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The thermal conductivity of a model for solid argon is investigated using nonequilibrium molecular dynamics
methods, as well as the traditional Boltzmann transport equation approach with input from molecular dynamics
calculations, both with classical and quantum thermostats. A surprising result is that, at low temperatures, only
the classical molecular dynamics technique is in agreement with the experimental data. We argue that this
agreement is due to a compensation of errors and raise the issue of an appropriate method for calculating thermal
conductivities at low (below Debye) temperatures.
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I. INTRODUCTION

Different methods are available for calculating thermal
conductivities of crystalline solids [1]. The most standard
approach involves a calculation of the phonon properties of
the system, which are connected to the thermal conductivity
through the Boltzmann transport equation. Alternative meth-
ods are based on equilibrium molecular dynamics (MD) and
nonequilibrium molecular dynamics (NEMD) [1–3].

The methods based on MD or NEMD are restricted
to the classical limit, i.e., the limit of high temperatures.
In standard MD, nuclear degrees of freedom are treated
classically and quantum effects such as zero-point vibrations
are not accounted for. In order to incorporate quantum effects,
corrections to the thermal conductivity, based on a rescaling
of the heat capacity, are commonly applied. These kind of
corrections, however, are not generally accepted as reliable.
Turney et al. [4] discussed their validity and showed that this
approach is oversimplified and is not generally applicable,
while other authors have found an improvement of the classical
thermal conductivity by applying such corrections [2,5]. Quan-
tum effects, on the other hand, are assumed to be negligible
depending on the capability of the classical description to
describe the thermal conductivity, but independently of its
limitations for predicting heat capacities or phonon lifetimes,
properties directly related with the thermal conductivity. A
common example is the case of solid argon. In spite of the
limitations of the classical theory to predict correctly the heat
capacity, a reliable description of the thermal conductivity, at
temperatures well below the Debye value, is obtained from
classical MD [6,7].

Quantum effects on the thermal conductivity can be
obtained from anharmonic lattice dynamics, by using the
Boltzmann transport equation [8]. This methodology, nonethe-
less, results in much more expensive computations than MD.
It requires the full calculation of the vibrational spectrum of
the system, as well as the third derivatives of the energy,
something unmanageable for large or aperiodic systems.
Moreover, the Boltzmann transport calculation relies on
approximate theoretical expressions for the phonon lifetime

and for the conductivity itself, as opposed to the MD and
NEMD formalisms that are, in principle, exact.

Recently, a Langevin-type thermostat with a colored noise
was proposed [9,10] and implemented [11] by different authors
in order to incorporate quantum effects in molecular dynamics.
The quantum thermostat makes it possible to recover the
correct average quantum energy of a system by coupling
every degree of freedom to a fictitious quantum bath in such a
way that a harmonic oscillator acquires an energy given by the
Bose-Einstein distribution. As such, the method is expected
to provide a good description of solids in the harmonic limit,
and has been shown to also work well for low-temperature
liquids, in terms of static properties [9]. At high temperatures,
the quantum thermostat reduces to a standard Langevin
thermostat. This semiclassical approach offers the possibility
of performing direct thermal conductivity calculations, by
using MD, independent of the temperature regime. Savin
et al. [12] have applied this methodology to the study of heat
transport in low-dimensional nanostructures from NEMD. In
the case of a NEMD simulation there are regions of the system
free of thermostat, and one will have to check the validity
of the quantum thermostat under such conditions. Moreover,
the quantum thermostat is not an exact representation of the
quantum behavior, and for anharmonic systems suffers from
“zero-point energy leakage” (see Ref. [10] and Sec. III below).
It is unknown if this influences thermal transport properties.
Here we present an overview of the advances and challenges
for using such thermostats to address thermal transport studies
at low temperatures (below the Debye temperature TD). In our
study we use different MD-based methods for calculating the
thermal conductivity of solid argon, a simple system that is
well described in the literature and, as pointed out before, is
particularly well described by classical MD.

