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Density functional theory (DFT) calculations of the magnetic shielding for solid state nuclear magnetic
resonance (NMR) provide an important contribution for the understanding of the experimentally observed
chemical shifts. Therefore, methods allowing us to compute those parameters with high precision are very
valuable. Recently, we have presented a formalism for computing the NMR parameters in solids based on
the augmented plane wave (APW) method [Phys. Rev. B 85, 035132 (2012)]. In the present work we derive
an improvement of the original schema, which greatly boosts its precision and efficiency. Although the APW
method is virtually an exact method for the ground state wave functions in a solid, its optimized basis set is
incomplete and we need to extend it by including basis functions containing the radial derivative of the standard
APW basis functions in order to efficiently describe the perturbation due to a magnetic field. In addition we also
include the core states in the first-order perturbation formula correcting an error resulting from separation of the
core and valence states. These allow us to obtain the NMR parameters that are nearly numerically exact within a
given DFT functional.
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I. INTRODUCTION

Solid state nuclear magnetic resonance (NMR) is a pow-
erful and widely used experimental method that provides
information about the atomic and electronic structure of
materials.1 It measures the response of a material to an
external magnetic field by detecting the transition energies
related to the reorientation of the nuclear magnetic moment.
The external field induces an electric current in the sample,
which according to Biot-Savart’s law produces an induced
magnetic field that partially screens the external field. The
NMR transition energies are proportional to the total magnetic
field at the nucleus. The induced current and the corresponding
shielding depends strongly on the electronic and atomic
structure of the material. In order to interpret the experimental
results, it is essential to understand this rather complicated and
indirect relation. Density functional theory (DFT) calculations
turn out to be extremely helpful for this task. There are,
however, several issues that may impact the quality of the
calculated parameters. For instance, a rather fundamental
problem that concerns the inherent errors of current DFT
implementations appears due to the approximate nature of
currently used DFT functionals. It manifests itself in the
common observation that for a particular nucleus within a
series of compounds the comparison of computed shielding
parameters with experiment shows some scattering from a
straight line, but most severe, also a systematic error resulting
in a slope different from 1.0 can appear.2–8 This issue has
been recently discussed by us in Refs. 9 and 10 and the
influence of various DFT approximations was demonstrated,
but a general solution seems impossible at present and
more accurate DFT approximations are needed. Testing of
more accurate functionals, however, can be misleading when
another, less fundamental problem arise due to limitations and
simplifications in the numerical method and the implemented
formalism of an NMR shift calculation.

In this paper we modify our previously published
formalism11 to calculate the NMR shielding in solids within
the all-electron augmented plane wave (APW) method. This
allows us to reach the “DFT limit” and offers a considerable im-
provement of both computational performance and precision
in the calculation of NMR parameters. Moreover, we believe
that our conclusions may also be useful for other approaches.

The paper is organized as follows. In the next section we
briefly outline the general formalism for computing NMR
parameters within the APW method including the extended
basis set consisting of many local orbitals (LO) at high
energies.11 In the following section we introduce a more
efficient way to deal with the incompleteness of the standard
APW basis and also discuss the potential source of errors
resulting from the separation of the magnetic response into
valence and core state contributions. In the final section we
conclude and summarize our findings.

II. THEORETICAL APPROACH: CURRENT STATUS

Until now several methods of ab initio calculation of
NMR chemical shifts for molecules12,13 and solids have been
described in the literature.14–18 In the case of solids they usually
operate within the standard DFT19,20 framework, but hybrid
DFT has also been used.9 Our formalism is based on a linear
response approach14,16,21 originally developed by Mauri,
Pfrommer, and Louie (MPL),14 however it is implemented
within the all-electron, full potential augmented plane wave
method (APW).22,23 The details of the implementation are
described in our previous publication.11 Formally our method
belongs to a set of gauge transformation methods called IGCV
(individual gauge for core and valence) with “d(r) = r” gauge
choice for the valence electrons as elegantly pointed out by
Gregor, Mauri, and Car.24
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The shielding tensor ←→σ is defined as a proportionality
constant between the induced magnetic field Bind at the nucleus
at site R and the external uniform field B:

Bind(R) = −←→σ (R)B. (1)

Most often only the isotropic shielding (IS) defined as σ (R) =
Tr[←→σ (R)] can be accessed experimentally. The actually
measured number is the chemical shift δ which is the NMR
isotropic shielding obtained with respect to some reference
compound δ(R) = σref − σ (R).

