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Pressure dependence of the boson peak in glasses: Correlated and uncorrelated perturbations
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The pressure dependence of the boson peak in glasses within the framework of the extended soft potential model
is reconsidered, taking effects at small pressures into account. One of these is the pressure dependence of the
elastic constants, changing the interaction between the soft localized modes and thus changing the quasilocalized
vibrations (QLVs) of the boson peak. This and other effects require the introduction of additional parameters to
describe all the different influences of the pressure in detail. As in the first treatment of the problem, the dominating
high-pressure influence remains the creation of pressure forces, which have to be added to the random forces
responsible for the boson peak formation. The pressure forces consist of a correlated and an uncorrelated part
(correlated with respect to the already existing random forces). Both lead to the P 1/3 dependence observed in
high-pressure experiments, but the uncorrelated part vanishes at small pressure P . The comparison to experiment
is divided into a small pressure part, accessible through low-temperature heat capacity and thermal expansion
measurements, and the high-pressure part, mostly Raman scattering measurements of the boson peak under
pressure. The results suggest that the latter are dominated by the uncorrelated part of the forces, probably due to
pressure-induced relaxations.
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I. INTRODUCTION

One of the characteristic features of glasses is a maximum
of the inelastic scattering intensity at low frequencies, typically
in the interval of 0.5–2 THz [1] or that of the reduced specific
heat cp(T )/T 3. This maximum, the boson peak (BP), can be
traced to a maximum of the ratio g(ω)/ω2. Here, g(ω) is the
vibrational density of states (VDOS), which itself often has no
corresponding maximum. The BP originates from an excess of
low-frequency vibrations over the Debye contribution given by
the sound waves. Its origin is still disputed. The discussion is
confounded by the less than unique definition. Low-frequency
maxima in the inelastic scattering intensity are not confined
to glassy materials. They are also observed in crystalline
structures. This can be due to low lying optic modes or to some
acoustic branch being either particularly soft or flattening at
low frequencies or dipping at some q, e.g., as a precursor of a
martensitic phase transition [2]. In these cases, the maximum
is an intrinsic property of the crystalline lattice and disorder
merely broadens and shifts these maxima. The same holds
for low lying optic modes or librations of some molecules in
plastic crystals [3–5].

In our work, we are concerned with the case where the
BP originates from disorder and is not an intrinsic crystalline
effect, broadened by disorder. The importance of disorder for
the BP in glassy materials is emphasized by the Ioffe-Regel
crossover of the sound waves around the BP frequency ωb.
At long wavelengths, glasses support sound waves—they
are, in the continuum limit, isotropic elastic media. With
increasing frequency, the sound wave damping increases, the
free mean path decreases and drops to the wavelength size
(Ioffe-Regel limit) [6]. This may happen somewhere near ωb

(this point is discussed in detail in Ref. [7], section 6). The
vibrational states above this limit are no longer propagating
modes. Heat transfer, e.g., is more like a diffusive process.
The vibrational states have therefore been called diffusons [8].
For completeness, we want to mention that the Ioffe-Regel
limit need not be reached for both, longitudinal and transverse,
branches at the same frequency. It is even possible that it is not
reached at all by the longitudinal branch [9].

A major effort has been spent to describe the BP in terms of
random matrix theory for the dynamic matrix [10–12]. These
models concentrate on the randomness of the the vibrational
coupling constants, in the literature sometimes called elastic
constants, that form the dynamic matrix. This means that the
random second derivatives of the potential energy are assumed
without caring for the random first derivatives (forces) that
define the structure. A draw-back of this purely harmonic
approach is that some ad hoc restrictions are needed to prevent
instability, or otherwise some eigenvalues ω2 turn out to be
negative. In nature, stability is restored by the anharmonicity
of the atomic interaction. Recently, Beltukov and Parshin
presented an inherently stable random matrix model [13].
Since their model does not allow for sound waves, they added
an extra term that shifts the modes of the random matrix to
higher frequencies and adds sound waves in the gap at the
lowest frequencies.

A quite general description of the vibrations in glasses can
be given in terms of averaged vibrational Green’s functions.
The details of disorder effects are subsumed in a self-
energy, which is then suitably approximated. In the model
of fluctuating elasticity, this is done by concentrating on the
low-order terms in an expansion in q space [10,14–16].
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Another approach is to relate the structure of the BP vibra-
tions to vibrations of some crystalline counterpart [17,18].
Despite the crossing of the Ioffe-Regel limit near the BP
the vibrations are treated as phonons following a dispersion
curve. Disorder is assumed to broaden the lowest van-Hove
singularities and pull them down to lower frequencies. In
particular, this might be by a level repulsion mechanism.
In a similar spirit, a softening of the sound velocity at a
frequency corresponding to the BP has been invoked [19].
Defining a length scale by � = 2πct/ωb, with ct the transverse
sound velocity, the boson peak is often related to a spatial
correlation [20,21]. However, whatever the origin of the BP, in
absence of symmetry, vibrations of similar frequency interact
and this correlation therefore does not necessarily indicate the
origin of the BP in a structure of size �.

We assume that the BP can be described in terms of
quasilocalized vibrations (QLVs) [7,22,23]. The approach is
an extension of the soft potential model that successfully
describes the low-temperature, low-frequency limit of the
vibrational dynamics [24,25]. It generalized the earlier atomic
soft potential model [26,27] to more extended modes as seen
in experiment [28] and simulation [29]. QLVs occur when
positive and negative interatomic force constants almost cancel
for some directions in the 3N -dimensional space of vibrations.
Properties of QLVs, also called resonance modes, have been
studied extensively for defects, especially interstitial atoms,
in crystalline lattices, see, e.g., Refs. [30,31]. For QLVs to
be formed, it is not necessary that a single atom is loosely
bound to is neighbors, but a group of atoms can collectively
have a soft vibrational mode. In simulations, QLVs have
been observed while the Einstein spectra, i.e., the single atom
vibrations, showed no anomaly [29]. The atoms participating
in the QLV also participated in high-frequency modes. A QLV
has a material dependent structure, e.g., a coupled libration of
tetrahedra in SiO2 [28] or a chainlike (stringlike) motion in
close packed metallic structures [29]. It will always reflect
the relative weakness of the local structure of the given
substance against some collective motions of groups of atoms.
QLVs forming the BP explain the strong sound wave damping
observed in experiment [25,32]. Additionally, they explain the
nearly universal strength of the two-level systems in glasses [7]
as well as the qualitative difference of the diffusion in metallic
glasses compared to diffusion in crystals [33]. Our description
is in some aspects similar to the one of Klinger whose “soft
mode model” [34] also originates from the so-called atomic
soft potential model.

Our approach has a strong overlap with those other
approaches where the BP is an effect of strong disorder.
The harmonic eigenstates which ultimately form the BP are
all extended modes and as such they are the eigenmodes
of the “random” dynamic matrices. In the long-wavelength
limit, the model turns into the one of fluctuating elastic
constants [16,32]. For frequencies above the Ioffe-Regel limit,
the eigenmodes naturally become diffusons.

In our previous work [7,22], we showed that the interaction
of QLVs creates a BP. Due to the lack of symmetry, the
interaction between modes at similar frequency causes level
repulsion leading to the corresponding density of states
gexc(ω) ∝ ω and a dynamical matrix similar to the one gained
in the random matrix models. As in these models, the dynamic

matrix shows unstable modes. The underlying physical picture
of QLVs allows us to include anharmonicity that stabilizes
the system in a nearby configuration. The resulting modified
modes can be described in harmonic approximation. They
correspond to a “random” dynamic matrix that is restrained to
positive eigenvalues. The move from an atomic configuration
where some modes are unstable to a nearby minimum where
all modes are stable and all eigenvalues of the dynamic matrix
are positive, induces forces on all vibrational modes of the
original configuration that shift the lowest frequency modes
upwards. At low frequencies, the excess spectrum is changed
to gexc(ω) ∝ ω4 [24] and [27]. Together with the level repulsion
at higher frequencies the two effects give the BP a universal
shape. The BP is essentially described by only two parameters,
its position and height. Details, such as the extent of the
tail to high frequencies, are material dependent and beyond
the simple description. The description is restricted to low
frequencies where the specific features of the material, such
as peaks in the VDOS are not essential. The influence of
the high-frequency modes, though essential, is averaged out
and is only summarily included as effect of “high-frequency
oscillators.” We want to stress that as regards the BP, we treat
the vibrations as harmonic.

To gain more insight into the physics of the BP, it is essential
to study its dependence on the change of external parameters.
The purpose of the present paper is to extend our theory of
the boson-peak position ωb as a function of pressure P . A
theory predicting the ωb(P ) dependence has been worked out
by Parshin and two of the authors of the present paper [35]. This
theory dealt with the effect of the forces on the QLV, induced
by pressure. It predicted a blue shift δωb(P ) = ωb(P ) − ωb(0)
of the BP, sublinear at high pressures, having either the
form ωb(P ) = ωb(0) (1 + |P |/P0)1/3 or the form ωb(P ) =
ωb(0)[1 + (P/P0)2]1/6—depending on the distribution of the
random forces brought about by the pressure variation.
These predictions, as regards the high-pressure behavior,
were in agreement with previous experiments [36–38] and
were confirmed by subsequent experiments [39–43] and
simulation [44]. This work concentrated on the effects at high
pressures.

