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Atomic structure of grain boundaries in iron modeled using the atomic density function
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A model based on the continuous atomic density function (ADF) approach is applied to predict the atomic
structure of grain boundaries (GBs) in iron. Symmetrical [100] and [110] tilt GBs in bcc iron are modeled with
the ADF method and relaxed afterwards in molecular dynamics (MD) simulations. The shape of the GB energy
curve obtained in the ADF model reproduces well the peculiarities of the angles of 70.53◦ [�3(112)] and 129.52◦

[�11(332)] for [110] tilt GBs. The results of MD relaxation with an embedded-atom method potential for iron
confirm that the atomic GB configurations obtained in ADF modeling are very close to equilibrium ones. The
developed model provides well-localized atomic positions for GBs of various geometries.
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I. INTRODUCTION

Grain boundaries are common defects in crystalline ma-
terials and play a major role in determining their physical,
mechanical, electrical, and chemical properties. Also, model-
ing the segregation of solute atoms at grain boundaries (GBs)
in steels is of great importance for the prediction of lifetimes of
service materials. Several modeling approaches to this problem
are available today [1]. Notably, a significant progress has been
done using molecular dynamics (MD), where GB properties
(segregation energies, grain-boundary energies, etc.) have
been studied at the atomic level [2–4]. Nevertheless, the
study of segregation at GBs by MD remains prohibitively
expensive. Principally, since MD is constrained to deal
with the scale of nanoseconds, whereas physical phenomena
related to diffusion of atoms take place at mesoscopic time
scales.

Recently, the phase-field-crystal (PFC) model for binary
alloys has been applied to this class of problems [5,6] and has
proven to capture the basic features of the GB segregation
as well as the influence of undercooling, average alloy
concentration, energy of mixing, etc. In spite of its big success
in the description of GB properties, some limitations may stand
in the way of the PFC method’s applications to particular
problems. Such problems could be the atomic density field
smeared in topologically disordered regions, such as GBs, of
the system. As a consequence, it can be impossible to localize
all atoms forming a GB or even to determine their number.

In order to study either solute/impurity segregation or
relaxation of GBs under a vacancy flux, the equilibrium atomic
configurations of the GBs (with desired geometry) must be first
obtained. Therefore, thousands of initial configurations should
be tested in order to determine the lowest-energy ones [2–4].
In this paper, we show that it is now possible to avoid such a
heavy and time-consuming work by using a new formulation
of the atomic density function (ADF) model, introduced in
Ref. [7]. It will be shown that this method, when applied to
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modeling of GBs, gives atomic scale configurations very close
to the equilibrium ones.

A physical interpretation of the atomic density function
ρ(r) was done in Ref. [7]. It has been shown that the ADF
approach is a continuum limit of the old ADF theory based
on the Onsager microscopic diffusion equation and in which
atom positions are confined to the Ising lattice [8]. The small
parameter in this case is the ratio between the underlying Ising
lattice parameter and the atomic interaction radius. Inspired by
the mixing entropy of an alloy, the free energy is assumed here
to be a functional of ρ(r) with a different entropic (local) term
from [7] and [9]. This prevents the ADF from taking negative
values since restricted to the interval (0,1). From this point
of view, our model presents the same virtues as the modified
PFC model [10–12], in which the atomic density function was
restricted to positive values using an artificial penalizing term
in the free energy.

Finally, the nonlocal part of the free energy, which describes
the interatomic interactions, is chosen to reproduce closely the
first peak of the structure factor, as in Refs. [13–17]. It has
been shown, for example, that such a fit leads to a reasonable
estimation of the elastic constants [16] and a correct anisotropy
of the interfacial free energy [14] for iron. The above allows
us to present our results as specific for iron. Accordingly, we
use the EAM (embedded-atom method) potential for iron [18]
and the quench molecular dynamics in order to test the output
of the ADF model.