The induced field Bind is obtained by integrating the induced
current jind(r) according to the Biot-Savart law:

Bind(R) = 1

c

∫
d3r jind(r)

R − r

|r − R|3 . (2)

For nonmagnetic and insulating materials, only the orbital
motion of electrons contribute to jind(r). The current density is
evaluated as expectation value of the current operator:

J(r′) = −p|r′〉〈r′| + |r′〉〈r′|p
2

− B × r′

2c
|r′〉〈r′|. (3)

The expression for the induced current involves only the first-
order terms with respect to the external field B:

jind(r′) =
∑

o

[〈
�(1)

o

∣∣J(0)(r′)
∣∣�(0)

o

〉 + 〈
�(0)

o

∣∣J(0)(r′)
∣∣�(1)

o

〉
+ 〈

�(0)
o

∣∣J(1)(r′)
∣∣�(0)

o

〉]
, (4)

where �(0)
o is an unperturbed Kohn-Sham (KS) occupied

orbital, J 0(r′) is the paramagnetic part of the current operator
[the first term in Eq. (3)], and J 1(r′) is the diamagnetic
component of the current operator [the second term in Eq. (3)].
�(1)

o is the first-order perturbation of �(0)
o given by the standard

formula involving a Greens function:

∣∣�(1)
o

〉 =
∑

e

∣∣�(0)
e

〉 〈�(0)
e

∣∣H (1)
∣∣�(0)

o

〉
εo − εe

, (5)

where H (1) is the perturbation due to the external magnetic
field in symmetric gauge:

H (1) = 1

2c
r × p · B. (6)

In the actual implementation the position operator r is replaced
by the limit r · ûi = limq→0

1
2q

(eiqûi ·r − e−iqûi ·r) to avoid
the divergences for extended systems. Moreover Eq. (4) is
reformulated using the generalized sum rule16 in order to
remove the dependence on the gauge origin.

In the APW method the unit cell is decomposed into
nonoverlapping atomic spheres and an interstitial region.
The unperturbed wave functions as well as their first-order
perturbations are expressed using plane waves in the interstitial
region and an atomiclike angular momentum expansion inside
the atomic spheres Sα:

�n,k(r) =
{

1√
�

∑
G C

n,k
G ei(G+k)·r, r ∈ I,∑

lm W
n,α,k
lm (r)Ylm(r̂), r ∈ Sα.

(7)

The APW basis set inside atomic spheres uses numerical
radial functions W

n,α,k
lm (r) computed at predefined linearization

energies,22 which are chosen to match the energies of the cor-
responding occupied bands. Therefore the basis is optimized
to describe states with eigenvalues close to the linearization
energies. This approach yields basically the exact radial wave
functions for all occupied states and shallow conduction states.
However, it is not well suited to describe the perturbation of the
wave function due to an external magnetic field. Previously we
have tried to solve this problem by supplying several additional
local orbitals (NMR-LO) with radial wave functions at high
energies (up to 1000 Ry) containing 10–20 nodes.11 This
extension is done for all orbital quantum numbers up to l + 1,
where l is the maximal chemically relevant orbital quantum
number of the valence states of the specific atom.

III. THEORETICAL APPROACH: IMPROVED SCHEME

A. Augmenting the Greens function with r ∂
∂ r u

The extension of the basis with additional NMR-LO
functions is very convenient and easy to implement within
the APW method, but it is not satisfactory in some cases.
Simply due to fact that the radial functions are eigenstates of
a spherical Hamiltonian, they are very weakly changing with
energy in the region close to the nucleus. Therefore, it turns out
to be difficult to converge the computed current in this region
with respect to the number of NMR-LO. We propose in this
paper a simple and efficient way to overcome this difficulty.