In the present work, we include additional smaller effects
of pressure, which are essential at low pressure, as seen,
e.g., in thermal volume expansion. A change of volume by
pressure changes the quadratic terms of the harmonic system
of QLV. Both the QLVs eigenfrequencies and their interaction
are affected.

Additionally, we correct one point in the theory developed
in Ref. [35], namely, the low-pressure behavior of the dom-
inating “uncorrelated” effect. This should always start with
a P 2 term rather than with a |P | term, which implies that
one does not see the dominating effect in the low-temperature
expansion.

In the following, we first recapitulate our model and show
the different mechanisms how pressure can affect the BP. In
a short excursion, we illustrate how a peak, which is not
caused by disorder, is changed by interaction with disorder
and finally merges into a “disorder” BP, the subject of the
present investigation.

The comparison to experiment shows that our results are
able to describe the low-temperature volume expansion of
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glasses, though admittedly with more parameters than one can
fix by the thermal expansion alone. This is demonstrated for
vitreous silica and a polymer. However, for those substances
where one has both low-temperature and high-pressure data,
the low-temperature effects are always too small to account
for the high-pressure behavior in terms of correlated forces.
We then discuss what these results and other measurements
indicate concerning reversible and irreversible effects and how
experiments could clarify this.

II. DENSITY OF STATES

A. The scheme

In this section, we introduce the basic equations and
notations that we will need in our analysis. Following
Refs. [22,24,35], we exploit the fact that there are low-
frequency quasilocalized vibrations (QLVs) in a glass. These
QLVs result from the interaction of soft localized modes
(SLM) with extended modes (sound waves). The harmonic
eigenstates are mixtures of these SLM and the extended modes
and are, therefore extended modes. Diagonalizing the dynamic
matrix one obtains these eigenmodes where the contribution
of the SLM is diluted and not easily observable. In computer
simulations, the SLM, in other words QLVs, are directly
observed for the lowest frequencies where due to the finite
number of atoms the long-wavelength sound waves of similar
frequency are cut off [29]. At somewhat higher frequencies,
the SLMs can be extracted from the harmonic eigenmodes by
a demixing procedure [45]. QLVs are not an artifact of small
system sizes. The system size merely determines whether they
appear as SLM or are mixed into many eigenmodes and then
are seen as low-frequency peaks in the VDOS of some atoms
or group of atoms [30,46].

Our description of the boson peak is derived from the
properties of the SLM, sometimes briefly called oscillators. As
a rule, in glasses, they comprise some ten or even several tens
of atoms taking part in a collective vibration. Due to disorder,
there will be a distribution of frequencies of such modes that
we assume to be smooth and sufficiently broad on the scale of
the BP frequency, see also Sec. III. Apart from the textbook
example of the heavy substitutional isotope defect, QLVs can
result from a weak coupling of an atom or group of atoms to
the bulk of the material, e.g., dangling bond modes in open
structures, or a weak coupling of some molecular libration.
In these cases, the soft-mode frequency directly relates to the
atomic coupling to the matrix, the mode frequency ωs ∝ √

fs ,
where fs is the coupling constant. These modes will couple
weakly to the sound waves. As outlined in Ref. [24], we
concentrate on modes resulting from the strong disorder typical
for glasses. Since the low frequencies of these modes result
from the partial cancellation of positive and negative atomic
force constants, small variations of the structure can cause
relatively large changes of the vibration frequency resulting
in a large spread. The SLMs couple strongly to the sound
waves [25]. We denote the spectral density of their squared
frequencies by g0(ω2). As in our earlier work [24,25], we
expand the potential energy of the single modes in powers of
the oscillation amplitude to fourth order from the minimum

position:

Ui(x) = U 0
i + Mω2

i x
2
i

/
2 + Bix

3
i

/
3 + Aix

4
i

/
4. (2.1)

These are the “soft potentials” for the modes. Whereas in
Refs. [24,25], the soft potential was written in terms of the
displacement of the central atom we use here the notation
of Ref. [22], where x stands for the oscillator amplitude.
In this notation, the displacement of atom n is given as
sn = xen with en the harmonic eigenvector of the soft mode.
This eigenvector refers to the subsystem of atoms that have
a large amplitude, typically ten to hundred atoms. It is not
an eigenvector of the total 3N -dimensional system. There is
some arbitrariness in the definition of the subsystem. However,
this does not affect the results. An increase in subsystem
size is compensated by a reduction in the interaction term.
When the subsystem becomes the total system, the interaction
between the SLM vanishes and the SLM-eigenvectors become
eigenvectors of the total harmonic system. The softness is
reflected in the second term of Eq. (2.1). In contrast the
anharmonic coefficients Ai are not small, e.g., for silica
Ai ≈ 1000 eV/(nm)4 [24]. This is a typical value of the fourth-
order anharmonic constant independent of the smallness of
the second-order term. We want to stress that x is a mode
coordinate and the translational invariance of the whole system
is therefore guaranteed by construction. We assume that due
to disorder, there is a broad distribution of frequencies ωi

down to low frequencies ωi → 0. Further down, we will briefly
discuss the case of a narrow frequency distribution. We have
shown previously [35] that the third-order contribution induces
a broadening of the the BP but does not shift it significantly.
In the following discussion, we will discard this contribution.
The interaction of the soft modes with the sound waves induces
an interaction between them. We will take this interaction to
be weak. (In the case of strongly interacting modes, these
would be combined to a pair of split modes with again a
weak interaction.) As in the previous papers, we describe the
bilinear interaction between modes i and j by an elastic dipole
interaction:

Uij (xi,xj ) = Iij xixj (2.2)

with

Iij = gijJ
/
r3
ij . (2.3)

Here, J is the interaction strength, rij is the distance between
the soft modes and gij varies in the interval [−1,1]. It accounts
for the relative orientations of the modes. In the continuum
limit, the effect of a defect on the surrounding lattice can be
described by the first moment of the forces exerted on the
surrounding atoms, the dipole (force) tensor

�ij =
∑

n

F n
i rn

j , (2.4)

where n denotes the neighbors of the defect, Fn is the forces
exerted by the defect, and rn is the connecting vector [47]. In
Ref. [25], we showed, in the context of sound-wave damping,
the relation between �ij and the deformation potentials �l and
�t . The interaction energy between two such defined dipoles
is in the continuum approximation

Wab = �a
ij�

b
kl∂j ∂lGik(rab), (2.5)
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where ∂j denotes the space derivative and Gik(r) is the static
elastic Green’s function. In using the static Green’s function,
we neglect retardation effects. Since G decays ∝ 1/r the
interaction decays with 1/r3. The dipole tensors defined in
Eq. (2.4) contribute to the energy of the static equilibrium
configuration. The change with vibration determines the mode
interaction.

The elastic Green’s function Gik(r) depends only on
distance and sound velocities. For distances comparable to
the range of the interatomic interaction, i.e., several nearest-
neighbor distances, the interaction should more exactly be
written in terms of the interatomic Green’s function that is
given in terms of all vibrational modes of the glass, not just
the long-wavelength ones. This might be important when there
is a strong variation of the pressure induced frequency shifts of
the modes. For the present, we neglect this additional variation.

We denote the eigenvector of the soft mode σ by e
(σ )n
j

with n denoting the atoms and j standing for x,y,z direction.
The dipole tensor then changes in lowest order of the mode
amplitude x as

�
(σ )
ij = x(σ )

∑
n

F n
i e

(σ )n
j , (2.6)

where the sum is over the atoms involved in the soft mode, i.e.,
twenty to fifty atoms. Together with Eq. (2.5) this determines
the interaction term Iij between the modes. The interaction
strength depends on the distance and structure of the modes,
their relative orientations and on the average the elastic moduli.

The interaction between the modes strongly modifies the
low-frequency tail of the spectrum and gives rise to a universal
shape of the boson peak in the excess spectrum [22]. The
derivation is done in two steps. First, we solve the harmonic
problem of interacting modes. The interaction between soft
modes and the more numerous higher-frequency modes
strongly modifies the original spectrum for ω2 < ω2

c , where ωc

is the so-called limiting frequency, ω2
c being proportional to

the interaction strength J . The resulting frequency spectrum
(VDOS) at low frequencies is linear in ω due to the level
repulsion. It extends to negative eigenvalues ω2. At that
stage, our results are similar to the ones of random matrix
approximations.

In a second step, the system is stabilized by the anharmonic
terms in Eq. (2.1). Taking these terms into account the energy
curve for the unstable modes turns into a double well structure
with the mode origin at the maximum between the two wells.
Stability is restored by displacing the unstable modes into
the minima positions where the corresponding eigenvalues are
positive.