Therefore, the atomic configurations obtained by means of
the ADF model are subsequently relaxed in MD simulations
and are shown to be quite close to the equilibrium configu-
rations. It should be pointed out that the ADF model used in
this study has the virtue of producing well-localized atomic
positions at all parts of the GB irrespectively of the geometry
of the latter. The atomic positions thus can be directly imported
into MD simulations. Although these configurations may
prove to be somewhat compressed (when an EAM potential is
applied), the structural units constituting the GBs are always
reproduced correctly. In this paper, symmetrical [100] and
[110] tilt GBs in bcc iron were modeled. Since the ADF model
is a very efficient method in terms of computation time, it
presents an excellent tool to obtain the atomic configurations
of GBs of arbitrary geometry in a rapid way.
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II. THE MODEL AND ITS FIT TO THE STRUCTURE
FACTOR OF IRON

The foundation of the ADF model lies on the concept of
the atomic density function. This function is interpreted as the
density of pointlike atoms averaged over the thermal vibration
time scale and thus assuming a continuous form [19]. In this
logic, the density function, at a given point, can be interpreted
as the probability to find an atom in the infinitesimal vicinity
of this point.

In the ADF model, the free-energy functional can be
presented as a sum of nonlocal and local terms and defined
as ([7])

f ({ρ(r)}) =
∫

d3k

(2π )3
V (k)ρkρ−k + floc, (1)

where

ρk =
∫

d3r

V eikrρ(r) (2)

is the Fourier transform of the atomic density function (V is
the volume of the system) and V (k) = ∫

(d3r/V)eikrW (r) is
the Fourier transform of the interatomic potential W (|r − r′|).
floc is the local term of the free energy.

It is instructive to represent the first term in (1), using (2),
as

∫
d3r ρ(r)V (−i∇)ρ(r) (where ∇ should be understood as

an operator acting on the function following it). Expanding
V (−i∇) up to the fourth order (in powers of the gradient
operator) and omitting odd power terms (because of the central
symmetry) one arrives at a form identical to the nonlocal
term of the PFC model free-energy functional [9]. Using a
nonexpanded form (1) is thus a generalization compared to
the PFC model.

Contrary to the initial version of the ADF theory [7], as
well as to the PFC model (where the local free energy was
expressed in a polynomial form) in our model we express
the local (entropic) term of the free-energy functional using a
logarithmic form analogous to that of the binary alloy model:

floc = kBT

∫
d3r

V {ρ(r) ln ρ(r) + [1 − ρ(r)] ln[1 − ρ(r)]}.
(3)

In a crystalline phase, the function ρ(r) presents a periodic
set of peaks indicating equilibrium atomic positions. It should
be realized, though, that the density of “vacancies” 1 − ρ(r)
in (3), is merely a probability to not find an atom at a point
r. It does not suppose a presence of localized vacancies in
the atomic lattice formed by the peaks in ρ(r), which anyway
would not have sense for a time-averaged picture.

When the system is unstable or metastable (with respect to a
crystalline phase formation) and when the periodic fluctuations
start to grow, the local part of the free energy restricts the
amplitude of the peaks near 0 and 1. This results in distinct
atomic density peaks of equal height (nearly 1) even for the
“atoms” in such unfavorable positions as grain boundaries.
The liquid phase corresponds to a uniform ρ(r) = const, i.e.,
ρ(r) = ρk=0 [see (2)]. To investigate the stability of a liquid
state with respect to density modulations, we should expand the
free-energy functional (1) into the Taylor series with respect to
the spatial variations of the atomic density �ρ(r) = ρ(r) − ρ0.

In analogy with the theory of crystal-lattice vibrations, the
quadratic term of this expansion will be called the harmonic
term. The harmonic term can be written in terms of the density
wave amplitudes �ρk as

�f =
∫

d3k

(2π )3
D(k)�ρk�ρ−k, (4)

where the response function D(k) is the second functional
derivative of the free-energy functional (1):

D(k) = δ2f ({ρk})/δρk
2. (5)

Its minimal value D(k0) = min[D(k)] describes stability of
a given liquid state characterized by a uniform ADF with
ρ(r) = ρ0. A negative value of D(k0) corresponds to a liquid
state absolutely unstable with respect to solid-state formation:
any infinitesimal fluctuation of a uniform ADF would lead to
a periodic structure growth. The lattice spacing of the latter
will be related to the minimum position k0 as a = 2

√
2π/k0

(for a bcc structure). Positive D(k0) corresponds to a globally
or locally stable liquid phase.

As it was pointed out in Ref. [7] as well as in Ref. [9], the
response function D(k) can be related directly to the structure
factor according to

S(k) = kBT D−1(k). (6)

From (5) one finds D(k) = V (k) + kBT /[ρ0(1 − ρ0)]. It is
convenient to choose V (k) in the form [7]

V (k) = V0
{
1 − k4

/[(
k2 − k1

2
)2 + k2

4
]}

, (7)

so that the values of the parameters V0, k1, k2, and the average
of ADF (ρ0) can be fitted knowing the structure factor of the
given material. The value k = k0 minimizing V (k) is given by
k0 =

√
k1

4 + k2
4/k1.

