lattice periods and
waveguide widths were considered (25% of the area occupied
by the antidots). The influence of the static demagnetizing
field and nonuniformity of the exchange field on the magnonic
band structure in ADWs with various shapes of antidots was
considered. In Ref. 32, it was shown that pinning of the
magnetization at the edges of ADW can be an important
factor that helps to open magnonic band gaps. Moreover, it
was shown that antidots occupying as small as 5% of the
ADW surface area are sufficient to open magnonic band gaps.
In Ref. 38, the influence of the intrinsic and extrinsic mirror
symmetry breaking on the magnonic band gaps in ADW with
pinned magnetization at edges was investigated. It was shown
that small deficiencies in the symmetry of the ADW structure
can result in closing magnonic band gaps but it was also
demonstrated that these band gaps can be reopened by an
asymmetric external magnetic field. Nevertheless, the influ-
ence of thorough and systematic structural changes in ADW
on magnonic band structure have not yet been considered
towards the optimization of ADW design. Thus there is a need
for comprehensive studies that will thoroughly explain the
impact of different structural parameters on the SW spectrum
of ADW and reveal interesting properties of the magnonic
band structures. Such studies are also of crucial importance
for experimental realizations of ADWs with magnonic band
gaps and their practical applications. In this paper, we study
the influence of antidot size, lattice period, shape, and size
factor on the dispersion of SWs and magnonic band gaps in
nanoscale ADW.

The paper is organized as follows. In Sec. II, we describe
the structure of the ADW and calculation methods in brief.
Subsequently, we explain the magnonic band structure in
ADW and the influence of the structural changes, i.e., antidot
size, lattice period, shape, and size factors, in Sec. III.
Finally, we summarize our results and discuss the prospects of
practical realizations. In Appendices A and B we describe in
detail the plane-wave method and micromagnetic simulations,
respectively.

II. THE WAVEGUIDE STRUCTURE AND THE
CALCULATION METHODS

We study here the symmetric magnonic waveguides based
on a one-dimensional (1D) antidot lattice structure shown in
Fig. 1. It has the form of a thin (thickness 1 nm) and infinitely
long permalloy (Ni80Fe20) stripe with a single row of square
holes of side s = 6 nm disposed periodically along the central
line. The stripe width and the lattice constant are fixed at 45 nm
and a = 15 nm, respectively. The row of holes is placed at
a distance of 19.5 nm from both top and bottom edges of
the stripe. Thus the waveguide possesses an axis of mirror
symmetry down the middle of the waveguide. Asymmetric
waveguides show interesting changes to the SW band structure
due to the loss of the mirror symmetry but this has been
examined separately.38 A bias magnetic field is applied along
the stripe and it is strong enough to saturate the sample
(μ0H0 = 1 T) and make the magnetization collinear and equal

FIG. 1. (Color online) The structure of the antidot waveguide,
where the row of the equidistant square holes was placed in its center.
The size s and the distance between antidots (i.e., the period of
the structure a) are 6 and 15 nm, respectively. The thickness of the
waveguide is 1 nm. The sketch below the waveguide structure depicts
the precession of magnetization around the direction of external
magnetic field H0.

to its saturation value even in the regions close to the sides of
the waveguide and antidot edges. A saturation magnetization
Ms = 0.8 × 106 A/m, an exchange length λex = 5.69 nm, and
a gyromagnetic ratio γ = 175.9 GHz/T were assumed in the
calculations.

The calculations of the magnonic band structure are per-
formed with the PWM and the finite difference method based
OOMMF. The PWM is implemented by a homegrown Fortran
code and described in Appendix A.40 MATLAB subroutines are
written to analyze the data coming from OOMMF according
to the algorithm presented in Fig. 6 in Appendix B.41

Both methods solve the Landau-Lifshitz-Gilbert (LLG)
equation:

∂M(r,t)
∂t

= γμ0M(r,t) × Heff(r,t)

− α

Ms

(
M(r,t) × ∂M(r,t)

∂t

)
, (1)

where r and t are position vector and time, respectively.
μ0 is the permeability of vacuum. The first term on the
right-hand side is related to the torque inducing precession
of the magnetization M and the second one describes the
damping process (α denotes the damping constant). Damping
is neglected in PWM calculations and included in MS (α =
0.0001). The effective magnetic field Heff here consists of
the bias magnetic field H0, exchange field Hex = ∇λ2

ex∇M,
and demagnetizing field Hdm. For OOMMF calculations, the
standard formula for dipole-dipole interaction in the latice of
magnetic moments was used. In our PWM implementation,
we use the Kaczer formula50 for demagnetizing fields in
planar periodic structures. Pinned dynamical components of
the magnetization vector were assumed at Py/air interfaces
in calculations with both methods.32 The pinning in OOMMF

was introduced by fixing the magnetization vector in all cells
bordering the Py/air interfaces. (In MS, a discrete mesh size
of 1.5 × 1.5 × 1 nm3 along X, Y , and Z axes, respectively,
was used. The MS’s were performed for 4 ns. In the PWM,
we use 781, 1065, 1647 plane waves, depending on the value
of the period a.) The boundary conditions for the dynamical
component of magnetizations do not result from the Landau-
Lifshitz equation. They can result from the presence of surface
anisotropy (which depends on the physical and chemical state
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of the surface) or from the so-called dipolar pinning.42,43 Al-
though we have limited our investigation to the case of pinned
magnetization, the conclusions we draw will be still valid in
systems with partially free magnetic moments on the external
interfaces.38