The paper is organized as follows. In Sec. II we present the
various methods used for estimating the thermal conductivity.
In Sec. III we briefly introduce the quantum thermostat, we
discuss about the zero-point energy leakage problem and its
reliability for working under equilibrium and nonequilibrium
conditions. In the last section we present and discuss our results
for the thermal conductivity of solid argon.
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II. METHODOLOGY

The standard methods to compute thermal conductivities
are based on MD or lattice dynamics or a combination of both.
In this work, we used NEMD [1–3] and Boltzmann transport
equation molecular dynamics (BTE-MD) [13,14]. We did not
use Green-Kubo-based methods [15,16], which have smaller
size effects than NEMD, because the quantum thermostat is
not compatible with this approach (see discussion below).
However, the cells employed here are large enough to avoid
any strong size effects in NEMD.

In NEMD, the periodic simulation cell is divided into N

slabs, and a temperature gradient is imposed by coupling two
selected slabs to two thermostats at different temperatures, T1

and T2 with T1 < T2. In a periodic system, the thermostatted
slabs are separated by a distance equal to one half of the sim-
ulation cell length. The remaining slabs are not thermostatted.
The system is then allowed to reach a steady state, where,
on average, the energy creation rate of the thermostat at T2

is equal to the energy removal rate of the thermostat at T1.
Calculating the heat flux ji required to maintain the gradient
of temperature ∇j T from the heat power of the source and the
sink, one can estimate the thermal conductivity from Fourier’s
law:

ji = −κij ∇j T . (1)

In this work we assumed materials of isotopic symmetry. The
thermal conductivity is then a scalar, and the temperature
gradient and heat flux are parallel.

Equation (1) can alternatively be implemented by imposing
the heat flux �J and calculating the resulting temperature
gradient. A common approach in this case [2,3] is to rescale
the velocities, �vh, of the atoms in the hot region according to

�v′
h = �vG + α(�vh − �vG), (2)

where �vG is the velocity of the center of mass of the region,
and

α =
√

1 + �ε

kR
. (3)

Here �ε is the amount of heat transferred through the system,
and kR is the relative kinetic energy given by

kR = 1

2

∑
i∈hot

mi �v 2
i − 1

2

∑
i∈hot

mi �v 2
G . (4)

In this manner, a constant heat flux,

J = �ε

2 A� t
, (5)

is imposed, where A is the cross-sectional area of the
simulation cell perpendicular to the heat flow, and �t is the
time step. We implemented both NEMD methods and checked
that they are fully consistent with one another. In the following,
we do not distinguish between them and simply refer to them
as the NEMD approach.

An alternative expression for the thermal conductivity of
an isotropic material reads [8,13]

κ =
∑

�q

3 (N−1)∑
ν

Cph(�q,ν) v 2
g (�q,ν) τ (�q,ν), (6)

where Cph is the volumetric phonon specific heat, �vg is the
phonon group velocity, and τ is the phonon lifetime. The sum
runs over all wave vectors, �q, within the Brillouin zone of
the periodic structure, and over the 3 N polarization indices,
where N is the number of atoms in the elementary cell under
consideration, so that contributions from all normal modes
of the system are considered. In Eq. (6), the specific heats
and group velocities can be computed using lattice dynamics,
while the phonon lifetimes can be obtained using either lattice
dynamics or a combination of lattice dynamics and MD [8,13].
In the following, we use only the latter approach, referred to
as the BTE-MD method.

Group velocities are obtained by evaluating the derivative
of the dispersion curves, ω(q), over a set of six q points within
a radius of 0.0001 Å−1 around the 	 point. Convergence was
checked using different cell sizes. Phonon frequencies and
specific heats are calculated at the 	 point, in supercells that
contain from 256 to 4000 atoms.

Phonon lifetimes are obtained from the energy autocorre-
lation function of each normal mode,

E �q,ν(t) = Q̇∗(�q,ν) Q̇(�q,ν)

2
+ ω 2 (�q,ν) Q∗(�q,ν) Q(�q,ν)

2
,

(7)

with

Q( �q,ν) =
N∑

j=1

[
mj

N

]1/2

exp[−i �q · �rj,0]�e (�q,ν) · [�rj − �rj,0]

(8)

the time-dependent normal mode coordinate. The eigenvectors
�e( �q,ν) are obtained from lattice dynamics, and the relative
displacement, �rj − �rj,0, of atom j , is sampled using MD. The
phonon lifetimes τ are then obtained by fitting the following
relation:

e−t/τ ( �q,ν) = 〈E �q,ν(t) E �q,ν(0)〉
〈E �q,ν(0) E �q,ν(0)〉 . (9)

III. QUANTUM THERMOSTAT

A. Overview

The key idea behind the quantum thermostat is to adjust
to the manner in which energy is distributed among the
normal modes of a harmonic system. In the classical limit,
the equipartition theorem is fulfilled and all modes have the
same energy, while in the quantum regime, the energy of each
mode is distributed according to Bose-Einstein statistics. The
quantum Langevin thermostat enforces this distribution by
using a frequency-dependent noise function (colored noise).