These displacements are of the order of an interatomic
distance. They induce additional dipole forces on all oscil-
lators. Again, the origins of the oscillator modes are slightly
shifted and the eigenvalues change due to the anharmonic
terms. Whereas for the higher-frequency modes, the frequency
shift is negligible the lowest-frequency modes are strongly
affected by a blue shift. The excess spectrum at low frequencies
goes as gexc(ω) ∝ ω4, which was found earlier in the soft
potential model [24] and is called the seagull singularity. (It is
a singularity in the distribution of the stiffness constants of the
SLMs in the soft potential model.) It forms the low-frequency

flank of the BP. We want to stress again that anharmonicity is
an essential ingredient in defining the structure. However, the
resulting BP vibrations are harmonic.

We have shown previously that the forces f , acting on the
soft modes, have an approximately Lorentzian distribution of
width δf :

Q(f ) = 1

π

δf

f 2 + δf 2
. (2.7)

This force distribution is strictly valid for a random distribution
of dipoles. The BP frequency is then [7]

ωb =
√

3A1/6(δf )1/3M−1/2, (2.8)

where M and A are the characteristic mass of the oscillators
and the fourth-order anharmonicity coefficient, respectively.
The power 1/3 is associated with the fact that it is the fourth-
order anharmonicity that stabilizes the system. The pressure
dependence of δf was found to be the main contributor to the
shift of ωb at high pressures [7].

B. Pressure effects

1. General considerations

Under an applied external pressure P , the glass will be
strained on average by

εαβ = −(P/3K)δαβ = εδαβ, (2.9)

where K is the compression modulus. On average all distances
between atoms will be changed as

dij (ε) = dij (0)(1 + ε). (2.10)

Due to disorder in a glass, the displacements will fluctuate.
The average displacement is often referred to as affine and the
deviations from the average are then separated into random
fluctuations around the average and a strongly nonaffine
part [48]. Affine and nonaffine distortions are already seen
in diatomic crystals without inversion symmetry. There the
affine distortion refers to the distortion of the unit cell and
the nonaffine one reflects the relative displacement of the two
atomic species. Random fluctuations are, of course, absent in
such a system. The nonaffine displacements are related to the
optical modes. Strong nonaffine displacements are observed
also for defects in crystals, e.g., self-interstitials in fcc metals
where they are related to QLVs of the interstitial atoms [31]. We
believe that the nonaffine displacements in glasses are related
to the BP, i.e., the soft modes. Due to the large effective mass
of the SLMs [24], they are correlated over some length. The
random fluctuations, on the other hand, vary on an atomic scale
and we will treat them as uncorrelated to the soft modes. The
change of the parameters of the expansion (2.1) and (2.2) is
twofold. The parameters will on average both be shifted with
strain ε and gain additional fluctuating contributions:

ω2
i → ω2

i + δω2
i ε + (

δω2
i − δω2

i

)
ε, (2.11)

Ai → Ai + δAiε + (δAi − δAi)ε, (2.12)

Iij → Iij + δIij ε + (δIij − δIij )ε. (2.13)
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Here, the bar denotes averaging over soft modes within
some frequency interval ω much smaller than the average
eigenfrequency of the QLVs.

In our model, the shape of the excess intensity is not
changed markedly by pressure. The change of strength of
the low-frequency ω4 contribution shifts the position of the
maximum, the boson-peak frequency ωb, and concomitantly
the intensity gexc(ωb) varies. Modes shifted from/into the
low-frequency part are compensated in the high-frequency
tail of the BP (ωb < ω < ωc). For low pressure, in linear
approximation, the pressure effect can be expressed in terms
of two effective Grüneisen constants:

ωb(P ) = ωb(0)(1 + �bP/K), (2.14)

gexc(ωb,p) = gexc(0)(1 + �gP/K). (2.15)

In the following, we show how both affine and nonaffine
distortions contribute to the two parameters. Increasing the
pressure, we believe that eventually the nonaffine effects will
dominate. These lead to the asymptotic pressure dependence
with P 1/3 discussed in the previous work [35]. We show
that the main contribution is from two effects, which we
denote as correlated and uncorrelated. For positive pressures,
the two contributions are additive (provided the signs of
the coefficients describing their pressure dependence are the
same), whereas for negative pressures their difference enters.

2. Affine effects

A special case and the most straightforward assumption
would be that all modes comprising the BP shift by a common
factor ω(P ) = ω(P = 0)(1 + γGP/K). The BP frequency
then changes with the same factor:

ωb(P ) ≈ ωb(0)(1 + γGP/K), (2.16)

and the excess intensity at the BP changes, due to the stretching
of the VDOS and the denominator ω2

b, with the third power:

gexc(ωb,P )

ω2
b(P )

= gexc(ωb,P = 0)

ω2
b(p = 0)

1

(1 + γGP/K)3
. (2.17)

Here, γG is the average mode Grüneisen constant, defined as
γG = −d(ln ω)/d(ln V ).

Assuming further that the Grüneisen constant of the
excess modes equals the one of the sound waves, one gets
gexc(ω,P )/gDebye(P ) = const for ω � ωb. This simple case is
given if all interatomic interactions scale with a common single
parameter. For a purely repulsive soft sphere interaction 1/rn,
this case was treated recently [49]. The resulting scaling laws
reflect then the scaling of energy with distance. As the authors
state, in nature, this might apply to systems under extremely
high pressure when the physics is determined fully by the
nearest-neighbor repulsion and the attractive interaction has a
negligible contribution. This special case is outside the scope
of the present work.

Equations (2.1) to (2.3) determine the BP essentially by the
spectrum of noninteracting soft modes ωi and their interaction
Iij . The frequencies ωi are determined by local configurations
of atoms causing near instabilities. The strength of the
interaction, on the other hand, depends not only on the local
geometries but also on the average elastic coefficients of the

glass matrix. Our description in terms of QLVs thus provides a
richer scenario. Two “partial Grüneisen parameters” emerge in
our theory: one describes the shift of the noninteracting local
modes

ωi(P ) = ωi(P = 0)(1 + γωP/K) (2.18)

and a second one the change of the interaction strength

I (P ) = I (P = 0)(1 + γJ P/K)2 ≈ I (P = 0)(1 + 2γJ P/K).

(2.19)

Here, we introduced the factor (1 + γJ P/K)2 because it refers
to an energy term instead of a frequency term. A change
of the fourth-order term Eq. (2.1) with pressure changes ωb

only negligibly. Not too large changes of the third-order term
slightly broaden the BP excess density of states [22,35].

The shift of the BP frequency when the interaction strength
changes, whereas the frequencies ωi , of the noninteracting
modes are kept constant, was given earlier [22] as

ωb(P ) = ωb(0)(1 + γJ P/K)2+2n/3. (2.20)

Here, n denotes the slope of log g(ω) in the vicinity of
the limiting frequency ωc below which the interaction will
create unstable modes. To keep in line with the definition of
the Grüneisen parameter, we write here, different from the
previous reference, the change of the interaction strength J

quadratic in γJ . In general, the interaction term changes with
pressure both due to a change of stiffness of the glass and
the reduction of the distances between soft mode centers. If
the variation of the mode Grüneisen parameters of the modes
responsible for the interaction is not too large, one can write
approximately

γJ ≈ 0.5 − γD. (2.21)

Here, the first term reflects the increase of the interaction when
the distances between the modes change due to a volume
reduction by pressure. The second term accounts for the
reduced interaction when the elastic moduli increase, Eq. (2.3).
The interaction strength J is inversely proportional to an elastic
modulus. We show further down that this approximation can
be used in the cases of polymethylmethacrylate (PMMA) and
silica.

In the opposite case, γJ = 0, we get from Ref. [22] Eq. (26):

ωb(P ) = ωb(0)(1 + γω P/K)−1−2n/3. (2.22)

Surprisingly, keeping the interaction constant, hardening of
the noninteracting soft modes with pressure is concomitant
with a softening of the BP frequency ωb. The reason for this
is that hardening of the noninteracting soft modes reduces the
number of modes that are sufficiently affected by the mode-
mode interaction to form a BP (the equation assumes the same
γω for all modes participating in the creation of the boson peak,
in particular, those which are instable and get stabilized by the
fourth-order term).

Combining the two terms, the shift of the BP in this
approximation becomes

ωb(P ) = ωb(0)(1 + γJ P/K)2+2n/3/(1 + γω P/K)1+2n/3.

(2.23)
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FIG. 1. (Color online) Shift of the BP frequency for different
Grüneisen constants for a typical value n = 1. Solid red line:
γJ = γω = γ , dashed blue line: γJ = 0, γω = 0.5γ , green dotted
line: γJ = 0.5γ , γω = 0, and black dash-dotted line: γJ = γ ,
γω = 1.6γ .