The pinning at the edges of antidots forces the decay of the
magnetization dynamics in the center of the ADW for small
values of lattice constants a and relatively large antidot sizes
s. By varying these parameters we can observe the gradual
transition from the case of two weakly coupled periodic
subwaveguides (formed by each of the two semi-isolated
19.5-nm-wide halves of the whole ADW) to the case of
one waveguide (45-nm width, being the whole ADW) with
small periodic perturbation (further discussion with numerical
results will be presented in Sec. III B). In the PWM, the pinning
is exactly at the edges of Py, whereas in MS the pinning
was applied in a layer of finite thickness. This difference can
slightly influence results obtained with both methods. The
effect of magnetization pinning is seen in the profiles of SW
dispersion relations shown in Figs. 2 and 3. Due to the small
thickness of the ADW and relatively large ratio of the width to
thickness of ADW, a uniform SW profile across the thickness
is assumed. Both methods (PWM and MS) were already used
in the calculations of the SW dynamics and proved to give
correct results.7,9,41

III. THE INFLUENCE OF STRUCTURAL CHANGES IN
THE ADW ON THE MAGNONIC BAND STRUCTURE

The dispersion relation, i.e., frequency as a function of the
wave vector, f (k), is a periodic function with a period equal
to the reciprocal lattice vector G = 2π/a. This dispersion also
has a mirror symmetry with respect to the point k = 0. Because
of that, it is enough to show f (k) only in the half of the first
Brillouin zone (BZ) but for the purpose of clarity of analysis,
we will present results in the full BZ.

A. The influence of antidot size

Figure 2 presents the SW spectra of ADW for three
different sizes s × s of the square antidots: for s = 4, 6,
and 8 nm. We kept the period of the ADW constant (a =
20 nm). For a fixed period a, the increase of the antidot
size makes the two subwaveguides (formed by halves of
ADW) more isolated, because it reduces the crosstalk between
magnetization dynamics in these two subwaveguides. It is
noticeable both in the SW dispersion and in the profiles of
the squared amplitudes of the dynamical magnetization in
Fig. 2 (the profiles in Fig. 2 show the out-of-plane component
of the magnetization vector). Let us compare the two lowest
modes for s = 4 and 8 nm denoted in Fig. 2 by (a) and (b).
For s = 4 nm, the lowest mode (a) is formed by strongly
coupled SWs propagating in two subwaveguides. This mode,
as the lowest one, has no nodal line in the center of ADW and
therefore the SWs are allowed to penetrate in the areas between
the antidots. The antidot with the larger size (s = 8 nm) can,
however, successfully extinguish the SW dynamics in the
ADW center. In this case (s = 8 nm), the modes (a) and (b) are
almost degenerate with in-phase (a) and out-of-phase (b) SWs
precession between two subwaveguides. Their amplitudes and
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FIG. 2. (Color online) The dependence of size of antidots on SW
spectra of ADW. The inset above the central part of the figure shows
the system under investigation: 1-nm thick, 45-nm wide, infinitely
long Py stripe with a periodic series of square antidots of size s × s,
where s = 4, 6, and 8 nm, disposed along the waveguide with a period
of a = 20 nm. A bias magnetic field μ0H0 = 1 T is oriented along
the waveguide. The row of antidots divides the waveguide into two
subwaveguides. The coupling between subwaveguides is controlled
by the size of antidots with small antidots resulting in strong coupling
(s = 4 nm) and big antidots in weak coupling (s = 8 nm). Red dashed
lines show the dispersion for a homogeneous waveguide of width w =
19.5 nm with artificial folding-back of the dispersion to the first BZ.
The colored maps present the squared amplitude of the out-of-plane
component of dynamical magnetization for bands marked by letters
from (a) to (i) in the SW spectra.

position of dispersion branches are almost the same. Mode (b)
is, however, more robust to the changes in the antidot size. It
is due to the fact that this mode has a nodal line in the center
of the ADW, which leads to the decaying of the SW dynamics
in the vicinity of the antidots row. As a result, the SWs mode
(b) is weakly affected by the presence of the series of antidots
placed in the middle of the structure. The comparison of the
maps of mode (b) for s = 4 nm and for s = 8 nm does not
show significant differences.