The perturbation Hamiltonian due to the external magnetic
field is proportional to a product of position and momentum
operators. As a result, the perturbation of the wave function
contains component proportional to the derivative of the radial
function [r ∂

∂r
u(r)]. A direct introduction of basis functions

(LOs) based on r ∂
∂r

u(r) is not convenient within the APW
formalism, simply because such functions are not eigenstates
of the radial Schrödinger equation. Therefore, we propose to
add the desired term directly to the Greens function present in
the formula for the first-order perturbation of the valence state
wave function [Eq. (5)]. The perturbation of any valence wave
function can be evaluated by solving Sternheimer equation:

(εo − H )
∣∣�(1)

i

〉 =
(

1 −
∑

o

|�o〉〈�o|
)

H (1)|�i〉, (8)

where |�(1)
i 〉 can be expanded using the eigenstates of the H :∣∣�(1)

i

〉 =
∑

j

|�j 〉
〈
�j

∣∣�(1)
i

〉
. (9)

This holds for a complete set of |�j 〉. Because the APW basis
is not complete, we introduce auxiliary functions |φk〉 that
should provide the missing character for the expansion set of
|�(1)

i 〉. |φk〉 are chosen such that 〈φk|�j 〉 = 0 for any |�j 〉 and
〈φi |φj 〉 = 0 for i 	= j . Augmented expansion of |�(1)

i 〉 will
have a following form:∣∣�(1)

i

〉 =
∑

j

|�j 〉
〈
�j

∣∣�(1)
i

〉 + ∑
k

|φk〉
〈
φk

∣∣�(1)
i

〉
. (10)

The expansion coefficient 〈φ|�(1)
i 〉 is simply evaluated with

〈
φk

∣∣�(1)
i

〉 = 〈φk|H 1|�i〉
〈φk| (εi − H ) |φk〉 . (11)
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This can be equivalently formulated as in Eq. (5):∣∣�(1)
i

〉 = G(εi)H
(1)|�i〉, (12)

where

G(εi) =
∑

e

∣∣�(0)
e

〉〈
�(0)

e

∣∣
εi − εe

+
∑

k

|φk〉〈φk|
〈φk| (εi − H ) |φk〉 . (13)

The auxiliary functions |φk〉 are zero in the interstitial
region, and inside the atomic spheres they take an usual
APW form: |φlm,k〉 = ũl,k(r)Ylm. The functions ũl,k(r) are
constructed by orthogonalizing a function ξl,k(r,ε̃) to all ul,i(r)
present in the APW basis set. Namely, ũl,k(r) = ξl,k(r,ε̃) −∑

i bl,k,iul,i(r), where the parameters bl,k,i are chosen such
that 〈ũl,k(r)|ul,i(r)〉 = 0 for each radial function ul,i(r). The
function ξl,k(r,ε̃) is chosen such that the product ξl,k(r)Ylm

resembles the effect of r∇i[ul(r)Ylm]. Therefore, we use two
ũl,k and ξl,k(r) functions for each l > 0 (k = 1,2), and only
one for l = 0 (k = 1):

ξl,k(r,ε̃) =
{

r d
dr

ul+1(r,ε̃) + (l + 2)ul+1(r,ε̃), k = 1,

r d
dr

ul−1(r,ε̃) − (l − 1)ul−1(r,ε̃), k = 2.
(14)

In addition, for l > 0 the two ũl,k are orthogonalized to
each other. Our test shows that the energy ε̃ can be freely
chosen within the valence band and the results do not depend
on this choice. In the following discussion we will use the
acronym “DUC,” which means that the standard APW radial
basis functions ul(r) have been enhanced by different radial
functions as defined above, when referring to this method.