In the case γJ = γω, this reduces to the simple result Eq. (2.16).
In the general case, the BP frequency can, depending on the
strengths of γJ and γω, with pressure increase or decrease or
even go through a minimum. Figure 1 depicts this variation for
different scenarios. The approximate shape of the BP excess
DOS {Eq. (27) in Ref. [22]} can be used to estimate the change
of the VDOS at the BP:

gexc(ωb,P ) = g (ωb,P = 0)
(1 + γJ P/K)8n/3

(1 + γω P/K)1+8n/3
. (2.24)

Again, one sees the competing effects of the two variations.
For the simple case γJ = γω, the BP intensity decreases with
(1 + γ P/K)−3, whereas, in general, the intensity depends on
the underlying atomic mechanism both through the ratio γJ /γω

and the DOS of the noninteracting modes, in our simplified
description the value n.

For the above estimates, the VDOS of the BP was
approximated by ω4 and ω dependencies below and above ωb,
respectively. More exact values can be obtained numerically.
In Fig. 2, we show, for the case γω = 0 how the BP intensity
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FIG. 2. (Color online) Dependence of the BP intensity on the
BP frequency under a change of the interaction strength. Symbols:
numeric calculation, black line: least square fit, and green line:
α = 2 − 0.75n.

changes with the shift of the BP. It can be described by a simple
dependency

I (ωb) = I0ωb
−2+0.75n. (2.25)

The decrease with increasing ωb is always less than the
ω−3

b found for the simple overall Grüneisen scaling. The
effective logarithmic slope n of the DOS of the noninteracting
modes is a parameter in our general description. Hopefully,
experiments on systems where the atomistics is understood
will provide some information in future. To verify the analytic
results, we repeated the previous numerical simulation of our
equations [22] for different values of n. The simulations were
done for samples of 2197 oscillators placed on a simple cubic
lattice with periodic boundary conditions. The interaction
was changed by varying J . The lattice parameter was kept
constant, the gi,j were random numbers from the interval
[−1,1], independent of J . The anharmonicity parameters were
kept constant, Bi = 0 and Ai = 1. Within numerical accuracy
we did not see a deviation from the analytic results.

Little is known about n, which mimics the frequency
dependence of the VDOS of the noninteracting soft modes.
It will probably be not too far from n = 1 or n = 2, which
we shall assume for the fits to experiment further down. This
leaves then again two parameters. If Eq. (2.21) holds, one is
left with a single parameter. We will show further down that
the reduction to a single parameter suffices to reproduce the
experimentally observed low-temperature thermal expansion
of vitreous SiO2 and PMMA.

3. Nonaffine effects: uncorrelated forces

In our previous work, we have dealt with the shift of the
BP due to forces induced by pressure. This shift is additional
to the one treated above. We begin with a discussion of the
uncorrelated part of the QLV-strain interaction. Not repeating
the derivation of Ref. [35], we will discuss some of its crucial
points. The interaction between the strain and a soft oscillator
is bilinear:

Hint =
∑
i,k

�ikεikx, (2.26)

where �ik is the deformation potential tensor and x is the
coordinate of the QLV. As we have shown in our earlier work,
the interaction between the soft modes and the subsequent
stabilization introduces random forces f on the modes [7,22].
The deformation by pressure adds additional forces f [35].
The total random force f̃ has then two contributions

f̃ = f + f. (2.27)

To find the correlation function of the static random forces
acting on the QLVs, one should sum over all the neighboring
two-well configurations. The random force Eq. (2.27) is linear
in the deformation potential � and can be expressed via its
angular average components

�xx = �yy = �zz ≡ 1
3�. (2.28)

If the distribution of the random forces at P = 0 is Q(f ),
then the distribution of the total random force f̃ at some
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pressure P is given by the convolution

FP (f̃ ) =
∫ ∞

−∞
Q

(
f̃ − P

3K
�̄

)
D(�̄)d�̄. (2.29)

Here, Q(f ), given by Eq. (2.7), is the distribution of random
forces in the absence of pressure—see Ref. [22]—while D(�̄)
is the distribution of the values of the deformation potential
averaged over the “directions” of the QLVs.

As reported earlier, the shift of the BP by the additional
forces for large pressures is given by

ωb(P ) = ωb(0)(1 + |P |/P0)1/3 for |P | � P0, (2.30)

where P0 is a material dependent parameter. It can be expressed
approximately in terms of the bulk modulus and the deforma-
tion potential as P0 = 3Kf0/�0 [35] where all quantities refer
to the P = 0 state and f0 is a material parameter. Since changes
of the bulk modulus and the deformation potential with
increasing pressure largely cancel, Eq. (2.30) can remain valid
for materials with marked hardening under pressure. This has
been observed in experiment [40]. The extra forces enhance the
strength of the seagull singularity—the low-frequency ω4 flank
is extended to higher frequencies. The total number of SLM is
not markedly changed. Consequently, the excess intensity at
the BP changes to

gexc(ωb,P )/ωb(P )2 ∝ ωb(P )−1. (2.31)

Such a dependence has been observed by Andrikopoulos
et al. [39] in As2S3 at room temperature.

Though the experiment seems to corroborate Eq. (2.30)
even down to low pressure, one can show that in the low-
pressure limit the approximation must break down. For small
values of P (P � P0), one can expand Eq. (2.29) and get [as∫ ∞
−∞ d�D(�) = 1]

FP (f̃ ) = Q(f̃ ) + 1

2
Q′′(f̃ )

∫ ∞

−∞
d�D(�)�2

(
P

3K

)2

,

(2.32)

where the linear term vanishes since D(�) is an even function
of �. This vanishing of the linear term was also seen in the
simulation of our model, see Fig. 4 in Ref. [35]. The pressure-
induced additional forces, which are uncorrelated to the forces
creating the BP thus do not contribute to the low-temperature
expansion, which we discuss further down in this paper.

The approach is based on two assumptions. First, we assume
that there is no correlation between the functions Q(f ) and
D(�̄). Indeed, the random forces f are due to the action of
neighboring two-well configurations on a particular QLV. They
depend not only on the deformation potential of the QLV but
also on deformation potentials of the two-well configurations.
This is a random quantity. The second assumption is that
the pressure does not induce a transition to a different glass
structure. The latter assumption does not preclude a limited
number of local configurational changes taking the glass to
some configuration which is metastable at P = 0. Reversibility
then depends on temperature.

In this reasoning, one point is left out, namely, the special
role of the “initial” pressure P = 0. We have implied that the
glass is grown out of a melt (in other words, quenched) at
P = 0. Had it been grown at some external pressure P1 the

situation would have been more involved as a “memory” of
P1 would be preserved within the glass. It is worthwhile to
note that the same situation could emerge provided the glass
is grown, for instance, in an external dc electric field E. The
“equilibrium” state of the glass after cooling down would then
be characterized by the vector E.

4. Nonaffine effects: correlated forces

Leonforte et al. [48] report for a Lennard-Jones glass
nonaffine displacements with correlation lengths of some 20
nearest-neighbor distances. These nonaffine regions correlate
with the excess BP modes. This finding can be understood from
the properties of QLVs. As shown in Ref. [24] the soft modes
extend over 20 to 100 atoms or molecular units. Furthermore
the soft modes tend to cluster. Particularly large nonaffine
displacements occur in the presence of soft (quasi) localized
modes. This can easily be understood considering that in an
harmonic system the static response function of an eigenmode
to an external force, fn can be written as

g
(σ )nn′
ij = e

(σ )n
i e

(σ )n′
j

mσω(σ )2
, (2.33)

which means the displacement of an atom participating in
a mode is the larger the more localized the mode and the
lower its frequency. This effect is well known in the physics of
crystalline defects, e.g., interstitial atoms in fcc metals [31].

Large nonaffine displacements indicate a strong coupling
of some modes to strain. This will lead to changes of both
the frequencies ωi of the noninteracting modes and of their
interaction. They will be more pronounced the lower the
frequency. The sign and magnitude of this change will depend
on the type of glass. A much larger effect is expected from the
change of forces. We have seen above that the static forces due
to the stabilization of the modes, i.e., the change of the origin
in a double well potential, create the sea-gull singularity and
are responsible for the BP.

Strain induces an additional dipolar effect �ind
ij , which can

be written in terms of a polarizability matrix

�ind
ij =

∑
kl

αijklεkl, (2.34)

where αijkl is the (dielastic) elastic polarizability [31]. For a
given defect concentration, this polarizability reduces also the
average elastic moduli

Cijkl = − c

va

αijkl . (2.35)

The polarizability of a low-frequency QLV can be quite
large. For an order of magnitude estimate, we take the
polarizability of an interstitial defect in crystalline Cu [50]:

�

μ
≈ 100 eV, (2.36)

where μ is the distortion strength. The above value depends
strongly on the local geometry of the distortion and there might
be a large variation between different materials. For a pressure
of P = 1 GPa and the bulk modulus of Cu B = 140 GPa, this
gives an estimate of �ij ≈ δij (−0.4 eV). This is comparable
to the typical values around 1 eV for the active parts of the
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dipole tensor [25]. We have to remember, however, that the
mode interaction is not determined by the total dipole tensor
but only by the part that couples to the given mode. This can,
depending on the structure of the glass, reduce the effect of a
given strain.