It is also visible that the shrinking of the antidot size, from
8 to 4 nm splits the levels of modes (a) and (b) gradually. The
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FIG. 3. (Color online) The dependence of SW spectra of ADW
on the waveguide period. The size of the antidots is kept constant, s =
6 nm. The increase of the period (from a = 15 to 21 and 30 nm) leads
to increase of the coupling between SWs in the subwavegudies. Note
the change in location of the BZ edges marked by blue vertical lines.
In the first row, schematic plots of the ADW are shown, in the second
and third row, the dispersion of SWs calculated by micromagnetic
simulations (OOMMF) and PWM are presented, respectively. Together
with the PWM results, the dispersion for homogeneous waveguides
of width w = 19.5 nm (for a = 15 and 21 nm) and w = 45 nm (for
a = 30 nm) with artificial folding back of the dispersion to the first
BZ is shown with dashed (red online) lines. The colored maps on the
bottom of the figure show the squared amplitude of the out-of-plane
component of magnetization calculated with PWM for points of the
magnonic band structure labeled by (a)–(f).

difference between the frequencies of these modes becomes
larger as the antidot size decreases. This increase of splitting
between these modes can be attributed to an increase of
dynamical coupling between SWs in subwaveguides, as is

discussed in the next paragraph. One can notice also the
small changes in the position for the two lowest modes in
the frequency scale. The lowering of frequency of the modes
can be attributed to the slight increase in the effective width of
each subwaveguide with the reduction of the size of antidots.

The red dashed lines in the dispersion plots show the
SW spectra for a plain waveguide of width of 19.5 nm,44

which corresponds to the width of a single subwaveguide with
s = 6 nm. The artificially introduced periodicity (a = 20 nm)
folds the parabolic dispersion branches (typical for exchange
dominated regime) to the first BZ. In the considered frequency
range (0–300 GHz), two folded-back dispersion parabolas
are visible related to the mode confinement and quantization
across the waveguide. By comparing ADW spectra to the
spectrum of the plain subwaveguide, the following features can
be noticed. (i) The ADW dispersion branches, which mimic
the spectrum of the plain subwaveguide [e.g., modes (a) and
(b)] are confined mostly in the interior of the subwaveguides
of ADW, whereas modes of ADW completely distorted from
the parabolic shape [e.g., modes (c) and (d)] have amplitudes
concentrated at the row of antidots. (ii) When the interaction
between subwaveguides in ADW increases (for smaller antidot
size), the distortion of paraboliclike dispersion branches is
more significant. This effect is stronger for higher modes.
For our system, already ADW modes related to the second
parabola of plain subwaveguide are strongly perturbed. We
can recognize at least two features of such distortion: the
splitting between the modes being even and odd with respect
to the ADW center [e.g., modes (a) and (b)], and the frequency
downshift (stronger for modes originating from the second
parabola) resulting from the increase of the effective width of
the subwaveguides in ADW. For instance, modes (e) and (f)
can be hardly identified as those related to the crossing of the
folded arms of the second parabola in the BZ center (the modes
have one nodal line in the center of each subwaveguide). They
are significantly shifted down as the antidots are reduced.

Due to the periodicity in the system, the magnonic band
gaps can be opened in the SW spectrum. If the periodicity
can be regarded as a small perturbation in a plain waveguide,
possible band gaps occur in three different scenarios: (i) at BZ
edges, it happens for the lowest dispersion branch (originating
from the first dispersion mode of the uniform waveguide),
(ii) in the BZ center, as a result of the first self-crossing
of the branches related to the same dispersion mode, after
folding-back to the first BZ (only if there is no overlapping with
higher modes, which can be supported by the sufficiently large
value of the ratio period/width), and (iii) inside the BZ, being
the effect of the anticrossing of branches related to different
dispersion modes. Scenarios (i) and (ii) are related to the
Bragg scattering for spin waves differing in wave number by
�k = (2n)2π/a and �k = (2n + 1)2π/a, respectively, where
n is an integer number. Such simple picture of the mechanisms
can be used for very weak periodic modulation, where the
dispersive branches in the system can be referred to as modes
of the plain waveguide, and does not exhaust all possible
mechanisms of band gap formation.45–47 The magnonic gaps
marked by yellow bars in Fig. 2 are related to the first and
second scenario mentioned above. The gap generated by the
anticrossing of branches related to the different dispersion
parabolas of the plain subwaveguides (i.e., the third scenario)
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can be observed in the first column in Fig. 3 (see the second
gap for a = 15 nm). For the considered range of antidot sizes
(s = 4, 6, and 8 nm), both gaps (the first and the second one)
become slightly wider with an increase in the antidot size.
However, introduction of much larger antidots (when s ≈ a)
will cancel the periodicity in the system and will lead to the
gap closing. This behavior can be understood by considering
two competing mechanisms. The gap will be wide when
the periodicity is strong (large antidots with an interantidot
distance comparable to the antidot sizes) and the crosstalks
between subwaveguides are small (values of the ratio s/a close
to 1 allows to separate subwaveguides). The first condition will
enhance the Bragg scattering, the second one will reduce the
splitting of the even and odd modes with respect to the ADW
center.

