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Ab initio based thermal property predictions at a low cost: An error analysis
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Ab initio calculations often do not straightforwardly yield the thermal properties of a material yet. It requires
considerable computational efforts, for example, to predict the volumetric thermal expansion coefficient αV or
the melting temperature Tm from first principles. An alternative is to use semiempirical approaches. They relate
the experimental values to first-principles predictors via fits or approximative models. Before applying such
methods, however, it is of paramount importance to be aware of the expected errors. We therefore quantify
these errors at the density-functional theory level using the Perdew-Burke-Ernzerhof functional for several
semiempirical approximations of αV and Tm, and compare them to the errors from fully ab initio methods, which
are computationally more intensive. We base our conclusions on a benchmark set of 71 ground-state elemental
crystals. For the thermal expansion coefficient, it appears that simple quasiharmonic theory, in combination with
different approximations to the Grüneisen parameter, provides a similar overall accuracy as exhaustive first-
principles phonon calculations. For the melting temperature, expensive ab initio molecular-dynamics simulations
still outperform semiempirical methods.
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I. INTRODUCTION

Density-functional theory (DFT) [1–3] is used increasingly
often to support experimental research. It moreover allows
predicting a compound’s characteristics without raw materials
or expensive apparatus. Even conditions inaccessible to exper-
iment, such as those in the Earth’s core, are not particularly
more troublesome than ambient pressure and temperature [4].
Unfortunately, not all properties directly follow from simple
DFT simulations. Static DFT calculations are practically
limited to 0 K, complicating the determination of thermal
properties.

Two such properties are the volumetric thermal expansion
coefficient αV and the melting temperature Tm. They can
be predicted from an ab initio approach, but only by going
beyond single-point DFT computations, using either high-
temperature molecular dynamics [5,6] or phonon-based calcu-
lations [7]. These quickly become computationally intensive.
Alternatively, semiempirical approximations provide the same
information at a much lower cost [8–12]. They significantly
reduce the calculation time and effort by relating αV and Tm

to much simpler DFT predictors, such as the cohesive energy
or the pressure derivative of the bulk modulus. These methods
are based on approximative models or fits to experiment.

A semiempirical approach is often the only pragmatic
way to ensure a fast interaction between experimental and
computational research. This is especially true when the
design of new materials is concerned. Only when the resulting
accuracy does not suffice or when the physical mechanisms
behind a particular compound are unclear, may more expensive
calculations be justified. Semiempirical approximations do
lead to additional errors, however. These errors originate
from the less-than-perfect correlation between the investigated
property and its predictor. In particular, one simple expression
often does not fully represent the physics behind a material’s
behavior. Describing it with a predictor hence oversimplifies
reality, causing semiempirical predictions to deviate from the
experimental values.

The semiempirical relations for αV and Tm should therefore
be treated with caution. Although they expedite calculations
substantially, this benefit must be weighed against the in-
troduction of additional (non-DFT) errors. To decide how
useful a particular semiempirical approach is, its errors need
to be quantified. For that reason, we performed an error
analysis similar to that in Ref. [13], which was dedicated
to properties directly from DFT, such as crystal volume or
cohesive energy. The procedure investigates the agreement
between experimental values and (semi)theoretical predictions
for 71 elemental crystals and characterizes the remaining
discrepancies in terms of systematic deviations and residual
error bars. Applied to αV and Tm, such a procedure allows
comparing the different semiempirical approximations and
evaluating the difference with strictly first-principles methods.

The remainder of this paper is therefore structured as fol-
lows. Section II outlines which purely theoretical approaches
and semiempirical relations can be employed to predict
αV and Tm, while Sec. III elaborates on the computational
aspects of our predictor calculations and error analyses. These
methods are then applied in Sec. IV to provide reliable
error estimates for the semiempirical approaches. The results
are also compared to more advanced predictions. Section V
summarizes the most important conclusions.

II. HIGH-LEVEL THEORY AND SEMIEMPIRICAL
ALTERNATIVES

A. Thermal expansion coefficient

The thermal expansion coefficient nicely illustrates that
a purely theoretical framework leads to computationally
expensive simulations. High-precision results are obtained in
the quasiharmonic approximation, by calculating the volume-
dependent phonon spectrum ωi(V ) as a function of wave vector
and mode [7]. Using thermodynamical formulas, this allows
establishing the temperature-dependent free energy, which
reaches a minimum at its equilibrium volume V0. The shift of
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V0 as a function of T yields the volumetric thermal expansion
coefficient αV (T ). However, the phonon spectrum consists
of the eigenvalues of the dynamical matrix, and this matrix
includes the derivatives of the forces with respect to all atomic
displacements. Unit cells with M inequivalent atoms therefore
require the assessment of three independent displacements for
each of these atoms. For small unit cells, periodic boundary
conditions moreover cause the displaced atoms to interact with
their periodic images. To prevent such undesired interactions,
the unit cell needs to be expanded to several times its
original size. Finally, only stringent computational settings
yield numerically converged forces. The overall result is a
set of (at least) 3M supercell calculations, each of which is
computationally intensive due to its considerable cell size and
required accuracy.

The method proposed by Tsuru et al. [8] offers a much
simpler alternative. Inspired by the link between lattice
expansion and crystalline cohesion, the authors fitted inverse
relations between the experimental linear thermal expansion
coefficient αl(T ) and the DFT-PW91 [14,15] cohesive energy
�Ecoh. At room temperature (Trt), they obtained

αT s
V = 3 αT s

l = 3
48.14 × 10−6 eV/K/atom

�Ecoh
(1)

by fitting to a number of pure metals, as well as binary oxides,
nitrides, borides, and carbides.