As in the classical approach using a Langevin thermostat,
each particle is coupled to a fictitious bath by including in
the equations of motion a random force and a dissipation
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term related by the fluctuation-dissipation theorem [17].
Accordingly, the equation of motion of a degree of freedom
x of a particle of mass m in the presence of an external force
F (x) becomes

m ẍ = −γ m ẋ + F (x) +
√

2 m γ �(t), (10)

where �(t) is a colored noise with a power spectral density
(PSD) given by the Bose-Einstein distribution

�̃(ω) =
∫

e−iω t 〈�(t) �(t ′)〉d t

= � |ω|
(

1

2
+ 1

e � | ω | kB T − 1

)
, (11)

including the zero-point energy. The classical regime is
recovered at high temperature, where the above PSD becomes
independent of the frequency and equals kB T [18]. We also
note here that the use of a Langevin equation implies the
absence of local energy conservation; hence, a Green-Kubo
approach, based on the notion that local energy fluctuations
undergo a diffusive motion, is not appropriate in a system that
is coupled to a local (quantum or classical) heat bath.

In practice, �̃(ω) is generated by using a signal-processing
method based on filtering a white noise [19]. A filter

H̃ (ω) =
√

�̃(ω) (12)

with Fourier transform H (t) is introduced, and �(t) is obtained
by convoluting H (t) with a random white noise, r(t), of PSD
R̃(ω) = 1, such that

�(t) =
∫ ∞

−∞
H (s) r(t − s) ds. (13)

Thus, the PSD of the resulting noise is

|H̃ (ω)|2R̃(ω) = �̃(ω), (14)

which satisfies Eq. (11). The method is simple and can be
easily implemented in a discrete MD algorithm. From a
computational point of view, the quantum thermostat does not
slow down the calculations, the only difference with a classical
thermostat being the convolution operation in Eq. (13). In
terms of memory, the quantum thermostat is more demanding
because it requires to store a finite number of past values of
the white noise and of the filter in order to compute Eq. (13).
However, the memory requirement for the thermostat scales
linearly with the system size and is easily manageable with
current computers. Moreover, it avoids generating and storing
the entire time series of random numbers as done in other
implementations of the quantum thermal bath [9]. Further
details concerning the method are given in Ref. [11].

B. Zero-point energy leakage

By coupling a system to the quantum thermostat, each
harmonic mode can, in principle, be equilibrated at the correct
quantum harmonic energy given by Eq. (11). However, as
the equations that are solved describe classical coordinates,
the zero-point energy in these equations corresponds to the
finite amplitude vibration of a classical coordinate. As such,
this zero-point energy can be exchanged between modes, in
contrast with a true quantum zero-point energy.
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FIG. 1. (Color online) Scaled kinetic energy distribution per
mode obtained from MD simulations. (Top left) Values obtained
using a noise with power spectral density �̃A(ω) equal to the
Bose-Einstein distribution �̃(ω) [Eq. (11)]. (Top right) Values
obtained using a noise with PSD �̃B (ω). (Bottom) Vibrational phonon
spectrum times the phonon density of state. The solid gray line was
obtained by calculating the DOS using a classical thermal bath and
multiplying by �̃(ω). The other data were obtained directly from
the Fourier transform of the velocity autocorrelation function (VAF).
Calculations were performed for solid aluminum at 10 K using a
Lennard-Jones potential. γ = 1 THz was used here for the quantum
thermostat [Eq. (10)].