We can now consider the shift of δf due to pressure. Making
use of the equation (see Ref. [7])

δf = D

(
M3

A

)1/2

ω3
c

(
ωc

ω0

)n

, (2.37)

one can write for the variation of (δf ) with pressure

(δf ) =
[
−1

2

A

A
+ (3 + n)

ωc

ωc

− n
ω0

ω0

]
δf, (2.38)

where D is a constant of order of unity and ω0 is a limiting
frequency, typically about the Debye frequency. We will
consider such pressures that the strain |ε| � 1. Then in the first
approximation, assuming that A, ωc, and ω0 are continuous
functions of strain, one can write for the variation of these
quantities under pressure:

A

A
= γAε,

ωc

ωc

= γcε,
ω0

ω0
= γ0ε, (2.39)

where γA, γc,and γ0, are dimensionless constants. Their abso-
lute values are of order of (or a little bigger than) unity. As a
result, one gets

(δf ) = γ ε, where γ = −γA/2 + (3 + n)γc − nγ0.

(2.40)

Due to polarization, the forces exerted by the two-well
configurations will thus be multiplied on average by a factor
(1 + αcorrP ), so that

f̃ (P ) = f (1 + αcorrP ), (2.41)

where αcorr = −γ /K. Consequently, the width of the force
distribution will be multiplied by the same factor and, only
taking this effect into account, the BP frequency shifts as

ωb(P ) = ωb(0)(1 + αcorrP )1/3. (2.42)

For αcorr > 0 and positive pressures, this corresponds to our
earlier result but shows an inverse effect for negative pressures
(or positive pressures and αcorr < 0).

Together with Eq. (2.30), the total shift due to the correlated
and uncorrelated forces is for high pressures,

ωb(P ) = ωb(0)
(√

1 + α2
uncorrP

2 + αcorrP
)1/3

. (2.43)

Writing
√

1 + α2
uncorrP

2 interpolates the pressure dependence
for intermediate pressures and is exact (analytical) for the
limiting cases of low and high pressures. There is no
quantitative theory for intermediate pressures as one does not
know the random properties of the deformation potential. In
the low-pressure limit, the correlated contribution vanishes
linearly unlike the uncorrelated effect. In contrast to this, the
correlated contribution persists and thus contributes to the
thermal expansion, discussed below. Setting αcorr + αuncorr =

1/P0, the form of our previous result may be regained for
|P | 
 P0.

5. Relaxations and permanent densification

So far, we have dealt with changes of the VDOS not involv-
ing relaxations, the diaelastic effects. Double well potentials
are, however, tantamount to the existence of paraelastic effects.
Under an applied external pressure, the equilibrium occupation
probability of the minima changes. Equilibrium is restored by
relaxations over the separating barrier. These local changes
will induce additional forces on all soft modes and will give
an additive contribution to αuncorr.

Above the tunneling regime, relaxation is a phonon acti-
vated process with a temperature dependent time constant. In
a glass, one expects a continuum of such relaxation times. At
finite temperatures, transitions between the minima of some
two well systems with a comparatively low barrier will be rapid
and merge with the diaelastic contribution. However, there is
an increasing number of relaxations with higher and higher
barriers, ending only at the effective barrier height of the flow
process of about 30 kTg , where Tg is the glass temperature. So
one has to reckon with a large number of possible relaxations
with barriers of the order of 1 eV.

While usually these very high barriers play no role in
the glass, the situation changes at high pressures, where one
changes the volume of the glass by a sizable percentage. It
is to be expected that the coupling constant of these high
barriers to the external compression is markedly higher than
the coupling constant of the low-barrier tunneling states, which
is known to be of the order of 1 eV. Consequently, some of the
high barriers are lowered to half their low-pressure value or
even less by the high pressure and can be jumped over at the
lower temperature. Taking the pressure away again, the sample
can remain in a minimum with a smaller volume, which was
not accessible at low pressure, and thus remain permanently
densified. The permanent densification is the compression
counterpart of the plastic deformation under a large shear.
Since the local density change is much larger than the overall
one, the densification is still a sum of relatively few local
processes, which leaves the rest of the sample essentially the
same, though in a slightly more strained state. Again, such a
local change will induce additional forces on all soft modes
and will give an additive contribution to αuncorr in the densified
sample. In the comparison to experiment, we will discuss the
example of densified silica.

III. OTHER BOSON PEAKS

There is no generally accepted definition of boson peak.
The boson peak, we discussed so far, we will briefly call
soft potential BP, the corresponding physics is put forward in
detail in our papers [7,22]. As mentioned in the introduction,
low-frequency maxima of the scattering intensity can have
many different origins. We consider a broad distribution of
soft modes that are caused by disorder. The structure of these
soft modes might well resemble fragments of a low-frequency
optical mode, as argued, e.g., for vitreous silica [3]. The
situation is different for soft modes such as librating molecules
in plastic crystals [4,5]. These modes will have a well-defined
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frequency that is broadened by disorder. Such a peak might
show a different behavior depending on broadening and
interaction. For weak interaction, the pressure effect on these
modes is dominated by their local structure. For sufficiently
strong interaction, these modes will behave as discussed in
this paper. To simulate this schematically, we used again the
simulation scheme of our previous work [22]. The spectrum
of the noninteracting modes consisted of two parts. 95% of the
modes were distributed according to g0(ω) = 1.9(ω − 0.25)
for 0.25 < ω < 1.25 and zero otherwise. To this, we added
a narrow Gaussian distribution of modes amounting to 5%
centered at ω = 0.25 with variance 0.01. With this distribution,
we solved numerically the equations (2.1) with the interaction
term (2.2). For simplicity, we set Bi = 0 and Ai = 1. The
simulation was done for samples of 2197 oscillators, placed
on a simple cubic lattice with periodic boundary conditions.
Disorder was simulated by varying gij randomly in the interval
[−1,1]. For each coupling strength, at least 25 000 samples
were calculated. The effect of a change of the coupling strength
J , Eq. (2.3), is shown in Fig. 3. For not too large couplings
(J < 0.10), as to be expected, the Gaussian line broadens
and shifts to slightly lower frequencies. More interesting
is the evolution of a shoulder on the low-frequency flank
(J = 0.07) that evolves for J = 0.10 into a secondary peak.
This secondary peak is the “boson peak” discussed in our work.
Increasing the coupling even more, the two peaks merge and
for J = 0.20 only a single boson peak remains.To illustrate this
anomalous behavior, we show in Fig. 4 the shift of the intensity
peaks against coupling. Increasing J , we observe a weak red
shift of the Gaussian peak. In contrast, the (disorder-)boson
peak shows the blue shift expected from our work. The theory
presented in this paper is valid only for the lower branch.
It describes the shift of the low-frequency peak caused by
disorder. To accurately describe the shift of the original peak,
upper line in Fig. 4, the model would have to be extended to
include the shape of the original peak. Note that Figs. 3 and 4
were calculated under the assumption the frequencies of the
noninteracting modes do not change under pressure, γω = 0.
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FIG. 3. (Color online) Excess mode density for a Gaussian distri-
bution of modes coupled to a small density of modes with frequencies
ω < 0.25. The coupling strength between modes (2.3) is varied from
J = 0.03 to 0.30. The decay of the intensity of the Gaussian peak
near ω = 0.25 follows the increase of the coupling strength J .
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excess VDOS, Fig. 3, as a function of coupling strength (red dashed
line: Gaussian modes, and black solid line: disorder).

IV. COMPARISON TO EXPERIMENT

A. Thermal volume expansion

One of the questions raised in the present paper is whether
our model, which is able to explain the measured high-pressure
boson-peak shifts, is also able to explain the boson-peak shift
at low pressure. In order to answer this question, one needs an
accurate determination of the boson-peak shift at low pressure.

Such an accurate determination of the low-pressure boson-
peak shift is possible using the heat capacity per unit volume
cP (T ) and the thermal volume expansion α(T ) of the glass
at low temperature. In the heat capacity, the boson peak is
manifest as a maximum in cP /T 3 at a temperature Tmax of
about 5 to 10 K. One can define a temperature-dependent
Grüneisen parameter �(T ) by the Grüneisen relation

�(T ) = α(T )K

cV (T )
(4.1)

[note that at these low temperatures, the heat capacities cP (T )
and cV (T ) are practically identical].