B. The influence of lattice period

Figure 3 shows the variation in the magnonic spectra with
the lattice constant (a = 15, 21, and 30 nm). We change the
separation between the antidots keeping their size constant
(s = 6 nm). The increase of lattice constant a contracts the
size of the BZ. We decided not to change the range of the
wave number k for successive values of a in Fig. 3. Therefore
the dispersion plots for a = 15, 21, and 30 nm encompass:
1, 1 1

3 , and 2 BZs, respectively. To discuss the impact of the
lattice constant on the ADW spectrum, one has to include this
additional factor. The reduction of the BZ size can affect the
spectrum of the 1D periodic SW waveguide in two ways.
(i) The SW spectrum contains more bands in the same
frequency range. The edges of successive BZ appear more
frequently in wave-vector domain and therefore the dispersion
foldings at the BZ edges split the bands more often in frequency
domain. (ii) The group velocity is reduced. If the spectrum is
folded back multiple times, the number of bands reaching the
BZ edge and center (where the group velocity drops to zero)
increases. Both the Bragg scattering and self-crossing of bands
leads to the band repulsion and their flattening.

Because of the much more complex evolution of the
magnonic spectrum with changes in the lattice constant, it
is more difficult to trace the variations in the origin of the
band-gap width. The shrinking of the BZ (with the increase
of a) changes the frequency position of the band gap opened
at the BZ edges and can also result in opening or closing of
gaps formed due to self-crossing or anticrossing of dispersion
branches. Nevertheless, some characteristic features for this
evolutions can be noticed. (i) The magnonic band gaps are
shifted down in the frequency range. This is caused by the
dense folding of the dispersion branches in the narrower BZ.
The reasonably strong band overlapping, for larger values of
a, can also close the band gaps in a higher frequency range
(see Fig. 3 for a = 30 nm). (ii) There is no simple answer
to what value of a is optimal for the existence of a wide
magnonic band gap. The limits of very small and very large
lattice constant (with a fixed antidot size) do not support the
wide band gaps in the system. For short periods, the antidots
start to overlap, which cancels the periodicity and makes two
subwaveguides isolated (in terms of exchange interactions)
and the band gap closes. In the limit of large lattice constants
(a � s), the periodicity in the system can be treated as a

small perturbation and, therefore, the Bragg scattering should
be weak and it leads to a gradual band-gap closing. But the
localized modes with flat bands appear in the low frequency
spectra [see mode (a) in Fig. 3 for a = 30 nm] and the simple
picture does not hold.

The increase of the lattice constant with the fixed size of
the antidots makes the separation between the antidots larger.
For a � s, ADW can not be treated as two weakly coupled
subwaveguides. The data presented in the right column of
Fig. 3 show that the considered system (a = 30 nm) is close
to this limit. For even larger values of a, one may interpret
the spectrum as a perturbation of the spectrum of the plain
waveguide of width 45 nm (equals to the total width of ADW
and is shown in the right column of Fig. 3 with dashed lines),
rather than the spectra of two subwaveguides. Let us discuss
how the increase in the ratio a/s affects the spatial distribution
of modes (bottom row in Fig. 3). Two trends are evident:
(i) the modes localized at the antidot row are shifted to the
lower frequency range. Modes (c) and (f) for a = 21 and 30 nm
have SW amplitudes localized between the antidots. With the
increase of the period, the size of these areas extends, and
the SWs confined in larger areas decrease their frequencies.
(ii) The modes, even with respect to the ADW center, start to
leak their amplitudes to the middle of ADW. For larger values
of a, the pinning at the antidot edges is not sufficient to dimin-
ish the SW power at the center of the ADW even for the lowest
modes. We can observe this process by analyzing the evolution
of modes (a) and (b) while increasing the lattice constant. For
a = 15 nm, it is almost impossible to distinguish between
the profiles of the (a) and (b) modes. When a = 21 nm, the
power from an even mode (a) starts to penetrate in the areas
between the antidots. It leads to the coupling of excitation in
the two subwaveguides and splits the dispersive branches of
even (a) and odd (b) modes. The lowest mode of the large
considered lattice constant a = 30 nm spreads its amplitude
over the whole ADW width with maximum concentration in
its center. Due to smoother spatial variation of the amplitude
across the whole width of ADW (in comparison to the cases
a = 15 or 21 nm), the frequency of this mode is lowered.

The second row in Fig. 3 presents the dispersions obtained
from MS. The agreement with PWM is evident. Small
discrepancies start to appear in the high-frequency range where
the bands calculated using OOMMF are slightly shifted down.
This can be attributed to finite cell sizes used in the finite
difference method based solver. The maximum difference
between the positions of the bands calculated in OOMMF and
PWM reaches about 5% at the top of the presented spectra.