Such an exchange becomes possible when an anharmonic
coupling between the modes is introduced and leads to the
phenomenon of “zero-point energy (ZPE) leakage,” where the
ZPE is transferred from the high-energy modes to low-energy
modes, so as to homogenize the energy among the modes
[20–24]. As the thermostat cannot fully counterbalance the
leakage, an equilibrium is reached where the energy per mode
is neither constant nor as inhomogeneous as in Bose-Einstein
distribution. An example is shown in Fig. 1 (top left panel)
in the case of a perfect crystal of aluminum at 10 K modeled
with a Lennard-Jones potential. A colored noise with PSD
�̃A(ω) = �̃(ω) directly from Eq. (11) was used and results in
an excess of energy in modes with frequency less than about
40 THz and a deficiency in energy for modes above that value.

One way to correct for the leakage is to modify the PSD
of the filter such that, after equilibration of the leakage, the
system reaches an energy-mode distribution which follows
the Bose-Einstein distribution. An example is shown in Fig. 1
(top right panel) with the adjusted PSD, �̃B(ω), shown as
a dotted line. The resulting energy distribution (asterisks)
is in much better agreement with the desired Bose-Einstein
distribution (solid line) than the one obtained using the original
filter, shown in the left panel. The leakage is, however, not
perfectly corrected, as can be seen from the Fourier transform
of the velocity autocorrelation function (VAF) shown in
Fig. 1 (bottom panel). Bear in mind that in classical MD,
i.e., when a thermostat fulfilling the equipartition theorem
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of energy is used, the Fourier transform of the VAF equals
the phonon density of states (DOS) times kB T/m; in the
quantum case, we obtain the phonon DOS times the phonon
population function [Eq. (11)]. Figure 1 compares results
obtained with the two colored noises, �̃A(ω) and �̃B(ω), to
the exact distribution. The latter is estimated by calculating
the vibrational DOS, using a classical thermal bath (CTB),
multiplied by �̃(ω). In the case where �̃A(ω) = �̃(ω) (dashed
blue line), the ZPE leakage results in an underpopulation of
the high-energy modes (ω > 45 THz) and an overpopulation
of the low-energy modes. The corrected colored noise �̃B(ω)
(green dotted line) yields a much better, although not perfect,
agreement with the exact distribution, but fitting such PSD
is technically difficult. The corrected PSD is both system-
and temperature-dependent, making the direct application of
this procedure rather tedious. Also, we considered here Al
rather than Ar because the latter is more anharmonic than the
former due to its lower ε parameter (depth of the Lennard
Jones potential). As a result, the ZPE leakage is stronger in Ar
than in Al and we could not adjust a suitable correction in Ar
without using a very strong γ parameter which destroys the
dynamics of the system.

In spite of the ZPE leakage, quantum Langevin thermostats
have been successfully used to map out the diamond-graphite
coexistence curve [10], as well as the proton momentum
distribution in hydrogen-storage materials [25]. The quantum
effects accounted for the thermostat were relevant, in these
cases, for a correct description of the systems. Expecting the
same degree of accuracy of the method for describing thermal
conductivity properties, our calculations were performed
omitting any correction concerning the leakage. However, as
shown later, this introduces a serious limitation for the method.

C. Quantum thermostat and NEMD

Despite the ZPE leakage described above, the quantum
thermostat makes it possible to recover the correct temperature
dependence of the equilibrium average thermal energy and heat
capacity. Figure 2 shows an example in the case of solid argon.
Here every degree of freedom of the system is coupled to the
thermostat.

FIG. 2. (Color online) (Left) Scaled average kinetic energy per
degree of freedom, i.e., by definition the classical temperature, T C,
as a function of temperature. (Right) Specific heat as a function of
temperature obtained from MD compared to experimental data [26]
and the quantum harmonic approximation. Within the harmonic
approximation we have Cv = d T C

d T
; see Eq. (15). The phonon

spectrum was obtained from lattice dynamics calculations performed
at the 	 point, using a 1280-atoms cell.

In the present semiclassical approach, we should distin-
guish between the temperature used as input of the thermostat,
which is the true (quantum) temperature of the system, denoted
as T , and the temperature measured from the kinetic energy of
the system, which we call the classical temperature, T C. The
relation between both, in the case of solid argon, is shown in
Fig. 2. In the harmonic approximation, we have

T C = 1

3(N − 1)kB

3(N−1)∑
i

� ωi

(
1

2
+ 1

e � ωi/kB T − 1

)
. (15)

At high temperature, the quantum temperature converges
toward the classical value. When T decreases to zero, T C

converges to the ZPE of the system (expressed in degrees
kelvin). In other words, the ZPE in the present semiclassical
approach is translated into a kinetic energy. The latter is
not small (about 30 K in Ar and 150 K in Al), resulting in
atomic vibrations that extend beyond the harmonic regime
and involve anharmonic effects. This explains why the ZPE
leakage observed in the previous section does not disappear
even at temperatures approaching 0 K.