Other semiempirical approaches are based on thermody-
namical considerations. In the quasiharmonic approximation,
it can be shown that [7]

αV = γCV

B0V0
(2)

with

γ =
∑

γiCV,i

CV

(3)

and

γi = −∂ ln ωi

∂ ln V
. (4)

Here, B0 stands for the equilibrium bulk modulus, CV for
the isochoric heat capacity, and γ for the overall Grüneisen
parameter. The index i again labels the different phonon
modes, such that within the 1D Einstein model:

CV,i = kB

(
�ωi

kBT

)2 exp
(

�ωi

kBT

)
[

exp
(

�ωi

kBT

) − 1
]2 (5)

(with kB the Boltmann constant). The key quantities in Eq. (2),
however, are the Grüneisen parameters γi , which express
the volume dependence of the phonon frequencies and can
hence be considered as a measure of the anharmonicity of
the crystal. Indeed, purely harmonic crystals only contain
volume-independent phonons, so thermal expansion does not
occur there [αV (T ) = 0,∀ T ].

Equation (2) can be directly completed with information
from phonon calculations, using Eq. (4). More approxima-
tively, however, it is also possible to determine γ from the
pressure derivative of the bulk modulus B1. Such a relation
effectively replaces thermal effects by an overall (pressurelike)
bulk effect and therefore does not require computing phonons.

Several formulations are available for γ (B1), the most popular
ones being those of Slater [9], Dugdale and MacDonald [10],
and Vashchenko and Zubarev [11]:

γ S = − 1
6 + 1

2B1, (6)

γ DM = − 1
2 + 1

2B1, (7)

γ VZ = − 5
6 + 1

2B1. (8)

They yield

αS
V =

(
−1

6
+ 1

2
B1

)
CV

B0V0
, (9)

αDM
V =

(
−1

2
+ 1

2
B1

)
CV

B0V0
, (10)

αVZ
V =

(
−5

6
+ 1

2
B1

)
CV

B0V0
. (11)

γ can also be derived from the relation between a material’s
binding energy and atomic separation. By employing a
universal binding-energy relation for metals [16], Guinea and
co-workers [12] found an expression that does not explicitly
depend on B1:

γ G = 0.38
rWS,0

lTF
(12)

with rWS,0 the equilibrium Wigner-Seitz radius and lTF the
Thomas-Fermi screening length:

lTF =
√

�Ecoh

12πrWS,0B0
. (13)

Completing Eq. (2) with Eq. (12) then yields a relation similar
to that of Tsuru et al. [Eq. (1)]:

αG
V = 10.35

(
lTF

rWS,0

)(
kB

�Ecoh

)
. (14)

Contrary to Eq. (1), however, the prefactor is now compound-
dependent.

B. Melting temperature

Just like αV , the melting temperature Tm cannot be obtained
from a simple DFT calculation either. Moreover, the quasi-
harmonic approximation fails at temperatures that high, so
even most phonon-based results become inadequate. Ab initio
melting temperatures therefore require molecular-dynamics
calculations of the solid and/or liquid sample near the melting
point. Several versions of this strategy are available. It is
possible to investigate the evolution of a one- or two-phase
sample into a solid or liquid monophase [5], for example, and
map the phase diagram by changing the ambient conditions.
Alternatively, the coexistence between both phases can be
studied as well [6], maintaining a biphase sample at all times.
In addition to these two techniques, other approaches allow
establishing the melting temperature too [17], but they have
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until now not been possible without using fitted potentials, and
can therefore not be designated as purely “first principles” yet.

In the monophase methods, where only one phase remains
at the end of the simulation, Tm follows from tuning the
temperature and pressure, and monitoring the resulting state
(solid or liquid). This can be done using NVE, NVT, or
NPT ensembles, where either the particle number N, the
volume V, the energy E, the temperature T or the pressure
P are held constant. The melting temperature is then found
as the transition point between the two states of matter. It
has been shown that the most accurate monophase results are
obtained when the initial configuration contains a solid-liquid
interface [18], the so-called two-phase approach [19–21].
When this is not the case, nucleation of the competing phase
is hindered, leading to superheated or undercooled states
and hence to substantial errors on the predicted melting
temperature. One-phase calculations do offer the smallest
computational effort, however, and two strategies exist to rem-
edy the superheating issue in solid-to-liquid simulations. The
Z method was proposed by Belonoshko and co-workers [22]
and retrieves the ab initio melting temperature by letting the
system relax from its superheated melting point to the NVE
ensemble equilibrium [23]. The method is named after the
characteristic shape of the corresponding isochores. The void
method, on the other hand, introduces voids into the solid
sample [24], facilitating the melting process in a similar way
as the solid-liquid interface does in the two-phase approach.
However, as far as we know, void-induced melting calculations
have not yet been attempted at the DFT level.

Contrary to the monophase methods, the necessary melting
information can also be extracted from the first-principles
solid-liquid equilibrium. This is the so-called coexistence
method [25]. Here, an NVE [6] or NPH [26] ensemble is
simulated for a biphase medium (containing both the solid
and the liquid). With the NVE ensemble, each starting energy
characterizes another point (P,T ) of the phase equilibrium.
This allows establishing the melting curve point by point. The
NPH ensemble, on the other hand, allows to straightforwardly
select a predefined pressure, for which the corresponding
melting temperature is obtained.