C. The influence of antidot shape

The effect of antidot shape on SW dispersion in ADW
has been discussed in some detail for dipole dominated
SWs25,48 and exchange dominated SWs without pinning at
Py/air interfaces.39 Here, we revisit some of those findings for
the completeness of this study. In order to make the systems
of various antidot shapes comparable, we fixed the area of the
antidots independent of their shape. We compared two basic
antidot shapes: the square and the circular shapes. The results
for a = 15 nm, s = 6 nm for square antidots, and radius of
3.38 nm for circular antidots are presented in Fig. 4. The SW
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FIG. 4. (Color online) The SW spectra for the ADW with square
(black solid line) and circular (green dashed lines) antidots. The lattice
constant is fixed (a = 15 nm) and areas of square and circular antidots
are the same (36 nm2). The maps in the two columns on the right
present the out-of-plane components of dynamical magnetization for
selected modes in the center and the edge of the BZ for square and
circular antidots, on the left and right, respectively.

spectra for these two antidot shapes do not differ significantly.
The branches coinciding with the first dispersion parabola (cf.
the red dashed line in the left column of the Fig. 3) almost
overlap with each other. There is no discernible difference
between modes (a) and (b) for both the ADWs with square
and circular antidots. The levels associated with the second
dispersion parabola [e.g., modes (c) and (d)] for the ADW
with circular antidots are slightly lowered in reference to the
corresponding modes of the ADW with square antidots. The
differences in the profiles of (c) and (d) mode are also very
subtle for two considered geometries. A more pronounced
dissimilarity can be noticed for the modes localized at the row
of antidots (e). For this case, almost the whole SW amplitude
is focused in the vicinity of the antidots. Therefore this kind of
excitation is relatively sensitive to the difference in shape of
antidots, which is, in fact, a very small change in the geometry
of the whole system. Similar effects were also found for other
structures investigated in this paper, i.e., for lattice constants 21
and 30 nm and antidot sizes of 4 and 8 nm. Antidot geometry
affects the exchange and demagnetizing field distribution
around itself. Thus their periodicity in an ADW provides
the periodic and inhomogeneous potential necessary for the
Bragg scattering and the resultant characteristic SW spectrum.
The demagnetizing field distribution is shown to play a more
prominent role on larger length scales.48 On the considered
length scales, where we have exchange dominated SWs, the
spectrum is affected only if the hole shape causes the exchange
field distribution to change.39 From the application point of
view, perhaps the first direct magnonic band gap and related
dispersive modes are the most important in the SW spectrum.
Thus we find that, for exchange dominated SWs, even if
minor periodic deformations of antidot shape occur during
the fabrication of an ADW, its SW spectrum will remain

practically unaffected as long as the exchange field distribution
is unchanged.

D. The influence of size factor

For the ADW of width 45 nm discussed in the previous sec-
tions, the exchange interaction dominates over magnetostatic
interactions. This results from the small values of dynamic
demagnetizing fields in comparison to the exchange field for
large values of wave numbers. Even the amplitudes of static
demagnetizing field reach the values 0.1 T at the interfaces
of Py/air perpendicular to the direction of the external filed,
which are quite small in comparison to the value of external
filed 1 T and to the width of the bands (taking γμ0Hdm for
comparision). Therefore the SW dispersion manifests a pure
exchange behavior with a paraboliclike trend visible even for
wave numbers close to the BZ center [see, e.g., Fig. 4].

The models we use in the calculations include both kinds
of interactions: exchange and dipolar. To observe a noticeable
impact of dipolar interaction on the SW dispersion, one has
to scale up the structure of ADW. We magnified the ADW
structure with the square antidots presented in Fig. 4 by the
factor of 6 (the width, thickness, antidot size, and lattice
constant were all increased six times). For this structure in
the first BZ, we observe a negative group velocity near the
BZ center for the first two bands (Fig. 5), i.e., a feature
characteristic for backward volume magnetostatic waves.49