We have chosen to fix the parameters of V (k) and the
average value of the ADF by fitting the structure factor of
our model to that of iron at its melting point. To do this,
we used the function S(k) following from the combination
of MD simulations and experimental data as presented and
explained in Ref. [16]. As in Ref. [16], we fitted the position
k0 = 2.985 Å−1 and the height S(k0) = 3.012 of the maximum
of S(k) as well as its width S ′′(k0) = −94.35 Å2 and the value
S(k = 0) = 0.02 related to the isothermal compressibility of
the liquid.

The formulas that relate the parameters of our model to k0,
S(k0), S ′′(k0), and S(0) are the following:

k1 = k0√
1 − 8

k0
2

S(k0)
S ′′(k0)

(
S(k0)
S(0) − 1

) , (8)

k2 = k0

4

√
− 8

k0
2

S(k0)
S ′′(k0)

(
S(k0)
S(0) − 1

)
√

1 − 8
k0

2
S(k0)
S ′′(k0)

(
S(k0)
S(0) − 1

) , (9)

V0

kBT
=

(
S(k0)
S(0) − 1

)2

S(k0)
(

S(k0)
S(0) − 1

)
− S ′′(k0)k0

2/8
, (10)
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FIG. 1. (Color online) Fit of the structure factor of iron at the
melting point in the ADF model (dashed line). The squares represent
the data obtained by conversion of the correlation function C(k)
(used in Ref. [16]) to the structure factor according to the relation
S(k) = [1 − C(k)]−1 (Ref. [20]).

1

kBT

δ2floc

δρ2
=

S(k0)
S(0) − 1 − S ′′(k0)k0

2/8

S(k0)
(

S(k0)
S(0) − 1

)
− S ′′(k0)k0

2/8
. (11)

Note that since S(0) > 0, S(k0) > S(0), and S ′′(k0) < 0, all
parameters defined by Eqs. (8)–(11) take real positive values.
Note that if floc is given by (3), δ2floc/δρ

2 = kBT /[ρ0(1 −
ρ0)], where ρ0 is the average value of the atomic density
function. The fit of the structure factor in Fig. 1 leads
to k1 = 0.434 868k0, k2 = 0.625 776k0, kBT /V0 = 0.024 829,
ρ0 = 0.116 372.

III. SYMMETRICAL TILT GBs IN ADF MODEL
AND MD SIMULATIONS

Grain boundaries of desired geometry are obtained by
crystallizing a liquid layer placed in-between two crystal grains
of chosen orientation (in fact, due to the periodic boundary
conditions, two identical GBs are formed in this way). The
temperature and the mean value of the atomic density function
were chosen for simplicity as kBT = 0.025V0 and ρ0 = 0.1,
which are approximately the same values as those fitting the
structure factor of iron. The parameters of the atomic potential
were taken exactly as those fitted in the previous section. One
can check that D(k0)(� 0.0445) is positive, so that the liquid
at this temperature and density is metastable with respect to
infinitesimal fluctuations of the ADF. A stable crystalline phase
can be formed in the system as long as a sufficiently large
crystalline nucleus is taken as the initial state. The model is
discretized in order to be treated numerically and the resolution
of the numerical grid is chosen so that the lattice constant
would contain 16 grid cells: a = 16�x (�x = 1).

The GB orientation with respect to the simulation box is
chosen such that the normal to the GB plane is along the Oz

axis of the box, and the tilt axis is along Ox. The choice of
different dimensions of the simulation box is then determined
by different factors. Since the GB does not affect in any way
the periodicity of the bicrystal in the Ox direction (the period
being a and

√
2a for [100] and [110] tilt GBs, respectively),

this dimension can be taken as small as a few atomic planes,

in order to save computational resources. The dimension Oy

is determined by the pattern of the GB and therefore is varied
according to the tilt angle. Finally, as one deals with a pair
of identical GBs due to periodic boundary conditions, the Oz

dimension is determined by the distance one wants to have
between the GBs. While it seems to be preferable to keep this
distance as large as possible to have a better estimation of an
isolated GB energy, the argument presented in the following
suggests to tend to rather moderate dimensions Oz.