In the simplest possible approximation, one can identify
the Grüneisen parameter �b of the boson-peak frequency with
�(Tmax):

�(Tmax) = �b = ∂ ln ωb

∂ ln V
. (4.2)

This approximation holds if all modes in the neighborhood
of the boson peak have the same Grüneisen parameter. In
experiment, this can be immediately seen by an essentially
constant �(T ) in the region around Tmax. We will later
discuss an example (PMMA) showing this behavior. It can be
recognized experimentally already by the peak in α(T )/T 3,
which for a mode-independent Grüneisen parameter appears
at the same Tmax as the peak in cP /T 3. In such a case, the
intensity g(ωb)/ω2

b changes with 1/ω3
b, as discussed in the

context of Eq. (2.16).
If the Grüneisen parameter is not the same for all modes in

the boson-peak region, the low-temperature thermal volume
expansion coefficient α(T ) is obtained by a sum over all low-
frequency modes. The resulting Grüneisen parameter �(T )
can be written in terms of the Grüneisen constants �i of the
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single modes as [51]

�(T ) =
∑

i �iciV (T )∑
i ciV (T )

, (4.3)

where the sum is over all vibrational modes and ciV (T )

is the contribution of mode i to the heat capacity at the
temperature T :

ciV (T ) = k

(
�ωi

2kT

)2 /
sinh2(�ωi/2kT ) (4.4)

with k the Boltzmann constant. Depending on the material,
there can be a considerable variation in the �i values. They
can even vary in sign. In our examples, vitreous silica will
turn out to be a case where the peak in α(T )/T 3 is markedly
shifted with respect to Tmax, so one needs to take the frequency
variation of the Grüneisen parameter explicitly into account.
This implies a scaling of g(ωb)/ω2

b with ω−a
b , where a is not

equal to 3.
Having determined the correct Grüneisen parameter �b,

the initial slope of the pressure dependence of the boson-peak
frequency ωb is given by Eq. (2.15) as limP→0(∂ωb/∂P ) =
�bωb/K , where K is the compression modulus of the glass at
zero pressure.

In the present paper, we will take two approaches to describe
the thermal expansion in the temperature region corresponding
to the boson-peak frequency. The first is to assume a linear
variation of the Grüneisen parameter at the boson peak with
increasing frequency. This is a two-parameter fit that requires
�(ωb) (which not necessarily equals �b, see the fit of vitreous
silica) as one parameter and the slope of the Grüneisen
parameter at ωb as the second, see Eq. (2.15).

The second possible fit is to take our model, in which all
temperature shift of the excess modes is described by the four
parameters n, γJ , γω, and αcorr, too many parameters to be
fitted to the data. However, the knowledge of both �(ωb) and
the slope ∂�(ω)/∂ω at ωb allows to calculate the scaling of
g(ωb)/ω2

b with ωb. Thus one can determine n from Eq. (2.25),
use the approximate form of Eq. (2.21) for γJ and fit only γω.

This is a compromise because αcorr is set to zero without
any justification. Nevertheless, such a fit is useful, because
it links the measurements to the physical mechanisms of the
boson peak. It will at least give some indication of the relative
magnitudes of the different contributions discussed above.

1. Vitreous silica

The first example is vitreous silica. The upper part, Fig. 5(a),
compares three measurements [52–54] to the heat capacity
determined from the inelastic neutron scattering spectrum [54]
at 51 K, to show that there is agreement within experimental
error. Having asserted this, one can take the measured vibra-
tional spectrum g(ω) and fit the measured thermal expansion in
Fig. 5(b) with an appropriate Grüneisen parameter. Since the
thermal expansion is negative, one needs a negative Grüneisen
parameter. This shows immediately that the proportionality
of the boson-peak frequency to (1 + P/P0)1/3 valid at high
pressures does not work at small pressures, because it
predicts a positive Grüneisen parameter. This excludes the
possibility that the BP shift is fully determined by the nonaffine
uncorrelated force effects.

(a)

(b)

FIG. 5. Low-temperature thermal properties of vitreous silica.
(Top) Heat capacity cp per unit volume, plotted as cp/T 3, where T is
the temperature. Measured data [52–54] are in reasonable agreement
with the heat capacity calculated from the vibrational density of states
measured by inelastic neutron scattering [54] at 51 K. (Bottom)
The volume thermal expansion α, plotted as α/T 3. The measured
data [55–58] are fitted in terms of the neutron spectrum at 51 K,
attributing a Grüneisen parameter �(ω) = −4.4 + 1.2(�ω − �ωb) to
the vibrations around the boson-peak frequency �ωb = 4 meV.

One sees in Fig. 5, top that the peak in α/T 3 is shifted to
lower frequency with respect to the peak in cp/T 3. This shows
that the Grüneisen constants of the modes vary. We introduce
a frequency-dependent Grüneisen parameter �(ω) of the form

�(ω) = �(ωb) + �1(ω − ωb), (4.5)

where �1 describes the linear variation of �(ω) near the
boson peak. The fit in Fig. 5, bottom, required the values
�(ωb) = −4.4 and �1 = 1.2 meV−1, as specified in the
caption. With this frequency-dependent Grüneisen parameter,
we then calculate the thermal expansion coefficient according
to Eq. (4.3).

The thermal Grüneisen parameter at the maximum of
cP /T 3 corresponding to the boson-peak frequency is −4.4
(negative, because the thermal expansion in the relevant region
is negative). This is not directly �b, because the boson peak
is a peak in g(ω)/ω2. In order to determine �b, we calculate
the peak shift for a small volume change numerically. In this
procedure, we find a strong influence of the linear variation
of �(ω) at ωb. For silica, we get �b = −10.8, a much larger
negative value than �(ωb).

The reason for this strikingly large difference lies in the
behavior of the background of a peak in g(ω/)ω2, which
initially is a density of states proportional to frequency squared.
Note that our slope value of 1.2 meV−1 implies that one has a
negative Grüneisen parameter of −9.2 at the frequency zero,
which gradually goes to zero at about twice the boson-peak
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FIG. 6. (Color online) Fit of the reduced vibrational density
of states of vitreous silica. Symbols: neutron scattering measure-
ment [54], blue dashed line: Debye part, and red line: sum of Debye
part and excess density. Boson peak height and intensity are fitted to
the experimental value.

frequency. The strong frequency dependence of the Grüneisen
parameter has a drastic influence on the scaling behavior of
g(ωb)/ω2

b, which no longer scales with 1/ω3
b. Instead, the

numerical calculation showed a much weaker scaling with
1/ω1.3

b . In our model, this would imply a value of n = 0.93 to
satisfy Eq. (2.25).

Next, we investigate how these findings translate to our
description in terms of QLVs. As a first step we fit the reduced
VDOS, see Figure 6. Following the procedure outlined above,
we choose n = 1, use the approximate form of Eq. (2.21) for
γJ , and fit only γω.

Since our model only determines the excess VDOS, gexc(ω),
we add the experimentally known Debye part. There is a
problem concerning its high-frequency cutoff. Near the BP
frequency, the Ioffe-Regel limit is reached for the sound waves,
the modes become strongly intertwined. Level repulsion will
affect all the modes strongly. In the approximation of the
present model, this means that the modes turn into “high-
frequency oscillators.” To take this into account, a smooth
cutoff was introduced, see the dashed blue line.

As to be expected, the heat capacity calculated for the fitted
VDOS (red line) is in good agreement with the measured
vibrational part of the specific heat, see Fig. 7, top. The
deviation from experiment is similar to the one of the simple
quadratic fit (blue line). To include the contributions of the
two-level systems (TLS), which dominate cV below T ≈
2 K, we added the term cTLS = 3.04 Jm−3 K−2 determined
experimentally [57]. For comparison, we show by the dash-
dotted green line the low-temperature fit by Lyon et al. [57].
At temperatures around 2 K, this fit indicates a higher number
of thermally active modes than in our fit. Such a difference is
also observed experimentally for different samples, see Fig. 5.
This can be accounted for in our description by increasing the
two-level contribution to cTLS = 3.04 Jm−3 K−2 (dashed red
line).

Next, we calculate the thermal volume expansion coef-
ficient at low temperatures. We consider only the “affine”
effects discussed above. This would give us, in principle,
three parameters: γω, γJ , and n. To reduce the number of
parameters, we fix n = 1, as indicated from the above, and take
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FIG. 7. (Color online) Fit of the low-temperature thermal proper-
ties of vitreous silica. (Top) Heat capacity cp per unit volume, plotted
as cp/T 3. Symbols: measured data [54], red line: values calculated for
the fitted spectrum in Fig. 6, dashed red line: values with increased
TLS contribution, blue line: values calculated from the measured
vibration spectrum, and green dash-dotted line: low-temperature
fit [57]. (Bottom) Volume thermal expansion α plotted as α/T 3.
Measured data: triangles and diamonds [59]; green dash-dotted line:
low-temperature fit [57]; blue dash-dotted line: contribution of the
Debye part calculated with the measured low-temperature Grüneisen
constant γD = −2.29 [60]; solid red line: sum of total vibrational and
TLS contributions; and dashed red line: sum of total vibrational and
enhanced TLS contributions.