In NEMD, part of the system is not thermostatted and will
not be directly coupled to a quantum thermal bath. It is not
straightforward if the interaction between thermalized and
nonthermalized parts will transfer the frequency-dependent
energy. In order to explore the evolution of the system under
such conditions, we performed a test simulation with the
same configuration as NEMD, but coupling both thermostat-
ted slabs to quantum thermostats at the same temperature.
Figure 3 shows the instantaneous kinetic energy and the
Fourier transform of the VAF once the system has reached
equilibrium. Averages were performed over atoms in different
regions of the cell, either thermostatted or not. As can be
seen, the thermostat-free regions (left panel, dashed line)
have reached an average temperature in agreement with the
one imposed in the thermostatted regions (solid red line).
The larger fluctuations in the thermostatted regions are due
to the fact that averages are computed over smaller numbers of
atoms. Moreover, the Fourier transform of the VAF shown in
Fig. 3 (right panel) shows that the same frequency-dependent
energy distribution is obtained in both regions, proving that a
system can be equilibrated with a mode-dependent energy by
applying a quantum thermostat only to a subset of the system. It

FIG. 3. (Color online) NEMD simulation with T1 = T2 = 20 K
for a 5120-atom supercell. (Left) Twice the kinetic energy per degree
of freedom as a function of time. (Right) Vibrational phonon spectrum
times DOS [Eq. (11)], obtained from the Fourier transform of the
velocity autocorrelation function (VAF). Averages were performed
over 64 atoms coupled or not to a thermostat.
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should be pointed out, however, that the thermostatted regions
must have a size comparable to or greater than the one of the
“free” regions. If this is not the case, the thermostatted regions
are not sufficient to thermostat the free part, which tends to
relax towards a classical energy distribution. This is in contrast
with the classical case, in which the thermostatting of a few
degrees of freedom is, in principle, sufficient to impose the
temperature in an arbitrarily large system.

IV. THERMAL CONDUCTIVITY

The methodologies introduced in Sec. II were applied to
calculate the thermal conductivity of solid argon. This system
is well documented in the literature and can be modeled with a
simple Lennard-Jones interatomic potential, with parameters
ε/kB = 120 K and σ = 3.4 Å. All simulations were carried
out with the TROCADERO package [27]. Supercells of 256,
1280, 5120, and 10 240 atoms were used and time steps of 1
or 5 fs. The potential cutoff was fixed to 4σ . We used for the
thermostat a friction coefficient γ = 0.1 THz [see Eq. (10)],
which is small enough that it does not introduce any artificial
time scale in the dynamics and, in particular, does not limit the
phonon lifetime.

A comparison of our results to experimental data is shown in
Fig. 4. Simulations were performed using either a classical or
a quantum thermostat. NEMD was implemented with the two
methodologies mentioned above, imposing either a gradient
of temperature or a flux of energy. The two methods were in
full agreement and are shown here with the same symbols.

NEMD calculations with the quantum thermostat could not
be performed below 10 K because of the difficulty to impose or
measure a temperature gradient in this temperature range. To
measure a temperature gradient, we first compute the profile
of kinetic energy across the sample, from which we deduce the
classical temperature T C, which serves to map the real temper-
ature T by inverting Eq. (15). At low temperatures, however,
the classical temperature converges to the ZPE and becomes
almost temperature independent. Temperature gradients are
then difficult to estimate, requiring better statistics, i.e., larger
simulation cells and longer simulation times, which limited
our calculations to temperatures above about 10 K.
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FIG. 4. (Color online) Thermal conductivity of solid argon as a
function of temperature. Experimental data reported by Christen and
Pollack [28].