In stark contrast to these rather intricate procedures, the
melting temperature is known to correlate well with the
cohesive energy [27]. Both properties are closely linked to
the material’s bond strength, and �Ecoh readily follows from
routine DFT calculations. A theoretical proportionality has
been proposed by Guinea and co-workers [12], based on
their universal binding-energy relation for metals [16]. They
assumed the rms displacement of the atoms at Tm to equal the
Thomas-Fermi screening length and obtained

Tm = 0.032
�Ecoh

kB

. (15)

In addition to this theoretical equation, more empirical forms
exist as well. Li et al., for example, found a proportionality
similar to Eq. (15) not only to be valid for pure metals, but
even to approximate the melting behavior of intermetallic
structures such as CsCl-type compounds [28] and Laves
phases [29]. Tateno mentions a proportionality between the
cohesive energy and the melting temperature too, but he
includes additional materials properties in the prefactor [30].
In this study, we restricted the �Ecoh proportionality to a

relation similar to Eq. (15), i.e., a single linear function of the
cohesive energy with a constant prefactor.

The melting temperature also correlates well with elastic
moduli. Indeed, just like the cohesive energy, they express
the resistance of the material against deformation, which is
needed to initiate melting. Fine et al., for example, used this
connection to predict 〈Cii〉 from Tm [31]. Kittel moreover
observes that “melting temperatures and bulk moduli vary
roughly as the cohesive energies” [27], which implies that bulk
moduli and melting temperatures are related. In this work, we
therefore examined B0 as a predictor for Tm as well [see further,
Eq. (17)].

III. METHODOLOGY

We evaluated the performance of all semiempirical relations
for αV and Tm (Sec. II) using the error analysis method by
Lejaeghere et al. [13]. This procedure is based on a large test
set, containing 71 ground-state elemental crystals up to radon
(not including the lanthanides), for which the correspondence
with experiment is checked. It results in quantitative estimates
for the systematic and residual errors.

A. Computational details

For the elemental test set, all calculations were performed
using the projector augmented-wave method (PAW) [32,33]
in the Vienna ab initio simulation package (VASP) [34,35]
(version 5.2.2). Spin polarization was taken into account for Fe,
Co, and Ni (ferromagnetic), O and Cr (antiferromagnetic), and
Mn (ferrimagnetic), while for the heaviest elements (as from
the 5d transition metals), spin-orbit coupling was included.
We used the atomic potentials recommended by the VASP man-
ual [36], which we also listed in Ref. [37]. For the description
of exchange and correlation, the functional by Perdew, Burke,
and Ernzerhof (PBE) [38] was selected. As it is one of the
most popular functionals to date [39], an error assessment for
PBE is of more use to the community than for most other
functionals. Admittedly, Eq. (1) was originally fitted to PW91
data, but results from this functional are very similar to those
from PBE [38], so we directly applied Eq. (1) to PBE as well.

To ensure that all error estimates are independent of the
code settings, it is essential to numerically converge each
DFT-based property. The cutoff energy was therefore set at
400 eV, except for He, B, C, N, O, F, and Ne, where it
was 600 eV. We moreover took 6750/N k points in the first
Brillouin zone for each N -atom cell, using a Monkhorst-Pack
grid [40]. The shape and atomic positions of each unit cell
were relaxed until all forces were smaller than 10−2 eV/Å,
and the self-consistent electronic cycles were converged up
to 10−4 eV. Combined, such settings led to a numerical
convergence of 1 meV/atom in the total energy. These results
were largely independent of the used code as well, since
different implementations seldom change the equations of state
more than a few meV/atom [13,41].

Using these computational parameters, αV and Tm were
determined semiempirically for each of the test set crystals.
This required only a limited number of DFT predictors
(Sec. II): the cohesive energy �Ecoh, the bulk modulus
B0, the equilibrium volume per atom V0, and the pressure
derivative of the bulk modulus B1. When necessary, the
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isochoric heat capacity CV was set to its high-temperature
limit 3kB . For some elements the cohesive energy was slightly
modified. In particular, all semiempirical relations use �Ecoh

as a predictor for the crystalline cohesion [Eqs. (1), (14),
and (15)], but for dimeric crystals, it is mainly the cohesion
between diatomic molecules that matters. These entities are
maintained throughout expansion, until even after melting.
A good predictor for αV or Tm should therefore incorporate
that information. To emphasize the difference from �Ecoh, we
named this quantity the “moleculization” energy �Emol:

�Emol = −(Esolid − Egaslike). (16)

For most compounds, it does correspond to the atomization
(or cohesive) energy, but for dimeric crystals, it yields a more
suitable predictor.

The moleculization energy was determined for all elemental
compounds by subtracting the energy of isolated atoms or
molecules from that of the equilibrium crystal structure. Since
VASP employs periodic boundary conditions, that isolated
particle can only be simulated in a periodic environment as
well. All atoms and molecules were therefore calculated in an
orthorhombic cell of approximately 15 × 15 × 15 Å3. These
dimensions allowed to sufficiently suppress the unphysical
interaction between periodic images (<1 meV/atom). In most
cases this yielded reliable single-particle energies, but when
fractional energy-level occupancies were found or when the
predicted ground-state electron configuration differed from ex-
periment, the self-consistent cycle was manually constrained.
Only for the spin-orbit-coupled calculation of the Pb atom,
this was not possible, so there the PBE ground state 1S0 was
used instead of the experimental 3P0 state.

The mechanical parameters V0, B0, and B1 were computed
from a 13-point equation of state, homogeneously spaced
between V = 0.94V0 and V = 1.06V0. Each of these crystals
was optimized with respect to the cell shape and ionic
positions, followed by a single-point energy calculation.
The data points were then fitted to a four-parameter Birch-
Murnaghan equation [42], from which the relevant properties
were extracted. Although some semiempirical equations were
meant to be completed with room-temperature values, such as
Eq. (2), we assumed thermal corrections on the input data to
play only a minor role.