ωc = 2.5ωB . We assume that in the considered temperature
interval no dramatic effects regarding the mode couplings
occur and approximate the coupling partial Grüneisen constant
by the Debye expression of Eq. (2.21) γJ ≈ 0.5 − γD . The
remaining unknown γω, the partial Grüneisen constant of
noninteracting modes, we then treat as fit parameter. For γω =
15, we get an excellent fit, apart from the lowest temperature,
see red line in Fig. 7, bottom. The TLS contribution was taken
as αTLS/T 3 = −1.323 [57]. Increasing the TLS contribution as
before for the specific heat, the fit becomes perfect also at low
temperatures (red dashed line). The Debye contribution to the
low-temperature volume expansion is nearly negligible (blue
dash-dotted line). For comparison, the low-temperature fit of
Lyon et al. is shown as green dash-dotted line. The fitted value
of γω has not too much significance since it would be strongly
affected by including correlated nonaffine contributions. Not
taking these into account, n is given within a margin of about
30%.

The Grüneisen parameters of the individual modes consti-
tuting the BP cannot be readily identified. Instead, we define a
frequency dependent Grüneisen parameter γ (ω) by averaging
over modes of similar frequency. We define the shift of the
modes by

∫ ω

0
dω′g(ω′,P = 0) =

∫ ω+ω(P )

0
dω′g(ω′,P ). (4.6)
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FIG. 8. (Color online) Frequency-dependent Grüneisen con-
stants of SiO2: of the total spectrum (solid black line), the Debye
part (blue dash-dotted line), and the excess spectrum (red dashed
line). The experimental fit, Fig. 5, is shown as green dotted line.

This procedure accounts for the net effect of individual
modes shifted up and down by pressure and accounts for
the conservation of the number of modes. We calculate the
mode Grüneisen constants γ (ω) within the context of our
description. These refer to the eigenmodes of of our system
as opposed to the γω, which describe a frequency independent
average shift of the noninteracting modes. The red dashed line
in Fig. 8 shows the frequency dependent Grüneisen parameter
of the excess modes. At low frequencies, it starts with a
constant value of γ (ω) ≈ −9 that indicates a strengthening
of the g(ω) ∝ ω4 part of the spectrum. The shifting of modes
from the higher-frequency part of the BP is reflected in a
decrease of the negative value of γ (ω). The experimental fit of
Fig. 5 can be seen as a linear approximation (green line). The
constant Grüneisen constant of the Debye modes is indicated
as blue line. The total frequency-dependent Grüneisen constant
is shown in black. It starts at the Debye value and is dominated
at higher frequencies by the BP.

2. PMMA

The second example in Fig. 9 is a polymer, polymethyl-
methacrylate (PMMA). Again, the neutron measurement [62]
at 40 K is in reasonable agreement with the measured heat
capacity data [61], as shown in Fig. 9(a). The measured thermal
expansion [57,58] in Fig. 9(b) is positive and explainable in
terms of a single frequency-independent Grüneisen � = 2.4
for all modes comprising the BP. The numerical calculation
gives �b = 2.35, close to �(ωb). This shows that for a weak
frequency dependence, one can approximate �b by the value
�(ωb), which in turn corresponds to �(T ) at the maximum of
cp/T 3 according to Eq. (4.2). Note that the value � = 2.4 is
less than the value for the sound waves (Debye modes) γD =
4.25, reported in Ref. [57]. The approximation of a constant
�(ω), therefore does not hold at the lowest frequencies.

To check whether our description can reproduce the
experimental findings, we employ the same procedure as for
vitreous silica. Figure 10 shows that the reduced VDOS of
PMMA again can be fitted by a Debye part with a smooth
cutoff (blue line) plus our universal BP shape.

(a)

(b)

FIG. 9. Low-temperature thermal properties of polymethyl-
methacrylate (PMMA). (Top) Heat capacity cp per unit volume,
plotted as cp/T 3, where T is the temperature. Measured data [61]
are in reasonable agreement with the heat capacity calculated from
the vibrational density of states measured by inelastic neutron
scattering [62] at 40 K. (Bottom) The volume thermal expansion α,
plotted as α/T 3. The measured data [57,58] are fitted in terms of the
neutron spectrum at 40 K with a frequency-independent Grüneisen
parameter � = 2.4.

The heat capacity calculated from the fitted VDOS (red
line) again is in good agreement with the measured vibrational
part of the specific heat, see Fig. 11, top. To include the
contributions of the two level systems (TLS), which dominate
cV below T ≈ 2 K, we added the term cTLS = 5.28 Jm−3 K−2

determined experimentally [57]. For comparison. we also
show by the dash-dotted green line the low-temperature fit
by Lyon et al. [57]. The volume expansion coefficient again
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FIG. 10. (Color online) Fit of the reduced vibrational density
of states of polymethylmethacrylate (PMMA). Symbols: neutron
scattering measurement [62], blue dashed line: Debye part, and red
line: sum of Debye part and excess density.
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FIG. 11. (Color online) Fit of the low-temperature thermal prop-
erties of polymethylmethacrylate (PMMA). (Top) Heat capacity cp

per unit volume, plotted as cp/T 3. Symbols: measured data [61] and
red line: values calculated for the fitted spectrum in Fig. 6 with an
added contribution for TLS [57]. For comparison, a low-temperate
fit using TLS and Debye contributions [57] is shown (dash-dotted
green line). (Bottom) Volume thermal expansion α plotted as α/T 3.
Symbols: measured data [57] and blue line: contribution of the
Debye part calculated with the measured low-temperature Grüneisen
constant γD = 4.25 [57], green line: fit by a sum of tunneling and
Debye contributions [57] and red line: sum of tunneling, Debye
and BP contributions using one parameter fit γω = 0.4, γJ given
by Eq. (2.21).

can be fitted by a single parameter γω = 0.38γD . The fit is
slightly improved by a higher value of n than in the silica case
and we set it to n = 2. This value is, however, not well defined
by the fit. For γJ , we use again the approximate expression,
Eq. (2.21). To account for the tunneling systems, we added
a term αTLS/T 3 = −10.56 [57]. The resulting fit (solid red
line) again is in agreement with experiment. Other than in
the silica case the vibrational part of the volume expansion is
dominated by the Debye contribution (blue dashed line). For
comparison, we also show the low-temperature fit by Lyon
et al. (green dash-dotted line). Figure 12 shows the vibrational
Grüneisen parameters. It shows clearly the much higher values
of the Debye contribution (blue line) compared to the one of
the excess modes (red line). The weighted sum of the two
gives the total Grüneisen parameter �(ω) (black line). It tends
to drop with increasing frequency and shows due to the BP a
maximum, that is shifted to higher frequencies compared to the
maximum in the scattering intensity. The value fitted directly
from experiment, Fig. 9 averages over the low-frequency
part.

B. High pressure

In the following, we discuss high-pressure measurements of
the boson peak, most of them done with the Raman scattering
technique. This has the disadvantage of showing the boson

0
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)

FIG. 12. (Color online) Frequency-dependent Grüneisen con-
stants of the total vibrational spectrum (black solid line) of PMMA,
of the Debye part (blue dash-dotted line), and of the excess spectrum
(red dashed line). The experimental fit, Fig. 9, is shown as green
dotted line.

peak at a higher frequency than the one of the true maximum
in g(ω)/ω2. Hopefully, however, the relative change of the
boson-peak frequency should be the same.

1. Vitreous silica

At room temperature and high pressure, the boson-peak
frequency of vitreous silica does not decrease, but increases
strongly [36] (though with an initial low-pressure increase
of nearly zero [63]), following the prediction of Eq. (2.43)
with P0 = 0.44 GPa. If this effect were due exclusively to
the correlated effect of Eq. (2.43), one would expect with
K = 45 GPa a positive initial slope of �b = 36. Instead, one
has a strongly negative initial slope. Thus one concludes that
the uncorrelated effects dominate the high-pressure behavior
in silica, probably due to pressure-induced relaxations, which
increase the internal strains and thus increase the linear mode
potential terms at the boson peak.

This interpretation is supported by a measurement of
the sound velocities in silica at room temperature up to
high pressures [64]. Though their pressure dependence is
much weaker than the one of the boson peak, they also
show an anomalous behavior. Up to a pressure of 3 GPa,
they decrease (in accordance with the measured negative
Grüneisen parameter of the Debye frequency [57]) and then
rise for higher pressures. The initial decrease is limited to the
pressure range where no irreversible changes are induced. As
soon as the pressures are high enough to cause irreversible
changes, the sound velocity after pressure removal remains
higher than the initial one. Irreversible structural changes
automatically mean increased atomic displacements and in
turn enhanced local forces and a larger shift of the BP,
expressed by lower P0 values.

The interpretation is further supported by the properties of
densified silica [62], which has a 10% higher Debye frequency
and a factor of 1.6 higher boson-peak frequency than normal
vitreous silica. Densified silica, obtained by applying a strong
pressure at higher temperature (but still well below the glass
temperature) and releasing the pressure at room temperature,
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is an example that exhibits only the irreversible changes. The
measurement shows that the irreversible changes have the
opposite sign to the reversible ones, but are also much stronger
for the boson peak than for the sound waves, with a similar
ratio.