We can see from Fig. 4 that all approaches, classical and
quantum, are in good agreement with one another and with
experimental data at high temperatures, typically above 40 K.
At lower temperatures, conductivities computed with a clas-
sical thermostat remain in good agreement with experimental
data [28] down to about 10 K, while the computed quantum
conductivities are much lower. Fitting the experimental data to
T −n, for temperatures higher than 10 K, we find n = 1.23. Our
classical data present, in the same temperature range, a slightly
stronger dependence with n ≈ 1.32. An agreement between
classical calculations and experimental data has been obtained
as well by other authors [6], but is very surprising since
quantum effects on the specific heat, which enters directly
in the expression of the thermal conductivity [see Eq. (6)],
start at about 40 K, as seen in Fig. 2.

The underestimation of the conductivity using the quantum
thermostat is not due to an inability of the thermostat to
address nonequilibrium conditions, since equivalent results
are obtained with the BTE-MD, which is an equilibrium-based
approach. In NEMD, aside from the phonon-phonon scattering
present in real materials, an additional phonon-boundary
scattering is present at the boundaries between hot and cold
sections (if the system in not large enough). The phonon mean
free path is then reduced, i.e., the phonon lifetimes, and a lower
thermal conductivity is obtained. At high temperatures such
effect is less important, as the mean free path is governed by the
phonon-phonon scattering. The phonon population increases
with temperature, increasing the phonon-phonon scattering, as
more phonons are present to do the scattering [29]. However,
the comparison with BTE-MD results suggests that boundary
scattering is not the main effect that causes the reduction
in thermal conductivity when using the quantum thermostat.
Indeed, size effects in BTE-MD are much less important, in
the sense that mean free paths are not limited by the boundaries
of the system. In this case, a system large enough must be just
considered in order to ensure that all modes accessible to the
system are well described in the simulation. Our simulations
have been performed for different cell sizes in order to ensure
convergence.

The disagreement between the present conductivities and
experimental data is not an artifact of the LJ potential since
realistic conductivities were obtained by Turney et al. [13] with
the same LJ potential using the BTE-MD approach. These
data are shown in Fig. 4. Although limited to temperatures
above 20 K, we can see that the same conductivities were
obtained using a quantum and a classical approach, and that
both conductivities agree with experimental data, while, in
the temperature range between 20 K and about 30 K, the
present quantum thermostat already strongly underestimates
the experimental conductivities

The inability of the quantum thermostat calculations to
describe correctly the thermal conductivity is more probably
a consequence of the ZPE leakage mentioned in Sec. III B.
The main effect of this leakage is that the energy is distributed
almost homogeneously among the modes, as in the classical
regime, as seen in Fig. 5. The system with the quantum
thermostat, hence, behaves almost like a classical system,
but at a higher temperature. To illustrate this point, we show
in Fig. 6 the evolution of the average phonon lifetime as
a function of temperature, obtained with the classical and
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FIG. 5. Scaled average kinetic energy per mode obtained from
MD simulations compared to the correct quantum harmonic distri-
bution given by Eq. (11). Crystal argon at 5 K, using a supercell of
256 atoms. The length of the MD simulation was 4 ns.

quantum thermostats. Phonon lifetimes obtained with the
quantum thermostat, τQ, are much shorter than the classical
lifetimes, τC, and the former can be obtained from the latter, by
replacing the classical temperature T C with its corresponding
quantum (real) temperature, T ; i.e., we have

〈τQ(T )〉 ∼ 〈τC(T C)〉, (16)

where T and T C are related by Eq. (15). This correction
corresponds to the usual rescaling of temperatures used for
instance in Refs. [2,5]. The agreement between the corrected
classical lifetimes and the quantum lifetimes shown in Fig. 6
confirms that the system described with the quantum thermo-
stat is equivalent to a classical system at higher temperature.

Using this insight, the thermal conductivity obtained with
the quantum thermostat can be predicted from the classical
conductivity. Indeed, if we assume that the specific heat, group
velocities and phonon lifetimes are independent, as is often
done (see Refs. [2,5]), we can approximate Eq. (6) as

κ ∝ 〈Cph〉
〈�v 2

g

〉〈τ 〉. (17)

We have seen in Sec. III C that the quantum thermostat
makes it possible to reproduce the average specific heat, so if

FIG. 6. (Color online) Average phonon lifetimes as a function of
temperature obtained from BTE-LD calculations.

we assume that the group velocity is not strongly affected by
quantum effects, we can write

κ Q(T ) = κ C(T C)
C Q

v (T )

C C
v (T C)

〈τ Q(T )〉
〈τ C(T C)〉

= κ C(T C)
C Q

v (T )

3 (N − 1) kB
, (18)

using Eq. (16). The result of this rescaling is shown in Fig. 4, as
red solid circles. It is seen that this procedure closely matches
the conductivities obtained with the quantum thermostat. The
correction considered in Eq. (18), even if it is widely used
in the literature [2,5,30,31], is known to be oversimplified
and inaccurate compared to the results of a full quantum
approach [4]. On the other hand, we have shown here that
this correction fully explains the results of the semiclassical
Langevin quantum thermostat.