B. Error analysis

For both properties, αV and Tm, reliable error estimates
were determined by applying a least-squares linear regression
Y = β1X + β0 + ε to the experimental values Y as a function
of the (DFT-based) semiempirical predictions X [43] (see
Fig. 1). The regression slope β1 and the intercept β0 express the
systematic deviation between experiment and theory, while the
standard error of the regression (SER), equal to the standard
deviation of the zero-centered, normally distributed error ε,
provides an error bar for the fit.

If numerical convergence is achieved in all DFT calcula-
tions, then β1, β0, and the SER are intrinsic to the used model,
with an ideal model yielding β1 = 1, β0 = 0, and SER = 0.
In practice, however, there is both a systematic deviation and
a residual scatter, which can be attributed to the semiempirical
relation and to the DFT predictions themselves. Some data

FIG. 1. (Color online) The error on semiempirical predictions can
be quantified by the systematic deviation (β0 and β1) and the residual
error bar (SER), which follow from a least-squares linear regression
between the experimental and theoretical values. For this hypothetical
data set, the middle full line (in blue) represents the regression curve,
and the dashed line represents the first-quadrant bisector.

points even deviate so strongly that they become outliers
with respect to the general trend. The resulting distortion
of the linear regression substantially complicates the search
for a realistic fit. To deal with such deviating data points, an
exclusion criterion was developed to identify materials which
the semiempirical predictions fail to appropriately describe. A
flowchart of the method is presented in Fig. 2, consisting of
two parts: as it is hard to automatically identify outliers when
they distort the regression curve, a RANSAC procedure [44]
was first performed to minimize the influence of outliers on the
fit (upper part of Fig. 2); RANSACs are hard to combine with
statistical considerations, however, so the resulting regression
line was then used as a starting point for a more refined removal
of outliers (bottom row of Fig. 2).

RANSAC algorithms identify the most probable regression
curve by comparing many inlier-outlier combinations. To
avoid bias, that process is randomized. For our 50- to 70-point
data sets, we randomly took 100 two-point samples (Fig. 2:
Nos. 1 to 100, first row) and collected inliers (filled symbols)
in an iterative fashion (reversed arrows). This was done by
enforcing a threshold of seven times the SER (using the overall
SER in the first step) and adding all points that lay closer to the
fit (second row). Then the regression line and the SER were
re-established (third row), and the procedure was repeated until
no more points could be added. Using such a flexible threshold
allows detecting the most important outliers, while losing none
of the inliers. Afterwards, the quality of each of the 100 fits
was defined as the median error of the inliers, and only the fit
with the smallest median of squared residuals was withheld.

The resulting set of preliminary inliers was used to
remove additional outliers in a statistically rigorous way,
again working in an iterative and elementwise fashion (bottom
row of Fig. 2): we excluded the compound with the most
extreme externally studentized residual and redid the fit, for
as long as that residual belonged to the outer 0.1% of a

014304-4



AB INITIO BASED THERMAL PROPERTY . . . PHYSICAL REVIEW B 89, 014304 (2014)

FIG. 2. (Color online) Flowchart of the applied error analysis procedure for a hypothetical data set. First a RANSAC approach [44] is
used (top four rows), comparing 100 randomly initiated regression lines (Nos. 1 to 100) and retaining the one with the smallest median error.
Afterwards, that resulting fit is employed for a statistically more rigourous outlier exclusion (bottom row). A more elaborate explanation is
provided in the text.

Student’s t distribution (two-sided p value) [43]. Although
such a stringent significance threshold might not get rid of
all outliers, it prevents inliers from being excluded and the
remaining data set already yields reliable estimates for the
regression parameters.

IV. RESULTS AND DISCUSSION

A. Thermal expansion coefficient

By fitting experimental results [45–51] to predicted ones,
we estimated the errors introduced by the different semiem-
pirical αV approximations. This yielded a measure of the
systematic and residual errors (Sec. III B). The results are
summarized in Table I and are essentially independent of the
used code (see Ref. [37] for a comparison of error estimates

for the Slater approximation using VASP and GPAW [52–54]).
Individual residual errors are shown in Tables II and III and
Fig. 3, also indicating the outliers, which were excluded from
the linear regression (hatched elements or open symbols). A
complete overview of all theoretical and experimental numbers
is presented in Ref. [37].

1. Elementwise deviations

Table I and Fig. 3 confirm that the correspondence between
the different semiempirical predictions and experiment is not
perfect. First, there is some systematic deviation, as most
regression slopes and intercepts deviate from the ideal values
(β1 = 1, β0 = 0). The two-sided p values with respect to a null
hypothesis of β1 = 1, for example, are smaller than 0.1% for
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TABLE I. Error estimates for the semiempirically predicted volumetric thermal expansion coefficients αV (in 10−5 K−1) and melting
temperatures Tm (in degrees Kelvin), based on a least-squares regression Y = β1X + β0 between experimental data Y and semiempirical data
X for the ground-state elemental crystals. 95% confidence intervals have been provided for the standard error of the regression (SER) and the
regression parameters β1 and β0. The columns headed P (β1 = 1) and P (β0 = 0) represent the two-sided probabilities that, if in fact β1 = 1
or β0 = 0, respectively, the current regression parameters are obtained. The final column displays the number of outliers (see Sec. III B) with
respect to the total number of test set crystals.