The total free energy (1)–(3) can be decomposed into

ftot = fbulk + fGBSGB/V, (12)

where fbulk is the bulk energy per unit volume, fGB is the
surface energy of the totality of GBs of surface SGB, present
in the system, and V is the total volume of the system. Since
the ratio SGB/V has quite a small value, the estimation of fGB

basing on ftot should be done with big caution. This forced
us to stick with a rather small-Oz dimension, sometimes not
exceeding �5 nm, which makes only 2.5 nm between the
neighboring GBs. Nevertheless, we have verified that such
a small distance does not change either the structure or the
energy of the GB in any significant way, i.e., gives results
representative of larger grain sizes. In principle, it is sufficient
to know the bulk energy per volume and the geometry of the
GB to obtain the fGB from (12). In reality, however, it turns
out that the variations in fbulk due to the discreteness of the
simulation grid risk to cloud the second term in (12). It is to
avoid this source of error that we chose the relatively high
value of 16 grid units per one bcc lattice spacing a.

The modern theory of high-angle grain boundaries is based
on the structural unit model, first introduced in Ref. [21] and
confirmed since using computer experiments [2,22] and also
high-resolution transmission electron spectroscopy (HRTEM
images) (for example, Ref. [23]). This model allows one
to explain the peculiarities of the GB energy behavior at
some misorientation angles [24]. According to it, each GB
characterized by a certain sigma number (the inverse of the
number of coincident lattice sites in the two grains, when
the grains are superposed) can be decomposed in a periodic
repetition of a pattern consisting of elementary structural units.
Some structural units have energies lower than the others;
a number of high-angle GBs, composed uniquely by these
low-energy units, have energies notably lower than the other
GBs in the same tilt angle range, and hence are referred to
as special GBs. GBs close to the special ones are a mixture
of low- and high-energy structural units. It was demonstrated
in Ref. [24] that the energy in the vicinity of special GBs
follows a logarithmic law analogous to that derived by Read
and Shockley for low-angle GBs [25].

Following, we will present the results of ADF modeling
of [100] and [110] tilt GBs of different angles. The main
quantitative characteristic that we looked for is the GB energy.
Another important way to characterize GBs obtained by
the ADF method is to identify typical patterns of structural
units that are quite well known today from MD simulations.
Moreover, the GB configurations we had obtained were
subsequently relaxed using the Fe EAM potential developed
by Mendelev et al. [18]. (Note that it is the same potential
that was used to obtain the structure factor in Fig. 1 [16].) The
initial atomic position of each atom was discretized on a grid;
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FIG. 2. (Color online) The energy of [100] tilt GBs. The energy
scale in the ADF model is chosen to fit the low-angle GBs’ energies
after MD relaxation.

the simplicity of this procedure is due to atomic density peaks
with well-pronounced centers (where the ADF approaches 1
most closely). The number of atoms was also provided from
the ADF configurations. The quench MD method was used
to relax (at 0 K temperature) each configuration at constant
volume with periodic boundary conditions. In a second
step, the simulation box was relaxed only in the direction
normal to the GB habit plane (the simulation box is fixed
according to the tilt angle and the equilibrium lattice parameter
in the two other directions) in order to minimize the energy of
the system.

We will first consider [100] tilt GBs. In Fig. 2, the energy
of [100] tilt GBs is presented for different tilt angles. Let
us remark that grain boundaries with the tilt axis [100] do not
possess such remarkable energy cusps as those present in [110]
tilt GBs [2]. Since the energy scale has not been chosen yet
in our model, this is done now, in order to compare the ADF
and MD results, by fitting the energy of low-angle GBs. A
remarkable coincidence between the ADF data and the relaxed
energies in the mentioned range becomes evident once the
energy scale has been chosen properly. There is, however, some
notable energy overestimation by the ADF model in the middle
range of angles, especially in the vicinity of the angle 36.87◦
[�5(031)]. This angle corresponds to the most remarkable
energy cusp of [100] tilt GBs, where a minimum should
have been obtained instead of the maximum we observed.
We suppose, nevertheless, that the atomic configurations are
correct (since they reveal correct structural units and lead
to correct energies after MD relaxation). We explain this
disagreement by a contribution of “bumps” which can be
noticed (Fig. 3) in poorly packed regions of the GB. Their
height is about 10% of that of atomic peaks. Those low
bumps are therefore not interpreted as atoms when importing
the atomic positions to MD simulation, otherwise the system
would be overcompressed. Such bumps are noticeable also for
other high-angle [100] tilt GBs, but are most concentrated in
the �5(031) GB. We have observed a correlation between the
“frequency” of low bumps along the GB and the overestimation
of the energy by the ADF method.