One surprising result remains concerning the apparent
absence of quantum effects on the thermal conductivity of
argon. Some authors argue that quantum effects are not relevant
for argon, even at temperatures well below the Debye value,
and avoid any correction [7]. This simplification is based on
the accuracy of the classical theory to describe properties such
as the nearest-neighbor distance, the bulk modulus, and the
cohesive energy of solid noble gases. The effect of neglecting
the zero-point motion for these properties is less important
in solid argon than in lighter systems [29]. However, from
Fig. 2, we know that the heat capacity starts to decrease
at about 40 K. From Eq. (17), we see that an absence of
quantum effects implies that the decrease in the specific heat
is compensated for by an increase of the phonon lifetime.
However, an exact, or near-exact compensation is not expected
a priori and seems to be specific to argon, since, for instance,
in Si, classical calculations yield conductivities higher than
experimental data [32].

V. CONCLUSIONS

In this work, various methods based on classical or
semiclassical MD were used to obtain the thermal conductivity
of a very simple system, solid argon. The results of classical
NEMD, of NEMD using a quantum heat bath, and of the
Boltzmann transport equation with lifetimes obtained from
MD were considered and compared to experimental data.
Very surprisingly, the only method that leads to results in
good agreement with experimental data at low temperature
is classical MD. It must, however, be admitted that there are
good reasons to believe this agreement in the case of argon
is partially fortuitous and results from a cancellation of errors
between heat capacity and phonon mean free path. Indeed,
when an empirical description of the heat capacity is intro-
duced in the Boltzmann transport equation, the agreement with
experiments worsens. Moreover, other studies in systems such
as diamond silicon have shown that the classical MD results
can actually strongly overestimate the thermal conductivity at
temperatures below the Debye temperature.

The quantum heat bath method, which was originally
thought to be promising, as it assigns the correct ZPE to
the phonon modes, leads to a quite poor agreement with
experiments, with a strong underestimation of the thermal
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conductivity. The basic reason for this discrepancy, which
appears both in a BTE approach and in a direct nonequilibrium
calculation, is too short a lifetime for the vibrational modes.
In turn, the latter can be attributed, at least partly, to the
ZPE leakage and more profoundly to the fact that the
ZPE is represented in the present semiclassical approach by
tangible vibrations, whose energy can be exchanged between
modes and can contribute to phonon scattering, which does
not correspond to the physical situation in a real quantum
system. This behavior is clearly a shortcoming inherent to
mimicking the quantum probability distribution of the position
or momentum variables by solving classical equations. While
this has been shown to give acceptable results in strongly
anharmonic systems such as liquid helium [9] at equilibrium,
it becomes a serious issue when dealing with nonequilibrium
properties.

A natural question that arises as a result of this work
regards the existence of a reliable simulation method for
computing thermal conductivities in solids below the Debye
temperature. Such a method should be able, if one considers
the usual formula of Eq. (6), to predict correctly normal
mode heat capacities and lifetimes. At present, it appears

that no method based on MD has the ability to achieve both
tasks; classical MD fails on both aspects, while the use of a
quantum thermostat results in a strong underestimation of the
lifetimes. Neither ad hoc rescaling of temperatures nor the
use of classical phonon lifetimes within a BTE scheme offers
any guarantee in terms of reliability or accuracy, although
they may work reasonably well for specific systems. For
simple crystal systems, a satisfactory alternative is the use
of lattice dynamics techniques for computing the phonon
lifetimes, based on quantum perturbation theory and using
the cubic term in the expansion of the potential energy [8,33].
Such a method is, however, computationally intensive and
tedious. More importantly, it does not seem to be applicable to
disordered systems or even to crystals with complex unit cells.
Therefore, the calculation of heat conductivity from numerical
simulations in such systems at low temperature remains an
open challenge.
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