Approximation SER β1 β0 P (β1 = 1) P (β0 = 0) Number of outliers

αV (Slater) [Eq. (9)] 1.7 +0.4
−0.3 0.852 ± 0.041 −0.6 ± 0.8 4 × 10−9 0.12 10/56

αV (Dugdale-MacDonald) [Eq. (10)] 1.8 +0.5
−0.3 1.056 ± 0.051 −0.7 ± 0.8 0.03 0.07 10/56

αV (Vashchenko-Zubarev) [Eq. (11)] 2.1 +0.5
−0.4 1.354 ± 0.072 −0.8 ± 1.0 6 × 10−13 0.10 10/56

αV (Guinea et al.) [Eq. (14)] 1.9 +0.5
−0.3 0.894 ± 0.037 −0.8 ± 0.8 4 × 10−7 0.05 2/56

αV (Tsuru et al.) [Eq. (1)] 2.4 +0.6
−0.4 1.324 ± 0.061 −1.4 ± 1.0 1 × 10−14 0.01 3/56

Tm (via B0) [Eq. (17)] 466+96
−68 1.000 ± 0.003 0 ± 198 1.00 1.00 0/68

Tm (Guinea et al.) [Eq. (15)] 283+58
−41 1.042 ± 0.003 8 ± 113 0.00 0.89 0/68

all but one of the αV approximations: if the correct regression
slope were 1 nevertheless, then the probability of obtaining
test set data as extreme as ours would be less than 0.1%.
Second, the remaining scatter cannot be neglected either, as
appears from the residual errors and outliers (Tables II and III).
Indeed, all SERs lie between 1.7 and 2.5 × 10−5 K−1, which is
in some cases of the same order of magnitude as the expansion
coefficients themselves (see Fig. 3). To explain the largest
deviations, we look at a few elements in more detail.

Several approximations of the thermal expansion coeffi-
cient rely on accurate DFT values for the volume and the
bulk modulus. However, for some subsets of elements, PBE
is not able to predict those properties correctly [13]. This is
particularly the case for the correlation-dominated materials,
the molecular crystals and the noble gases. Indeed, C, S, and
Cd were indicated as outliers or have large residual errors
in all αV approximations based on Eq. (2). For the Slater,
Dugdale-MacDonald, and Vashchenko-Zubarev approaches,
reliable B1 values are needed as well. Given PBE’s inaccurate
B1 predictions for the low-coordination p block compounds
and Sr, these αV methods do not adequately describe P, As, Se,
Sb, Te, Bi, and Sr either. Finally, the approximations of Guinea
et al. and Tsuru et al. depend on the cohesive energy. For
�Ecoh, the correlation-dominated compounds and the noble
gases fall short. It explains why the αV predictions for Cd, and
to a lesser extent Zn, deviate considerably.

However, not all differences between the theoretical and
the experimental results are due to the accuracy with which
the DFT-based predictors are determined. The semiempirical
approximations themselves can also introduce errors, as
they do for Cr, for example. We cannot expect any of the
investigated approximations to yield meaningful results for
this material, as it displays a magnetic phase transformation
around room temperature [55]. Such phenomena are not
included in any of the equations, which purely relate thermal
expansion to vibrational or bonding types of interactions.
Strikingly, the diamond-type structures (Si, Ge and Sn) yield
unreliable results as well, while from a DFT point of view,
the necessary predictors are determined up to a high degree
of accuracy. Here too, the experimental expansion behavior
contains some strange features, with negative αV values
over a considerable temperature range, but explicit phonon

calculations are able to reproduce it (see later, Table V). This
indicates that the semiempirical approaches are to blame.
They fail to describe the negative Grüneisen parameters of
the low-frequency phonon modes, which give rise to the initial
low-temperature compression [56]. While the experimental
results for γ incorporate these negative contributions, the
semiempirical approximations do not. An estimate for γ that
is based on bulk properties, only represents the behavior of
average phonons, rather than the average phonon behavior:
at low temperatures, the low-energy phonons are occupied
the most, and their behavior can deviate significantly from
the behavior of an average phonon. Bulk γ values hence fail
when the low-frequency phonon modes differ too much from
the rest. Negative Grüneisen parameters are not only found
with the diamond-type compounds, but occur whenever bonds
are strengthened during expansion. This happens in certain
bending modes [56,57], leading to phonon frequencies that
increase with volume. However, overall bond strengthening
only occurs when the vibrational mode does not hinder
neighboring atoms. The diamond structure, with its tetragonal
environment, is ideally suited for such a behavior, but so
are compounds with a low coordination number in general.
The bad thermal expansion predictions of Se, Sb, and such
are therefore as much due to the semiempirical relations
themselves as to the unreliable PBE values for B1. Using
experimental values for B1 does indeed not improve the quality
of the predictions (see Tables 2.5 and 2.6 in Ref. [37]).

2. Comparison between methods

Despite similar shortcomings in each of the αV approxima-
tions, there is a clear difference in overall quality. Systematic
deviations can be corrected for—this is equivalent to proposing
a new semiempirical equation—but the remaining scatter is
intrinsic to the particular set of predictors and the form of
the semiempirical function. The SERs (Table I) suggest that
the relations by Slater, Dugdale and MacDonald, and Guinea
et al. yield the most accurate results. These SERs are not
always based on the same number of data points, however. In
particular, less outliers are excluded from the regression when
the methods of Guinea et al. and Tsuru et al. are evaluated,
even though they have some classic outliers only slightly below
the exclusion threshold (see Sec. III B). Indeed, Table III

014304-6



AB INITIO BASED THERMAL PROPERTY . . . PHYSICAL REVIEW B 89, 014304 (2014)

TABLE II. (Color online) (Absolute) elementwise deviations between the experimental [45–51] room-temperature volumetric thermal
expansion coefficients αV (Trt) and least-squares linear regression results based on semiempirical predictions in the Slater [Eq. (9)], Dugdale-
MacDonald [Eq. (10)], and Vashchenko-Zubarev [Eq. (11)] approximations (in 10−5 K−1). The darkest shades correspond to the largest errors
(common color code for Tables II and III) and hatched areas indicate outliers.