B. Correction of the effect of core/valence separation

Another issue that may impact the computed current is
related to the common approximation, in which the response
from core and valence bands is computed separately.24 In our
APW implementation, and possibly in others DFT codes,
all states that fall below a certain threshold (in our case
−7 Ry) are well localized and treated as core states. The
core eigenvalues and their radial functions are obtained as
the solution of the radial Dirac equation using the spherical
part of the self-consistent potential within the atomic spheres.
Subsequently, the core state contribution to the induced current
is computed using the spherical symmetric core density only:

jind(r′) = − 1

2c
ρcore(r′)B × r′, (15)

and at the same time the expression in Eq. (5) involves only
the sum over unoccupied states. However, Eq. (5) is formally
correct only when all occupied states (including the core) are
included in the sum in Eq. (4) for the expectation value of
the current. Otherwise a sizable error may appear. In order to
correct this error we include the core states into the first-order
perturbation formula in Eq. (5), as suggested by Gregor, Mauri,
and Car24:

∣∣�(1)
o

〉 =
∑

e

∣∣�(0)
e

〉 〈�(0)
e

∣∣H (1)
∣∣�(0)

o

〉
εo − εe

+
∑
core

∣∣�(0)
core

〉 〈�(0)
core

∣∣H (1)
∣∣�(0)

o

〉
εo − εcore

, (16)

where the second term is the core related correction. In
further discussion when referring to the effect of this core
correction term we will use the acronym “CC.” In our APW
implementation the valence states are computed within a
scalar relativistic approximation,25 but the core states are
the solutions of the Dirac equation with the spherical part
of the potential. These different approaches result in a tiny
nonorthogonality between core and valence states. Our tests
show that even for heavy atoms like Xe the error introduced
to the induced current is very small and localized in a region
very close to the nucleus (<0.02 a.u.), leading to an error in
the calculated σ of less than 0.2 ppm.

Gregor, Mauri, and Car24 showed that for molecules and
Gaussian basis sets the contribution to the absolute chemical
shift of a selected atom due to the core-valence transition term
does not depend on the chemical environment. In the following
we show the effect for selected solids, and also discuss the error
introduced in the induced current when this term is neglected.

IV. RESULTS AND DISCUSSION

A simple way to test the accuracy of our formalism is to
compare the induced current and absolute shielding calculated
for an isolated atom where the correct values can be obtained
using the formula

jρ(r′) = − 1

2c
ρ(r′)B × r′, (17)

which is exact for spherically symmetric charge densities ρ(r′).
Because ρ(r′) can be easily computed with high precision, it
is easy to reach the (numerically) exact DFT solution jρ(r′),
which can serve as a reference for any other method. As a test
example we use an Ar atom put into a cubic face-centered
box with 50 a.u. lattice size. The standard computational
parameters used in WIEN2k already lead to fairly well
converged results, but in order to ensure full convergence, the
plane wave cutoff was set to a large value of RminKmax = 9,
where Rmin is the smallest sphere radii in the system and
Kmax is the plane wave momentum cutoff. The Brillouin zone
was sampled with the � point only. The calculations have
been performed using the scalar relativistic approximation25

for valence electrons (eigenstates above −7 Ry) and the fully
relativistic Dirac equation was used for core electrons (below
−7 Ry). The DFT exchange correlation functional is set to
the standard Perdew, Burke, Ernzerhof (PBE) version of the
generalized gradient approximation.26