FIG. 3. (Color online) A cross section of the atomic density
profile of a �5(031) (36.87◦) [100] tilt GB in the plane (100). The dots
represent atomic positions in the adjacent plane, in order to visualize
the structural units. The “bumps” that appear in the empty space are
highlighted.

Let us remind the reader that in the ADF model the atomic
density function represents the probability to find an atom at
a given site r and bumps can be interpreted as sites where this
probability is much smaller but not negligible with respect to
the “normal” atomic position. Since we perform the simulation
at a high temperature, it is not surprising that the atoms
have a tendency to go on a vacant site and spend some time
in this position. As a consequence of the excess of poorly
packed regions in �5(031) GB we were able to obtain a
structural unit pattern alternative to that presented in Fig. 3
by expanding/contracting the GB perpendicularly to the GB
plane. This second configuration was, however, rejected for
giving a too high energy in MD simulations.

This problem does not arise for [110] tilt GBs since (110)
atomic planes are significantly more dense packed comparing
to (100) planes (by a factor of

√
2). [110] tilt covers a range

from 0◦ to 180◦. The ADF model led to unique structural
unit patterns for the reference angles that we have compared
to [2]. Rigid body translation perpendicular to the GB plane
(expansion/contraction) does not compromise the form of the
structural units in this case. We have studied the influence of
rigid body translation within the GB plane for a few different
orientations for [100] and [110] tilts, and no new low-energy
configurations were found. This will be confirmed further in
the text by comparing our energies to those from [2] where
in-plane translations were tested for all angles.

The most direct way of testing the GB atomic structures
we obtained is to compare our configurations to the well-
established structural unit patterns for [110] tilt GBs [2]. In
Fig. 4, structural unit composition of some [110] tilt GBs is
presented. The red and the blue atoms refer to two adjacent
atomic planes. The atomic positions relaxed in MD simulations
are indicated with faded colors in the background. Structural
units are indicated with gray lines and their letter notations.
The reader is referred to Ref. [2] for atomic configurations of
the same GBs obtained by MD simulation based on sampling
of several thousands of initial states.

It is worth noting that we have obtained well-localized
(and quite close to equilibrium) atomic positions for all the
atoms forming GBs, even for the angles approaching 180◦,
where the regular PFC model seems to show a smeared
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FIG. 4. (Color online) Structural units in [110] tilt GBs mod-
eled by the ADF: (a) 38.94◦,�9(114); (b) 50.48◦,�11(113); (c)
70.53◦,�3(112); (d) 93.37◦,�17(334); (e) 109.53◦,�3(111); (f)
121.01◦,�33(554); (g) 129.52◦,�11(332); (h) 141.06◦,�9(221);
(i) 148.41◦,�27(552); (j) 153.47◦,�19(331); (k) 163.9◦,�51(551).
Equilibrium atomic positions after relaxation in MD simulation are
indicated in the background with faded colors; two colors refer to two
adjacent atomic planes. In the last row, dislocations are highlighted.

density distribution on the GBs [17]. One can compare
directly the angle 153.47◦[�19(331)] obtained with the two
methods: Fig. 4(j) and Ref. [17]. For the angles 153.47◦ and
163.9◦ [Figs. 4(j) and 4(k), one can clearly see pileups of
edge dislocations with Burgers vectors oriented at 54.74◦

(= tan−1
√

2) with respect to the GB plane. From what it
seems, the latter was not reproduced in the regular PFC model
[17]. For low angles (�15◦), one observes pileups of edge
dislocations with Burgers vectors perpendicularly oriented to
the GB plane; they are not shown here as this type of low-angle
GBs is very widely presented in literature.
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FIG. 5. (Color online) The energy of [110] tilt GBs. The energy
scale for the ADF data is chosen such that the �3(112) energy
coincides with its MD value.