shows that the low-coordination compounds and molecular
crystals also perform badly for these methods. To compare all
approximations on an equal footing, we looked at the SERs of
the common inliers [58] (Table IV, set II). These reduced to

1.7, 1.7, 1.9, 1.6, and 1.9 × 10−5 K−1 for the Slater, Dugdale-
MacDonald, Vashchenko-Zubarev, Guinea and Tsuru relations
respectively. Among the different approximations to αV , the
one by Guinea et al. therefore performs best. It incorporates
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TABLE III. (Color online) (Absolute) elementwise deviations between the experimental [45–51] room-temperature volumetric thermal
expansion coefficients αV (Trt) and least-squares linear regression results based on semiempirical predictions in the approximations of Guinea
et al. [Eq. (14)] and Tsuru et al. [Eq. (1)] (in 10−5 K−1). The darkest shades correspond to the largest errors (common color code for Tables II
and III) and hatched areas indicate outliers.

the largest number of bulk properties and is not based on B1,
which can not always be reliably obtained from PBE. The other
methods do rely on B1 or contain too few input parameters to
fully describe thermal expansion.

3. Source of the errors

As mentioned earlier, the SER reflects the influence of
two distinct effects. On the one hand, the use of DFT-PBE
values for the predictors introduces some errors, since the
agreement with experiment is not perfect. On the other hand,
no semiempirical method can capture all aspects of reality
perfectly. Both issues give rise to an appreciable deviation
from the regression line. Their respective contributions to the
total SER can be investigated by replacing the PBE predictors
by experimental numbers [e.g., by completing Eq. (1) with
experimental cohesive energies]. The resulting error is then
entirely due to the (semi)empirical relation. By comparing to
the original SERs, the influence of using DFT values instead
of experimental ones can be evaluated. Such an analysis has
been performed in Table IV. For a fair comparison between the
PBE- and experiment-based predictions, equal test sets were

considered by only assessing elements that are inliers for all
of the methods (Table IV, set III). These common inliers are
listed in Ref. [37].

The resulting SERs show that taking the predictors from
PBE or from experiment does not change the overall scatter
on the regression line much. In all cases, the values are very
similar, which suggests that the main contribution to the SER
is due to the semiempirical relation. The table also shows that
the specific error value strongly depends on the size of the used
test set. This is because ideal inliers or outliers do not exist,
and smaller test sets will inevitably decrease the corresponding
error. For the smallest considered set (set III), all semiempirical
relations perform equally well. The method of Guinea et al.
still has the widest applicability, however, since its SERs for
sets II and III lie very closely together.

4. Comparison to high-level theory

Although some semiempirical approximations are better
than others, fully first-principles methods are still expected to
yield the most accurate results. The applicability of semiem-
pirical methods hence largely depends on the difference with
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FIG. 3. (Color online) Least-squares linear regression curves (middle full line, in blue) between experimental [45–51] and semiempirically
predicted values for the room-temperature volumetric thermal expansion coefficients of the ground-state elemental crystals. Outliers are depicted
as open symbols and correspond with two-sided p values smaller than 0.1% for the externally studentized residuals (upper and lower full lines,
in green). The dashed line represents the first-quadrant bisector, with which the regression line would coincide if all predictions were perfect.
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TABLE IV. Standard errors of the regression (SER) for the semiempirically predicted volumetric thermal expansion coefficients αV (in
10−5 K−1) and melting temperatures Tm (in degrees Kelvin), based on a least-squares regression Y = β1X + β0 between experimental data Y

and semiempirical data X for the ground-state elemental crystals. Set I represents the full data set for each of the PBE-based methods (excluding
their respective outliers) and is identical to Table I. Sets II and III, on the other hand, only contain the common inliers between all PBE-based
predictions (II) or between all PBE- and experiment-based predictions (III) of either αV or Tm (these sets are listed in Ref. [37]).

Approximation PBE - set I PBE - set II PBE - set III Exp - set III

αV (Slater) [Eq. (9)] 1.7 1.7 1.4 1.3
αV (Dugdale-MacDonald) [Eq. (10)] 1.8 1.7 1.4 1.3
αV (Vashchenko-Zubarev) [Eq. (11)] 2.1 1.9 1.5 1.5
αV (Guinea et al.) [Eq. (14)] 1.9 1.6 1.5 1.6
αV (Tsuru et al.) [Eq. (1)] 2.4 1.9 1.4 1.4

Tm (via B0) [Eq. (17)] 466 466 473 496
Tm (Guinea et al.) [Eq. (15)] 283 283 295 282

those high-accuracy predictions. As mentioned in Sec. II A,
the thermal expansion coefficient can be determined more
rigorously from quasiharmonic phonon theory. Grabowski
et al., for example, applied it to the nonmagnetic fcc elemental
metals using the PBE functional [59]. They still noticed
considerable errors, however, especially for silver and gold.
These relatively large errors for the phonon approach were
also observed by Souvatzis and Eriksson [60], using PW91
calculations for the 4d transition metals. In both studies,
the errors on the phonon predictions were of the same
magnitude or even larger than the errors on most semiempirical
predictions discussed here. Souvatzis and Eriksson suggested
the LDA functional to outperform GGAs for transition metals,
but only by fortuitous cancellation of errors. In fact, only
more advanced functionals substantially improve phonon-
based results for the transition metals [61]. PBE predictions
are more reliable for non-transition-metal compounds, as is
shown by Al and Pb in the study of Grabowski et al., and by
our own results for Si and K (Table V, using phonopy [62];
see Ref. [37] for further computational details).