For lager values of the wave number, a quadratic dispersion

k=0
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FIG. 5. (Color online) The PWM calculations of SW spectra for
the ADW magnified by the factor of 6 in reference to the structure
presented in Fig. 4 with square holes showing the crossover of
exchange and dipolar effects related to the stronger manifestation of
dipolar interactions. The structural parameters are the lattice constant,
a = 90 nm, antidot size, s = 36 nm, and thickness and width, 6 and
270 nm, respectively. Red dashed lines show the dispersion for a
homogeneous waveguide of width 135 nm [i.e., half of the total ADW
width]. The maps (a) and (b) present the out-of-plane components of
dynamical magnetization for two modes in the center of the BZ.
(c) The map of the static demagnetizing field (its component along
the waveguide, Hdm). The peaks of the static demagnetizing field are
significantly smaller than the value of the external magnetic field
μ0H0 = 1 T.
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typical for exchange interaction begins to dominate. As a
result, the two lowest dispersion branches have a minimum
with a group velocity reaching zero away from the BZ center.
The discussion of SW eigenmodes presented in the previous
section has assumed the domination of exchange interactions.
We have interpreted the magnonic band structure as an effect
of crosstalks of two quasiparabolic dispersion relations related
to two subwaveguides folded at the edges of the BZ. From
Fig. 5, it is clear that even in a crossover of dipolar and
exchange regime, this picture can be still valid and the
spectrum presented in Fig. 5 preserves most of the features
found for exchange dominated systems (cf. Figs. 2–4). We can
also link the spectrum of the ADW [black lines in Fig. 5] to
the spectra of homogeneous subwaveguides [red dashed lines]
as well.

One of the important differences in comparison to ex-
change dominated systems is the increase of the strength
of interactions between two subwaveguides. This effect is
manifested by the stronger splitting of the levels of even [Fig.
5(a)] and odd [Fig. 5(b)] modes with respect to the ADW
center. The increase of the coupling between these two SW
excitations in different subwaveguides can be attributed to
three factors: (i) to the enhancement of long-range dipolar
interactions due to increased thickness of ADW, (ii) to the
decrease of the band width [resulting from the large lattice
constant and consequently smaller first BZ] and thus the
relative increase of the role of nonuniformity of the static
demagnetizing field [Fig. 5 (c)], and finally, (iii) to the increase
of separation between antidots, thus the lowering frequency of
quantized SWs between neighboring antidots. The considered
regime of sizes [the width of the ADW presented in Fig.
5 equal to 270 nm] can be realized by a much broader
spectrum of fabrication techniques, which make this system
more interesting from the experimental point of view.

IV. CONCLUSIONS

We have presented an in-depth theoretical study of the
impact of structural changes on the spin-wave spectrum of
thin nanoscale magnonic waveguides with a row of antidots
placed in their center. The influence of the antidot size and
shape, distance between antidots, and the scale factor of antidot
waveguides on the magnonic band structure and magnonic
band gaps have been investigated. These studies allow for
the identification of the main parameters and mechanisms that
influence the width of magnonic band gaps in nanoscale ADW.
Moreover, we have described the role of exchange and dipolar
interactions in the formation of a magnonic band structure in a
thin ADW with widths from tens to hundreds of nanometers. In
summary, we have found that (1) the increase of antidot size in
relation to the waveguide period makes the effective pinning
in the center of the waveguide stronger. By controlling the
strength of this pinning, one can affect the crosstalk between
SWs propagating in two adjacent halves of the waveguide
(subwaveguides). A gradual degeneracy of the (a) and (b)
modes occurs as the antidot size increases.

(2) When the size of antidots is small enough, or the
edge to edge distance between the neighboring antidots is
large enough, the SWs localized on the periodic row of
antidots are observed in a lower frequency range (together

with the lowest dispersion branches for modes propagating in
subwaveguides)—see, e.g., modes (c) and (i) in Fig. 2 [and
also modes (c) and (f) in Fig. 3].

(3) The magnonic gaps are expected to open at the BZ edges
or BZ center (Fig. 2). The gap can be opened for intermediate
values of the wave number as well, where it is caused by the
anticrossing of the bands originating from different transverse
modes in homogeneous subwaveguides cf. modes (a), (b) and
(c), (d) in the left panel in Fig. 2 [modes (a), (b) and (c), (d)
differ in the number of horizontal nodal lines] and the second
gap in this figure (a = 15 nm and s = 6 nm).

(4) When the waveguide period a is fixed then the existence
of a magnonic band gap and change of its width and position is
easier to analyze as a function of the antidot size s [Fig. 2], than
for the opposite case, s fixed and a varied [Fig. 3]. It is because
a change in a alters not only the strength of the periodicity
but also affects the location of BZ edges. Nevertheless, the
period of the ADW and its relation to the antidot size are
important factors that influence magnonic band gaps and the
group velocity of SW, thus, its proper choice will be crucial
for application of nanoscale ADW in magnonics, to transmit
or filter SW signals.

(5) The shape of the antidots does not affect the SW
spectrum of exchange dominated SWs unless the exchange
field distribution is altered. High frequency modes, which
contain power close to the row of antidots show greater
sensitivity towards changes in the shape of the antidots. Thus
for modes from the low-frequency part of the spectra, the
antidot shape is not an important parameter in nanoscale ADW.

(6) Enhancement of the size of an ADW increases the
crosstalk between SWs propagating in two adjacent halves
of the waveguide (subwaveguides) and the backward volume
magnetostatic wave character of dispersion relation near BZ
center for these SWs is found. However, still the main features
of the magnonic band structure in the exchange dominating
systems are preserved.