Figure 1 shows the induced current as a function of distance
from the nucleus (R) calculated with/without DUC and CC
and compared to jρ computed using Eq. (17). The number of
NMR-LO functions11 was set to 10 in order to reduce the effect
of the DUC as much as possible. For clarity only contributions
from the top most valence states (3s and 3p) are shown. We
can see that the computed jind without CC and DUC deviates
from the exact jρ as far as 0.5 a.u. from the nucleus. Including
CC (but not yet DUC) decreases this range to roughly 0.25 a.u.
When both DUC and CC are used, jind matches nearly perfectly
jρ . The resulting absolute shielding is displayed in Fig. 2 as a
function of the number of additional NMR-LOs (see Sec. II).
First, we notice that when both DUC and CC are switched
off, the calculated σ (blue line in Fig. 2) converges rather
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FIG. 1. (Color online) Comparison of the induced current com-
puted for an Ar atom with and without DUC and CC corrections (see
text). For clarity only the valence 3s and 3p contribution is shown.
jρ is the diamagnetic current calculated with the spherical charge
density of 3s and 3p states using Eq. (17).

slowly with the number of NMR-LOs and in addition even
the extrapolated value would not agree with the correct results
(σAr), because the CC term is missing. On the other hand, we
see that the effects due to DUC and CC are fairly independent
of each other. The CC contribution is rather independent on
the number of NMR-LOs and results in a fairly constant
8 ppm downward shift compared to the uncorrected values. As
expected, the DUC greatly improves the convergence of the
calculated σ with respect to the number of NMR-LOs because
it introduces radial functions with correct shape into our APW
basis. Contrary to CC, DUC results in an upward correction
of the shielding and the size of the correction depends on the
number of NMR-LO functions in the basis set. Interestingly,
DUC and CC seem to partially compensate each other, such
that for a moderate number of NMR-LO (8 in this particular
case) the results computed without DUC and CC corrections
are closer to the exact value σAr = 1245.7 ppm than when only
one of the two corrections is included (see blue line in Fig. 2).
Apparently, the agreement in this case is a result of an error
cancellation and the computed current differs significantly
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ie
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g 
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DUC on, CC on
DUC off, CC on
DUC on, CC off
DUC off, CC off

σAr=1245.7 ppm

FIG. 2. (Color online) Convergence of NMR absolute shieldings
σ of an Ar atom with respect to the number of NMR-LO in the APW
basis and with/without DUC and CC correction. The vertical blue
line represents the value of the absolute shielding σAr = 1245.7 ppm
computed using jρ from Eq. (17) and integrated according to Eq. (2).

0 0.2 0.4 0.6 0.8 1
R (bohr)

j(R
)/B

ex
t

jρ
NRF=7
NRF=3
NRF=2

FIG. 3. (Color online) Convergence of the valence current (3s

and 3p states) in Ar with respect to the number of NMR-LO functions
in our APW basis (NRF). DUC and CC corrections have been
included in the calculations. jρ is the current computed from Eq. (17).

from the true jρ near the nucleus, as seen in Fig. 1. The
convergence of the induced current with respect to the number
of NMR-LOs when both DUC and CC corrections are included
is shown in Fig. 3. Basically three NMR-LOs are sufficient to
reproduce the shape of the exact jρ .

We have performed similar analysis also for He, Ne, Kr,
and Xe atoms. In all cases the computed values of the absolute
NMR shielding using the perturbation approach did not differ
mere than 0.5 ppm from the exact σ calculated using the charge
density formula [Eq. (17)].

Another stringent test of the quality of our results concerns
the generalized f -sum rule,16 which proves that the basis set
is complete. We have integrated the f -sum rule with respect
to r and checked the resulting number of electrons. For all
cases mentioned above (He, Ne, Ar, Kr, and Xe), but also for
molecules like SiF4 or CFCl3, which are simulated in a big
box, this test is fulfilled within 0.1% (or better) and can be
considered as virtually exact. If we omit the DUC extension of
our basis, the sum rule has errors up to 2% (depending on the
number of NMR-LOs), which is similar to the best Gaussian
basis sets used in Ref. 24 for molecules containing second row
elements.