Table V compares some PBE-based phonon results to
semiempirical predictions. Systematic deviations were deter-
mined and corrected for by establishing a linear regression
between these 12 experimental and theoretical data points.
Hence, instead of the phonon-based or semiempirical values
X themselves, the regression-corrected numbers β1X + β0

are listed. Even for the phonon approach, a small systematic
deviation was found, since GGA functionals are known
to underbind crystals [63], yielding too large volumes and
expansion coefficients.

At first sight, the SER for quasiharmonic phonon the-
ory seems to be best, but this impression is entirely due
to the results for silicon. Indeed, as discussed before, all
semiempirical approaches fail to reliably represent its thermal
expansion. When excluding the influence of Si on the SER,
the semiempirical methods offer a similar (or even better)
accuracy as the PBE-based phonon predictions, even for
nontransition metals (Table V). It is therefore important to
realize that explicit phonon calculations only have added
value when the semiempirical relations break down and
when the PBE functional itself is still valid (e.g., when no
dispersion interactions are present). In all other cases, the
thermal expansion coefficient can safely be calculated from a
semiempirical approach, as this often provides the same degree

of accuracy, but at a much smaller computational cost. When
that accuracy is insufficient, phonon calculations may prove
more suitable, but only by exploring better functionals [61].
The difference in computational effort will increase even
further, however.

B. Melting temperature

The melting temperature can be estimated from both the
cohesive energy [Eq. (15)] [12] and the bulk modulus [27]. To
our knowledge, no explicit relation has been published for the

TABLE V. Volumetric thermal expansion coefficient (in
10−5 K−1) according to experiment [45], the (regression-corrected)
quasiharmonic phonon approach and the (regression-corrected) ap-
proximations by Slater [Eq. (9)], Dugdale-MacDonald [Eq. (10)],
Vashchenko-Zubarev [Eq. (11)], Guinea et al. [Eq. (14)], and Tsuru
et al. [Eq. (1)]. The applied linear regressions Y = β1X + β0 are
based on the experimental numbers Y and the raw theoretical values
X for these 12 compounds, and correct for systematical deviations.
Transition metals are distinguished from other element types.

Compound Exp [45] QHA Slater DM VZ GuineaTsuru

Ni 4.02 3.23 [64] 3.79 3.74 3.67 3.52 2.70
Cu 4.95 4.76 [59] 5.17 5.24 5.37 4.81 4.55
Rh 2.46 2.44 [59] 2.12 1.97 1.73 2.35 1.85
Pd 3.54 3.60 [59] 3.41 3.41 3.43 3.63 4.14
Ag 5.67 6.57 [59] 6.34 6.70 7.30 5.81 7.17
Ir 1.92 1.90 [59] 1.38 1.16 0.81 1.77 1.22
Pt 2.64 2.94 [59] 2.08 1.95 1.73 2.40 2.26
Au 4.26 5.82 [59] 3.91 4.03 4.24 4.04 5.32

Al 6.93 6.10 [59] 6.18 6.21 6.27 5.55 4.63
Pb 8.67 7.84 [59] 7.65 7.94 8.43 7.80 9.69
Si 0.78 0.67 3.78 3.59 3.28 3.95 2.99
K 24.99 24.95 25.03 24.88 24.55 25.20 24.31

Applied β1 0.869 0.978 1.230 1.652 1.031 1.588
Applied β0 −0.1 −0.6 −1.0 −1.7 −0.3 −2.0

SER with Si 0.73 1.10 1.07 1.12 1.15 1.35
SERa without Si 0.77 0.58 0.64 0.83 0.59 1.22

aStrictly speaking, the systematic deviation should be redetermined
when the SER without Si is required. However, this one crystal does
not influence the regression line much, and we are only interested in
a measure of the effect of Si on the SER.
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TABLE VI. (Color online) (Absolute) elementwise deviations between the experimental [27,65,66] melting temperatures Tm and least-
squares linear regression results based on semiempirical predictions in the approximations of Eq. (17) and of Guinea et al. [Eq. (15)] (in degrees
Kelvin). The darkest shades correspond to the largest errors (common color code).

latter, however. Because the data suggest a linear correlation
(Fig. 2.3 in Ref. [37]), we fitted a linear regression between
the experimental values of Tm [27,65,66] and the PBE values
of B0, yielding

Tm = 482.8 + 8.172 B0. (17)

Of course, there will be no systematic deviation for this
equation by definition, but the effects of using PBE are
expected to be similar as with the bulk modulus [13]. All other
error characteristics remain useful, and are listed in Table I,
together with the errors for Tm(�Ecoh). These values again
do not depend much on the used code [37]. The individual
residual errors are shown in Table VI and are visualized in
Fig. 4.

1. Comparison between methods

Predicting a material’s melting temperature from B0 clearly
yields less accurate results than using the cohesive energy. The
SER is almost double in the first case (Table I). One possible
reason is that Eq. (17) employs the relation between Tm and
B0 to capture the link between elasticity and melting behavior,

while this link could also be expressed more generally. To
check this, we fitted the melting temperature to a linear
combination of the elastic constants Cij , using PBE data for
the cubic and hexagonal elemental crystals (see Table 2.8 in
Ref. [37]). The resulting SER was indeed smaller than for a
fit to B0 (489 K instead of 512 K), but only slightly. We can
therefore assume the relation between the melting temperature
and the bulk modulus to be sufficiently representative of the
physical connection between melting and elasticity.