Thus we have shown that SW waveguides based on thin
ferromagnetic stripes with a single row of periodically spaced
antidots in nanoscale are promising for magnonic applications
in frequencies from few to tens of gigahertz. Only a single
row of antidots offer enough room for manipulation of the SW
spectra to design single mode waveguides or waveguides with
filtering properties due to existence of magnonic band gaps.
The insensitivity of the main part of the magnonic spectra
on the detailed shape of antidots, promises a possibility for
fabrication of high frequency magnonic waveguides with the
current technology.
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APPENDIX A: PWM - THE EIGENVALUE PROBLEM FOR
LINEARIZED LANDAU-LIFSHITZ EQUATION

We considered the Landau-Lifshitz equation (1) in the
linear approximation. We take into account the magnetization
dynamics in the form of harmonic time precession of the
magnetization with the angular frequency ω, expressed by the
dynamical components of magnetization vector: mx(r,t) =
mx(r)eiωt and my(r,t) = my(r)eiωt . The dynamics of mag-
netization in the direction of external field is neglected, i.e.,
we assume Mz(r,t) ≈ Ms. As a result, the linearized Landau-
Lifshitz equations have a form of two linear differential
equations for the precession amplitudes: mx(r) and my(r).
The amplitudes mx(r) and my(r) can be transformed to the
reciprocal space with the use of Bloch theorem. This allows
to convert the linearized Landau-Lifshitz equations into the
algebraic eigenvalue problem:

( {mx(G)}
{my(G)}

)
M̂ = iω

γμ0H0

( {mx(G)}
{my(G)}

)
(A1)

by Fourier transformation of material parameters (Ms , λex)
and the periodic factor of Bloch functions, where {mx(G)} and
{my(G)} denote the vectors with the set of Fourier coefficients
for periodic parts of Bloch functions. The matrix M̂ of the
eigenvalue problem can be written in a block-matrix form:

M̂ =
(

M̂xx M̂xy

M̂yx M̂yy

)
. (A2)

The submatrices in (A2) are defined as follows:

M̂xx
ij = −M̂

yy

ij = −i
ky + Gy,j

H0|k + Gj |S(k + Gj )Ms(Gi − Gj ),

(A3)

M̂
xy

ij = δij

+
∑

l

(k + Gj ) · (k + Gl)

H0
l2
ex(Gl − Gj )Ms(Gi − Gl)

+ (ky + Gy,j )2

H0|k + Gj |2 [1 − C(k + Gj ,x)]Ms(Gi − Gj )

− (Gz,i − Gz,j )2

H0|Gi − Gj |2 Ms(Gi − Gj )[1 − C(Gi − Gj ,x)],

(A4)

M̂
yx

ij = −δij

−
∑

l

(k + Gj ) · (k + Gl)

H0
l2
ex(Gl − Gj )Ms(Gi − Gl)

− 1

H0
C(k + Gj ,x)Ms(Gi − Gj )

+ (Gz,i − Gz,j )2

H0|Gi − Gj |2 Ms(Gi − Gj )[1 − C(Gi − Gj ,x)],

(A5)

where indexes i,j,l of reciprocal lattice vectors Gi are
integers. Ms(Gi) and l2

ex(Gi) are Fourier coefficients of the
saturation magnetization and exchange constant, respectively.
The additional functions used in the equations above are
defined as follows:

S(k,x) = sinh (|k|x)e−|k|d/2,
(A6)

C(k,x) = cosh (|k|x)e−|k|d/2,

where d denotes the MAW thickness.
In order to use PWM for 1D structure of ADW we have

to make the structure artificially periodic along the direction
perpendicular to the waveguide axis. We make advantage
of the supercell method, which exploits the fact that the
properties of the confined system (in our case, the ADW of
finite width) are equivalent to the properties of the set of its
noninteracting copies. In Eqs. (A3)–(A5), we have already
used two-dimensional wave vectors k and reciprocal lattice
vectors G in the (y, z) space, which refers to the infinite
sequence of parallel ADW separated by artificial material.32

Calculations are performed for y component of the wave vector
equal 0, i.e., the direction of propagation of SWs is limited to
the ADW axis.