2. As2S3

In the well-investigated case [39] of As2S3, the measure-
ments extend down to rather low pressure. One does not see
any indication of a failure of Eq. (2.43) at low pressure, i.e.,
no indication of a crossover from correlated to uncorrelated
force effects. This would indicate the opposite situation to
SiO2, namely, a dominance of the correlated effect and a small
contribution by configurational changes.

One can check this conjecture by a direct comparison to the
low-temperature data [60]. The high-pressure measurements
corroborate again Eq. (2.43) with P0 = 0.55 GPa. The bulk
modulus [65] at room temperature is 13 GPa, so one expects
�b = 7.8 from Eq. (2.30). Instead, �(T ) in the boson-peak
region is constant and has the much smaller value 1.8. The
comparison shows that more than three quarters of the high-
pressure effect must be due to uncorrelated forces.

As2S3 has a glass temperature of 454 K, not too far
above room temperature. Since one expects the relaxational
processes to be thermally activated, it is possible that they
start at rather low pressure but their trace is not seen in an
irreversible remnant.

Nevertheless, since the measurement was done below Tg

where no complete recovery to the original state is possible,
one should expect some irreversible effects, which should be
revealed in a dedicated search. Such a dedicated search would
require careful experiments with virgin samples, freshly cooled
in a well-defined way from the glass transition. If one repeats
the room-temperature experiment several times (as one usually
does to see whether one has reproducible results), one cannot
expect to see the irreversible part; this should only be visible
the first time.

3. B2O3

An even larger difference than in As2S3 is found in
B2O3, where the low-temperature expansion data [60] suggest
a �b close to zero, while room-temperature high-pressure
measurements of the boson peak, interpreted in terms of
Eq. (2.43), suggest P0 = 0.29 GPa. With a bulk modulus [66]
of 11 GPa, one would expect �b = 11.4. This example shows
again a much stronger pressure dependence of the boson
peak in the irreversible high-pressure range, i.e., a clear
predominance of the effect of uncorrelated forces at high
pressure.

4. Polymers

There are no high-pressure measurements of the boson-
peak frequency for PMMA, but for five other polymers [41],
which again obey Eq. (2.43). Extrapolated from high pressures,
the five polymers have an average value �b = 4.6 (the lowest
value is 3.48) decidedly higher than the value 2.35 extrapolated
from the low-temperature measurements. Thus there is little
doubt that the uncorrelated term dominates the high-pressure
behavior also in the polymers.

V. DISCUSSION

Our results show that, at least for the studied substances,
the picture of the BP formed from QLV provides a mechanism
of the low-temperature volume expansion as well as the
high-pressure shift of the BP and its intensity. For the low-
temperature expansion, theory allows for more parameters than
one can fit to the data. The parameters can be combined to two
effective parameters describing the shift and enhancement of
the BP.

All low-frequency vibrational eigenmodes in the glass,
including the ones forming the BP are extended. In our
interpretation, they are superpositions of local modes, the
“oscillators” at the centers of the QLV, and extended sound
wavelike modes. The BP is formed by an interaction of the
local modes. By this mechanism, a softening of the oscillator
modes can even cause a blue shift of the BP. This is contrary
to the results of a simplified description in terms of localized
vibrations (oscillators) only [67].

In our description, the VDOS of the excess modes increases
at the lowest frequencies as g(ω) ∝ ω4 and above the BP
as g(ω) ∝ ω. The initial ω4 increase is a universal property.
Therefore results relating to this frequency range are quite
stable. The high-frequency flank of the BP is much more
strongly affected by the interaction with a varying number
of modes with varying interaction strengths. Although the
shape of the BP is largely universal there are slight variations
due to anharmonic terms around and above the BP [35].
These deviations from the “universal” shape are effected by
pressure. In particular, modes pushed up by a decrease of
the ω4 part, i.e., modes pushed out of the seagull singularity
will be moved to the higher-frequency region to conserve the
number of vibrational modes. In our calculation, we have
strictly conserved the number of modes. How exactly these
modes are distributed near and above the BP is beyond our
simple description. We have reproduced the low-temperature
thermal expansion by a single parameter γω, the Grüneisen
coefficient of the local noninteracting modes (the oscillators
of the soft potential model). The resulting values of γω are
in a reasonable range but it should not be forgotten that
they may hide correlated nonaffine contributions or changes
of the intermode coupling beyond the simple Debye effect.
The message we want to convey is that the description by
QLVs reproduces the temperature dependence of the thermal
expansion, not what the exact value of the various macroscopic
parameters is.

The present work poses several questions. Why does the
nonaffine (force) effect seem to be stronger at high pressures
or why can we not extrapolate from high to low pressures or
vice versa? What is the role of irreversible processes? What
is the relative importance of correlated versus uncorrelated
effects, i.e., the dependence of ωb(P ) on P or P 2.

The case of SiO2 clearly shows a discrepancy between high-
and low-pressure properties. At low temperatures, the volume
expansion indicates a shift of the “oscillator” frequencies with
a Grüneisen parameter comparable to the Debye one and an
additional shift by the nonaffine (force) effects discussed in
our previous work [35]. The pressure shift of the BP follows
the (P/P0)1/3 law predicted for the nonaffine effect at high
pressure but is zero or even negative at low pressure. The
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positive boson-peak shift on densification allows to associate
the high-pressure effect to relaxations.

Also in crystalline quartz at low temperatures, negative
expansion and Grüneisen coefficients are found [68,69], but
the thermal expansion remains positive at all temperatures.
This shows that the strongly negative Grüneisen parameters at
and below the boson peak are a specific glass effect. Higher-
frequency modes, both in quartz and in vitreous silica, tend to
have positive Grüneisen constants [70], which leads to positive
expansion coefficients at higher temperatures.

VI. CONCLUSION

The boson peak due to QLV is highly asymmetric. The
excess of the inelastic scattering intensity over the Debye
intensity (given by the sound waves) increases at low fre-
quencies ∝ω2 and drops ∝ω−1 above the BP frequency, ωb.
Low-frequency modes are very susceptible to perturbations. A
shift of a few vibrational modes in or out of the low-frequency
flank strongly affects ωb, whereas a similar shift on the
high-frequency side has much less effect. The dominant effect
of pressure on the BP is therefore asymmetrically on the
low-frequency side.

We have discussed the various contributions to the shift
of the boson peak under an applied pressure. For crystalline
lattices, the change of the vibrational density of states is
mostly described in the quasiharmonic approximation. The
eigenfrequencies are calculated from the harmonic coefficients
evaluated for the pressure dependent lattice constants. The
Grüneisen constants are given by the change of the harmonic
force constants under pressure. This can be written as deriva-
tive with respect to strain times strain as function of pressure.
In analogy to this, we defined affine Grüneisen parameters that
include the effects of uniform changes of distances.

In glasses, such a description is not sufficient. Disorder
causes large nonaffine displacements whose effects cannot
fully be described by the averaged affine effects. Forces
induced by nonaffine displacements cause additional shifts of
the boson peak. They lead, in particular, to the high-pressure
shift ∝(P/P0)1/3 observed in experiment. The forces can be
split into correlated and uncorrelated forces. Correlated forces

are due to the elastic polarizability of soft vibrations. They
enhance the forces that lead to the creation of the boson peak
in the first place. Additionally, pressure can induce new forces
uncorrelated to the existing ones. Strong such forces will be
induced, e.g., if one crosses the energy barrier between two
structural energy minima.

Nonreversibility might be a clue to this, whereas the BP
shift due to correlated effects depends on P , the shift by
the uncorrelated ones is independent of the sign of P , it
only depends on the modulus of the pressure (or pressure
squared). For high positive pressure, the two force effects are
indistinguishable. Experiments involving negative pressures
could lift this ambiguity. The influence of reversible and
irreversible local relaxations could be probed by measurements
at different temperatures.

In the comparison to experiment, we described four cases
where the comparison of the low-pressure boson-peak shifts
calculated from low-temperature thermal measurements was
much smaller than the value extrapolated from high-pressure
measurements. This shows that the high-pressure forces are
predominantly uncorrelated to the random forces, which
already exist. This suggests that they are mainly due to
pressure-induced relaxations.

To avoid future misunderstandings, we want to stress that in
the expression P0 = 3Kf0/�0, all quantities refer to the state
P = 0. Changes with pressure of the compression modulus K

largely cancel with the concomitant change of the coupling
�0. This explains why even in materials with a large variation
of K a constant P0 may be observed.

Our description is valid for boson peaks, which are caused
by disorder. Boson peaks that originate in intrinsic soft modes,
also present in a crystalline structure, may have different
properties. If disorder and coupling between such modes
becomes sufficiently large a “disorder BP” may appear and
eventually merge with the intrinsic one.
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