The different quality of the two semiempirical approaches
to Tm must hence be explained differently. Since the effect of
using DFT-based predictors is again small (Table IV), that
difference is mainly due to the semiempirical approaches
themselves. In that respect, it is important to realize that
melting goes beyond a purely elastic behavior. When a
compound starts melting, the supplied heat needs to break all
bonds. This is a process which is well described by the cohesive
energy, since it relates to the initial and final stages of the bond
breaking. Elastic properties only describe the initial stage of
bond stretching. To account for non-negligible deformations,
anharmonic effects need to be included [12,67], and a function
of B0 does not contain that information.
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FIG. 4. (Color online) Least-squares linear regression curves (middle full line, in blue) between experimental [27,65,66] and semiempirically
predicted values for the melting temperatures of the ground-state elemental crystals. Outliers are depicted as open symbols and correspond with
two-sided p values smaller than 0.1% for the externally studentized residuals (upper and lower full lines, in green). The dashed line represents
the first-quadrant bisector, with which the regression line would coincide if all predictions were perfect.

2. Comparison to high-level theory

Not only the comparison between approximations is of
interest, but so is their overall quality. This again requires
looking at fully first-principles methods. Unfortunately, the
number of high-quality results for the melting temperature is
quite small due to the huge computational effort associated
with ab initio molecular dynamics (AIMD). Table VII lists
relevant data for five elemental compounds (i.e., based on a
PBE or PW91 functional and at ambient pressure). We only
provided values from the coexistence method (see Sec. II B), as
these are the most frequently encountered AIMD results, and
because it might be imprudent to treat all high-level approaches
on the same footing. To correct for systematic deviations, we
fitted separate regression lines to these five materials. Even
for AIMD results, some deviation was found (and corrected
for), since PBE underbinds crystals and therefore affects the
simulated melting behavior. Note that the AIMD value for

TABLE VII. Melting temperature (in degrees Kelvin) from
experiment, (regression-corrected) fully ab initio molecular dynamics
calculations (AIMD), and (regression-corrected) semiempirical rela-
tions in terms of �Ecoh [Guinea et al., Eq. (15)] and B0 [Eq. (17)].
The applied linear regressions Y = β1X + β0 are based on the
experimental numbers Y and the raw theoretical values X for these
five compounds, and correct for systematical deviations.

Compound Exp [27] AIMD Guinea via B0

Li 454 522 [68] 300 535
Al 934 870a [6] 1153 1314
Si 1687 1664 [69] 1676 1455
Ta 3293 3316 [70] 3257 2735
W 3695 3690 [71] 3676 4023

Applied β1 1.052 1.258 1.502
Applied β0 43 −450 −360
SER 57 156 456

aPW91 instead of PBE functional.

Li is based on the bcc structure (which is the structure at
melting), while the semiempirical predictions relate to an hR9
crystal. The cohesive energy and the bulk modulus are very
similar in both structures, however (a 0.1 kJ/mol and a 0.2 GPa
difference, respectively), leading to almost identical melting
temperature predictions.

Table VII shows that most Tm calculations are quite
accurate, especially those from molecular dynamics or the
relation by Guinea et al. Indeed, not only do the (regression-
corrected) AIMD results correspond almost perfectly to the
experimental values, the quality of Eq. (15) is also extremely
good, particularly when the simplicity of the underlying
computation is considered. Contrary to the predictions of αV ,
however, the more fundamental method (in this case AIMD)
remains the most accurate for Tm.

V. CONCLUSIONS

Using a test set with all ground-state elemental crystals
(up to Rn, not including the lanthanides), we quantified the
accuracy of several semiempirical approaches to the thermal
expansion coefficient αV and the melting temperature Tm. The
discrepancy between theoretical predictions and experimental
values was expressed in terms of a systematic and a residual
error. The systematic deviation was determined from the slope
of a linear regression curve between experiment and theory,
while the remaining error bar was defined as the standard
error of the regression. Outliers were flagged based on their
externally studentized residuals, allowing us to identify those
compounds for which the αV or Tm predictions were certainly
not reliable anymore. This unreliability could be due to the
failure of the semiempirical approach itself or to the limited
accuracy of the underlying DFT predictor (with the largest
contribution from the former effect, see Table IV). The results
from the error analyses are presented in Table I and are
summarized below.

014304-12



AB INITIO BASED THERMAL PROPERTY . . . PHYSICAL REVIEW B 89, 014304 (2014)

For the thermal expansion coefficient, we assessed multiple
predictions based on the Grüneisen parameter γ , as well as an
inverse proportionality to the cohesive energy. They all yielded
very good results, particularly the former approximations,
with the best behavior when γ was derived from a universal
binding-energy relation for metals [12]. There were a few
exceptions, however, as some elemental crystals did not
perform well for any of the semiempirical approaches. Several
deviations from experiment were caused by the failure of
the used PBE functional (when dispersion interactions were
present, for example, such as for graphite). On the other hand,
it was also shown that neither an expression in γ nor in �Ecoh

could reproduce effects which were caused by anomalous
low-frequency phonon modes, as most notably happens in Si.
In such materials, more advanced calculations are necessary,
e.g., using quasiharmonic phonon theory. Nevertheless, except
for these few special cases, the accuracy of most semiempirical
approximations is as good or even better than for explicit
phonon calculations (Table V).

The melting temperature was approximated by both a
relation to the cohesive energy and to the bulk modulus,
with the latter method yielding the largest residual errors.
B0 only relates to elastic phenomena, while melting involves

strongly anharmonic effects. By contrast, the quality of the
correlation to �Ecoh was quite good. Requiring only a limited
computational effort, its results lay about 300 K from the
experimental values. Ab initio molecular dynamics does offer
even better results (Table VII), but at a much higher cost.

Fully first-principles calculations are often regarded as the
only means to obtain high-accuracy predictions for materials
properties. Nevertheless, some semiempirical approximations
offer a cheap alternative with the same quality of results (such
as for αV ) or with only marginally larger errors (such as for
Tm). These methods are particularly interesting for materials
design, where time can be an issue.
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