M (f,y,k )x z

M (f,y,k )x z M (f,k )x z

LLG ordinary differential
equation solver - OOMMF

M r(t, )

~

~

~

~

M (t,y,z)x M (t,y,z)y M (t,y,z)z
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k

y=y
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w.r.t. t

Multiplication by factor
k ,k

Inverse Fourier transform
w.r.t. k

~

~

~

M (f,y,z)x
~ k M (y,z)x

~ k ,ff=f

Fourier transfrom
w.r.t. z

FIG. 6. (Color online) The computational scheme leading to
dispersion relation ˜̃My0

x (f,kz) (red box) and spatial distribution of
out-of-plane component of dynamical magnetizations for the selected
eigenmode (k0,f0), M̃k0,f0

x (y,z) (green box) based on MS. f is a
frequency of SW.
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APPENDIX B: COMPUTATION OF DISPERSION
RELATION AND MODES PROFILES WITH

MICROMAGNETIC SIMULATIONS

The micromagnetic simulations were performed using
OOMMF package. The calculation of dispersion relation is done
in two stages: (i) simulation of magnetization dynamics in real

space and time and (ii) multidomain Fourier transformation to
obtain SW energy spectral density in frequency and wave-
vector domains.41 If the BZ extent is 2π/a, then a mask
δ(2nπ/a ± k0) (where n is an integer) can be used such that
an inverse Fourier transform (with respect to kz) yields the SW
mode profile corresponding to a given ordered pair (k0,f0).39

The flowchart in Fig. 6 summarizes this procedure.

*These authors contributed equally to this work.
†krawczyk@amu.edu.pl
‡abarman@bose.res.in
1S. A. Nikitov, Ph. Tailhades, and C. S. Tsai, J. Magn. Magn. Mater.
236, 320 (2001).

2H. Puszkarski and M. Krawczyk, Solid State Phenom. 94, 125
(2003).

3Z.-K. Wang, V. Li Zhang, H. S. Lim, S. C. Ng, M. Hau. Kuok,
S. Jain, and A. O. Adeyeye, ACS Nano 4, 643 (2010).

4S. Tacchi, G. Duerr, J. W. Klos, M. Madami, S. Neusser,
G. Gubbiotti, G. Carlotti, M. Krawczyk, and D. Grundler, Phys.
Rev. Lett. 109, 137202 (2012).

5M. Krawczyk, S. Mamica, M. Mruczkiewicz, J. W. Klos, S. Tacchi,
M. Madami, G. Gubbiotti, G. Duerr, and D. Grundler, J. Phys. D:
Appl. Phys. 46, 495003 (2013).

6M. J. Pechan, Ch. Yu, R. L. Compton, J. P. Park, and P. A. Crowell,
J. Appl. Phys. 97, 10J903 (2005).

7S. Neusser, H. G. Bauer, G. Duerr, R. Huber, S. Mamica,
G. Woltersdorf, M. Krawczyk, C. H. Back, and D. Grundler, Phys.
Rev. B 84, 184411 (2011).

8S. Neusser, G. Durr, H. G. Bauer, S. Tacchi, M. Madami,
G. Woltersdorf, G. Gubbiotti, C. H. Back, and D. Grundler, Phys.
Rev. Lett. 105, 067208 (2010).

9S. Tacchi, B. Botters, M. Madami, J. W. Kłos, M. L. Sokolovskyy,
M. Krawczyk, G. Gubbiotti, G. Carlotti, A. O. Adeyeye, S. Neusser,
and D. Grundler, Phys. Rev. B 86, 014417 (2012).

10C.-L. Hu, R. Magaraggia, H.-Y. Yuan, C. S. Chang, M. Kostylev,
D. Tripathy, A. O. Adeyeye, and R. L. Stamps, Appl. Phys. Lett.
98, 262508 (2011).

11R. Mandal, S. Saha, D. Kumar, S. Barman, S. Pal, K. Das, A. K.
Raychaudhuri, Y. Fukuma, Y. Otani, and A. Barman, ACS Nano 6,
3397 (2012).

12R. Zivieri et al., Phys. Rev. B 85, 012403 (2012).
13R. Zivieri, Solid State Phys. 63, 151 (2012).
14V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D:

Appl. Phys. 43, 264001 (2010).
15A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D: Appl.

Phys 43, 264002 (2010).
16A. Khitun, J. Appl. Phys. 111, 054307 (2012).
17Magnonics: From Fundamentals to Applications, edited by S. O.

Demokritov and A. N. Slavin (Springer, Heidelberg, 2013).
18S. Bonetti, P. Muduli, F. Mancoff, and J. Akerman, Appl. Phys.

Lett. 94, 102507 (2009).
19O. Prokopenko, E. Bankowski, T. Meitzler, V. Tiberkevich, and

A. Slavin, IEEE Magnetic Letters 2, 3000104 (2011).
20M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti,

G. Gubbiotti, F. B. Mancoff, M. A. Yar, and J. Akerman, Nat.
Nanotechnol. 28, 635 (2011).

21A. Kozhanov, D. Ouellette, Z. Griffith, M. Rodwell, A. P. Jacob,
D. W. Lee, S. X. Wang, and S. J. Allen, Appl. Phys. Lett. 94, 012505
(2009).

22V. E. Demidov, M. P. Kostylev, K. Rott, J. Münchenberger,
G. Reiss, and S. O. Demokritov, Appl. Phys. Lett. 99, 082507
(2011).

23P. Clausen, K. Vogt, H. Schultheiss, S. Schäfer, B. Obry, G. Wolf,
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