It is seen from Fig. 4 that the most notable relaxation,
when such is observed, happens on atoms adjacent to those
composing the structural units and even sometimes those
located deeper in the bulk. This is due to the fact that the
configurations obtained by ADF modeling are more or less
under compression since, in the ADF model, atoms can change
their “size” (the width of the atomic density function peaks)
and approach each other more closely in the vicinity of the GB.
This was confirmed by MD relaxation of the ADF’s simulation
box in the Oz direction (perpendicularly to the GB). The
equilibrium atomic volume was found to exceed the atomic
volume obtained in the ADF modeling.

When ADF configurations are relaxed in MD keeping
the same dimensions of the simulation box, the mentioned
compression, distributed in the entire volume, does not affect
the GB energy drastically. After relaxation of the simulation
box, the energy curve practically coincides with that obtained
in Ref. [2] (see Fig. 5). Some fairly minor deviations for a few
angles are probably due to slight tensions in the simulation
box resulting from discretization error. The energy scale for
the ADF data presented in Fig. 5 was chosen in order to fit the
�3(112) (70.53◦) [110] tilt GB energy. Reasons for this choice
will be given in detail below. We have preferred, however, to
keep in Fig. 2 the scale which made obvious the identical
energy tendencies of low-angle [100] tilt GBs in the ADF and
MD methods (the two scales relating as E110/E100 � 1.288).

A possible source of discrepancy between the ADF and MD
modeling is the difference in temperature. The ADF modeling
was done at a temperature that is close to that of the iron
melting point, while the MD relaxation was done at 0 K. In
order to superpose the energy scales in these two simulations,
we had to fit the energy of the GB for which the energy
variation with temperature is expected to be minimal. It was
shown in Ref. [26] that it is the case for the �3(112) [110] GB.
Therefore, the fit of the energy scale was done based on the
energy of this particular GB. Its value was previously rectified
by taking the exact equilibrium dimension of the simulation
box from MD. This choice was also dictated by the fact that
this tilt angle results in a configuration very close to that of a
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FIG. 6. (Color online) The average number of atoms missing
from the first two coordination spheres of [110] tilt GBs (the interval
taken roughly as 0.81a < r < 1.2a), calculated per unit area (a taken
as the unity of length). Note that fluctuations in the ADF data can
be explained in part by an error in atom position determination on a
discrete simulation grid.

regular crystal and thus has more reasons to be independent of
the model applied.

The latter statement can be justified from Fig. 6 where
the average number of atoms (per unit GB surface) missing
from the first and second coordination spheres near the
GB is presented as a function of the tilt angle. The first
coordination sphere is located at r = 0.86a, the second one
at r = a. We have considered, roughly, as contributing to
the first two coordination spheres, interatomic distances r in
the range 0.81a < r < 1.2a (1.2a is in the middle between
the second and the third coordination spheres). As can be
seen from Fig. 6, the two curves obtained from MD and
ADF modeling configurations coincide for the �3(112) GB
(70.53◦). Therefore, Fig. 6 suggests that the two methods
have a less-pronounced discrepancy for this particular angle,
at least, as far as the energy is concerned. Indeed, the latter
is determined by the relative positions of atoms. Choosing
the energy scale such that the energy value for �3(112) GB
coincides in both methods, one can see that the ADF model
overestimates the energy in the range from 0◦ to 70◦ and (to
a lesser extent) from 140◦ to 180◦, while the energies in the
middle range of angles are underestimated. This appears to
be coherent with the discrepancy between the two models in
Fig. 6. One can conclude that this disagreement is related to
the fact that a part of the atoms are situated either more closely
one to another or more distantly in the ADF model comparing
to configurations of MD. This is due to the changing “size”
of atoms at GBs, already mentioned above, which affects the
effective interaction between atomic centers. In any case, the
ADF model reproduces very well the two most significant
energy cusps: for �3(112) and for �11(332).

It is well known that the GB energy behavior is logarithmic
at small misorientations as well as in the vicinity of energy
cusps. Its evolution can be derived theoretically for low-angle
GBs (<20◦ and >160◦), owing to the continuous elasticity
theory and the dislocation model of GBs [25], as well
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FIG. 7. (Color online) The energy of [110] tilt GBs in a logarith-
mic scale. The six curves correspond to the six ranges of tilt angles,
adjacent to 0◦(180◦), 70.53◦, and 129.52◦. The legend gives how �θ

relates to θ for each range.

as for high-angle GBs, using the structural unit model of
GBs [21,24]. In Fig. 7, three pairs of curves are presented, each
pair corresponding to one of the three ranges of the tilt angle θ :
small misorientations (∼0◦ or ∼180◦, which are equivalent),
the vicinity of the �3(112) and �11(332) cusps. The form
in which the energy is presented, EGB/|�θ | versus ln |�θ |,
corresponds to that of Read and Shockley [25]. The deviation
�θ = θ − θ0, and, depending on the angles range considered,
θ0 = 0◦(180◦), 70.53◦, and 129.52◦. Linear (or nearly such)
dependencies in Fig. 7 confirm once again the validity of the
ADF approach to modeling of GB structures.