Recently in Ref. 9 we have published computed shielding
parameters for a series of fluorides, oxides, chlorides, and
bromides. The discussion in Ref. 9 focused mainly on the
origin of the systematic error, which is present in DFT
calculations of the NMR shielding and manifests itself in
the slope of the experiment vs theory relation. These slopes,
which must have a value of −1.0, range from −0.8 to −1.25,
depending on the specific DFT functional. Table I presents the
revised NMR shielding parameters computed using the PBE
exchange correlation functional including both CC and DUC.
When comparing these new results to the ones from Ref. 9,
the correction due to DUC depends in general on the quality
of the previously used basis set, especially on the number of
NMR-LOs and thus varies from case to case.

The effect of CC is, however, fairly independent not only on
the basis size but also on the chemical composition as indicated
in Table I. The contribution due to the CC term for fluorides
range between 20 and 21 ppm, which is nearly equal to the
number quoted by Gregor, Mauri, and Car24 for a series of F
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TABLE I. The isotropic shielding σiso computed including both DUC and CC, correction due to CC (σiso − σ nocc
iso ) calculated for 19F in

fluorides, 17O in oxides, 35–37Cl in chlorides, and 79–81Br in bromides. We compare our results with available measured NMR chemical shifts.
The experimental shifts δ

expt.
iso are given with reference to CFCl3 for 19F, H2O for 17O, KBr for 79–81Br, and 1 M NaCl(aq) for 35–37Cl. The

theoretical shifts δiso are given using a reference taken from an unconstrained (slope different from −1) linear fit of the calculated absolute
shieldings vs experimental shifts for each compound series. All values in ppm. Columns χm and χm (expt.) show calculated and measured27–29

susceptibilities given in units of 10−6 cm3 mol−1.

Space group σiso σiso − σ nocc
iso δiso δiso (expt.) [Ref.] χm χm (expt.)

Fluorides
LiF Fm-3m 369.91 −20.39 −205.4 −204.34 −10.8 −10.1
NaF Fm-3m 394.72 −20.13 −224.9 −224.24 −17.6 −15.6
KF Fm-3m 270.83 −20.32 −127.4 −133.34 −23.4 −23.6
RbF Fm-3m 223.16 −20.26 −90.0 −90.94 −31.5 −31.9
CsF Fm-3m 126.73 −20.33 −14.1 −11.24 −44.3 −44.5
MgF2 P 42/mnm 362.87 −20.33 −199.8 −197.34 −23.5 −22.7
CaF2 Fm-3m 220.56 −20.32 −87.9 −108.04 −25.8 −28
SrF2 Fm-3m 215.97 −20.37 −84.3 −87.54 −34.4 −37.2
BaF2 Fm-3m 125.81 −20.39 −13.4 −14.34 −44.8 −51
α-AlF3 R-3c 335.68 −20.36 −178.4 −172.030 −15.2 −13.9
GaF3 R-3c 323.53 −20.60 −168.9 −171.231 −42.0
InF3 R-3c 383.90 −20.97 −216.4 −209.231 −55.5
TlF Pbcm 149.16 −21.68 −31.8 −19.132 −51.4 −44.4
Oxides
BeO P 63mc 234.20 −14.71 21.1 2633 −12.6 −11.9
MgO Fm-3m 200.40 −13.71 49.8 4733 −15.8 −10.2
CaO Fm-3m −145.53 −14.17 343.4 2942 −11.4 −15.0
SrO Fm-3m −217.04 −14.19 404.1 39033 −16.5 −35
BaO Fm-3m −481.50 −14.17 628.6 62933 −17.3 −29.1
SiO2 P 3221 244.28 −14.49 12.5 4134 −24.8 −28.6
SrTiO3 Pm-3m −290.24 −14.29 466.3 46535 −10.1
BaZrO3 Pm-3m −174.53 −14.32 368.1 37635 −39.3
BaSnO3 Pm-3m 86.23 −14.96 146.7 1433 −73.3
BaTiO3 P 4mm −366.79 −14.32 531.2 5643 −12.6

−361.04 −14.34 526.4 5233

Chlorides
LiCl Fm-3m 919.01 −5.46 −0.5 5.036,37 −11.2 −10.8
NaCl Fm-3m 978.87 −5.79 −49.6 −47.436,37 −31.8 −30.2
KCl Fm-3m 912.28 −5.76 5.0 3.136,37 −39.6 −38.8
RbCl Fm-3m 868.02 −5.75 41.3 43.236,37 −46.8 −46
CsCl Pm-3m 789.54 −5.73 105.7 11036,37 −59.2 −56.7
AgCl Fm-3m 901.19 −5.39 14.1 9.837,38 −48.3 −49
TlCl Pm-3m 618.23 −6.96 246.3 250.537 −62.0 −57.8
CaCl2 Pnnm 755.20 −5.67 133.9 12237,39 −50.2 −54.7
SrCl2 Fm-3m 746.43 −5.80 141.1 140.836,37 −58.4 −61.5
BaCl2 Pnma 767.62 −5.77 123.7 12437,40 −68.0 −72.6

651.27 −5.84 219.2 21937,40

Bromides
LiBr Fm-3m 2573.80 −313.45 60.4 64.737,41 −35.9 −34.3
NaBr Fm-3m 2729.36 −313.37 −53.9 −52.937,41 −43.1 −41
KBr Fm-3m 2651.68 −313.31 3.2 037,41 −51.0 −49.1
RbBr Fm-3m 2571.54 −313.31 62.1 71.737,41 −58.7 −56.4
CsBr Pm-3m 2359.51 −313.70 217.9 227.437,41 −74.5 −67.2
AgBr Fm-3m 2406.08 −313.53 183.7 169.337,41 −55.8 −61
CaBr2 Pnnm 2232.77 −313.39 311.1 2807 −72.9 −73.8
SrBr2 P 4/nz 2110.51 −315.47 401.0 4227 −81.8 −86.6

2135.72 −315.48 382.4 4107

2238.42 −315.48 306.9 3207

2253.45 −315.48 295.9 3007

BaBr2 2236.40 −313.48 308.4 2807 −71.6 −92
2023.26 −313.45 465.1 4807

TlBr Pm-3m 1801.88 −314.64 627.8 60037,42 −70.1 −63.9
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containing molecules. The correction for oxides and chlorides
oscillates around 13–14 ppm and 5–6 ppm, respectively. The
large CC correction of 313–315 ppm for bromides is due
to Br-3d states, which are included as valence states in our
calculations.

In summary, the relation between experimental and theo-
retical shifts are not changed at all compared to our previous
results and all conclusions and trends presented in Ref. 9 are
still valid.

The magnetic susceptibility χm determines the macroscopic
component of the induced magnetic filed,16 which may result
into a contribution of several ppm to the shielding, therefore
we have included the computed χm in Table I and compare
it to the measured values. For fluorides, oxides, and chlorides
the DUC and CC corrections have only a minor effect on χm.
For bromides, however, due to the presence of Br-3d states in
the valence panel, CC may correct χm by as much as 20%.
Except for some oxides like SrO and BaO the the computed
values compare quite well with the measured values.27–29

V. CONCLUSIONS

In this paper we have demonstrated that our revised
formalism provides a very precise method for computing
the NMR shielding parameters within DFT. For the test
cases, the difference between the results computed with the

first-order perturbation approach and the (numerically) exact
atomic values computed using spherically symmetric charge
densities, are below 0.5 ppm. Moreover, our method is able to
reproduce not only the value of the absolute shielding but also
captures correctly the shape of the induced current, including
its oscillatory character near the nucleus. The CC correction
arising due to the separation of the core and valence states is
independent on the APW basis extension and fairly constant
within a given series. The DUC correction on the other hand,
greatly improves the convergence with respect to the number
of NMR-LOs, which leads to a substantial improvement in
the performance of the calculations. While we are now able
to reach the DFT limit when calculating absolute NMR shifts,
it seems that when we compare the revised data calculated
for the series of fluorides, oxides, chlorides, and bromides the
corrections resulted mainly in a rigid shift of the computed
absolute isotropic shielding and do not change any previous
results qualitatively.
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