We have demonstrated that the ADF model reproduces
correctly the atomic patterns of all typical symmetrical tilt
GBs considered. A numerical tool, such as the ADF model,
able to model polycrystalline structures of arbitrary geometry
can be helpful to analysis of HRTEM images. We show in
the following that our data can be readily presented in a form
analogous to that of HRTEM images.

In Fig. 8, the upper row presents the distribution of intensity
I (k) ∼ ρkρ−k [see Eq. (2) for ρk] in the kx = 0 plane of the
reciprocal space for some of the bicrystals with [110] tilt GBs
modeled above. The intensity maxima correspond to atomic
planes that all contain the [110] axis, which is the common
axis of the two grains. Reconstruction of the atomic density
field ρ(r) from ρk (by selecting one or several diffraction spots
in the plane kx = 0 during the inverse Fourier transformation)
leads to a set of atomic lattice fringes or to intersections of
several sets.

The results of reconstruction based on diffraction spots
corresponding to the most dense-packed atomic planes of the
lower grain [(110) and (110) spots] are presented on the left
below each diffraction pattern in Fig. 8. Those obtained using
reflections resulting from the two most dense-packed planes
of both grains, that is, the spots (110), (110)∗, (110), (110)∗,
(001), (001)∗, (001), and (001)∗, are shown on the right below
each diffraction pattern. The atomic “columns” at this point are
merely a result of intersection of several atomic lattice fringes
like the ones shown on the left for each orientation.

The left-side reconstructions in Fig. 8 illustrate the capacity
of the method to highlight regions with particular orientations
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FIG. 8. Diffraction patterns (upper row) and real-space reconstruction based on the brightest spot (110) and its conjugate (110) (on the left
of each column) or on all the spots indicated in the diffraction patterns (on the right of each column) for a [110] tilt GB of (a) 38.94◦ [�9(114)];
(b) 50.48◦ [�11(113)]; (c) 70.53◦ [�3(112)]; (d) 129.52◦ [�11(332)]; (e) 153.47◦ [�19(221)].

of atomic planes, similarly to regular TEM technique. Simply
using more diffraction spots during the reconstruction results
in images analogous to those of the HRTEM. Indeed, the
procedure we use constitutes at the same time the basis of
the HRTEM phase contrast imaging. We thus can legitimately
expect that our images closely resemble those which could
have been obtained by HRTEM, although the latter can be
affected by other factors as well.

IV. CONCLUSIONS

In this paper, the ADF model with a logarithmic form of the
local part of the free-energy functional was applied to model
the atomic structure of grain boundaries. The parameters of
the model were chosen in order to reproduce the structure
factor of iron at the melting point. The ADF model reproduced
closely enough the atomic structure of symmetrical tilt GBs
in iron (obtained by MD simulation in Ref. [2]) as well as the
most remarkable features of the energy of high-angle [110]
tilt GBs. All grain-boundary configurations were eventually
relaxed in MD simulation with an EAM potential for iron. It
was confirmed that they are close to equilibrium ones. The
most notable advantage over the regular PFC model is that
atomic positions are clearly localized for any GB geometry.
The two most significant energy cusps of [110] tilt GBs, that is
�3(112) and �11(332), have been reproduced, with the energy
decreasing logarithmically in their vicinity, as expected. The

model is thus claimed to be a powerful tool for construction
and study of large disorientation grain boundaries, which
are encountered most frequently in experimentally analyzed
materials.

It is important to mention once again that the application of
the ADF method is not at all limited to modeling of GB atomic
configurations but can cover various GBs related phenomena
evolving on diffusive time scales. The equilibrium segregation
can be studied by introducing a second atomic density field
for impurity/solute atoms. Inclusion of atomic vacancies and
interstitials into the consideration will permit to study non
equilibrium segregation. The Fourier transform of the ADF
gives a possibility to build images that can be compared
directly to the HRTEM.
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