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X-ray dynamical diffraction from single crystals with arbitrary shape and strain field:
A universal approach to modeling
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The effects of dynamical diffraction in single crystals engender many unique diffraction phenomena that cannot
be interpreted by the kinematical-diffraction theory, yet knowledge of them is vital to resolving a vast variety
of scientific problems ranging from crystal optics to strain measurements in crystalline specimens. Although
the fundamental dynamical-diffraction theory was established decades ago, modeling it remains a challenge in
a general case wherein the crystal has complex boundaries and mixed diffraction geometries (Bragg or Laue).
Here, we propose a universal approach for modeling x-ray dynamical diffraction from a single crystal with
arbitrary shape and strain field that is based on the integral representation of the Takagi-Taupin equations. Using
it, we can construct the solution iteratively via a converging series, independent of the diffraction geometry.
Moreover, the integral equations offer additional insights into the diffraction physics that are not readily apparent
in its differential counterparts. To demonstrate this approach, we studied the dynamical diffraction from a slab of
single crystal with both Bragg and Laue diffraction excited on the entrance boundaries, a problem that is difficult
to model by other methods. We also explored the mirage effect caused by the presence of a linear strain field and
compared it to the Eikonal theory. Lastly, we derived a dynamical-diffraction equation correlating the structural
properties of a particle to its far-field Bragg-diffraction pattern, shedding light on how dynamical diffraction
affects these kinematical-diffraction-based inverse techniques for reconstructing the shape and the strain field.
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I. INTRODUCTION

X-ray diffraction from crystals not only offers a powerful
tool for accurately measuring strain but also is an efficient way
to manipulate x rays. For weak diffraction from a small crystal
or a heavily strained one, the common kinematical-diffraction
theory, viz., the Born approximation that is formulated
into a Fourier transform of the crystal’s electron-density
function, will suffice. However, for strong diffraction, the
multiple-wave scattering effect is not negligible, so a more
rigorous dynamical-diffraction theory must be employed. The
effects of dynamical diffraction cause many of the diffraction
phenomena in single crystals [1–3], such as the extinction
effect, anomalous transmission (the Borrmann effect), double
reflection [4], the mirage effect [5,6], and anomalous transla-
tion [7]. On the one hand, they complicate our analyses of data
for measuring strain [8,9], in particular for techniques built
upon the kinematical-diffraction theory [10–12]. On the other
hand, they offer opportunities for novel applications of crystal
optics [13–15]. In either case, it is critical to use a modeling
approach to evaluate the effects of dynamical diffraction.

The classical dynamical-diffraction theory, proposed by
Ewald and later reformulated by von Laue, considers a Bloch
wave solution to the Maxwell’s equations [1–3]. Although this
is a powerful approach, giving a clear physical picture, it is
limited to perfect single crystals and a plane-wave solution.
Later, Kato extended it to a spherical-wave case [16,17].
A more general theory, the Takagi-Taupin equations (TTE)
[18,19], was established decades ago to deal with an arbitrary
strain field and an illuminating wave front. The TTE has
proven extremely powerful in solving dynamical-diffraction
problems, but except in a few cases, only numerical solutions
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are obtained. While many numerical algorithms have been
proposed [20–22], all were based on a finite-difference scheme
and have two obvious disadvantages: lack of insights and geo-
metric dependence (Bragg or Laue) for numerical implemen-
tation. The former prevents us from clarifying the fundamental
physics underlying the dynamical-diffraction effects, and the
latter limits their applications for crystals with complex shapes
and mixed diffraction geometries. Consequently, whether for
theoretical studies or practical applications, there is a strong
need for a universal modeling approach that can simulate the
effects of dynamical diffraction in a general case while still
offering sufficient physical clarity. In this paper, we present
such an approach based on an iterative solving procedure.

II. MODELING APPROACH

We start by considering TTE with the two-beam ap-
proximation. The wave field inside a crystal can be written
as the superposition of two waves, D0(r) exp(ik0 · r) and
Dh(r) exp(ikh · r − ih · u), that are the transmitted and the
diffracted waves, respectively, and that satisfy the following
coupled partial-differential equations:

∂

∂s0
D0 = i

π

λ
(χ0D0 + χh̄Dh)

∂

∂sh

Dh = i
π

λ
[χhD0 + (w0 + αh)Dh],

k = 2π/λ, k0 = kŝ0, kh = k0 + h = khŝh,

w0 = (
1 − k2

h/k2
) + χ0 ≈ 2η sin(2θB) + χ0,

αh = λ

π

∂(h · u)

∂sh

. (1)

Here, λ is the wavelength of the incident x ray; θB is the Bragg
angle of the unstrained crystal calculated from Bragg’s law; η is
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FIG. 1. (Color online) Schematic of x-ray diffraction from a
crystal with an arbitrary shape. The oblique coordinates s0 and
sh represent the incident and diffracted directions, respectively.
Boundary conditions need to be satisfied on 	 (green) for the
transmitted wave and on 
 (yellow) for the diffracted wave. The
diffracted wave exits on � (black). The wave field at a point P inside
the crystal is only affected by wave fields in the filled region (purple),
and the arrows indicate the integration directions in Eq. (3).

the deviation of the incidence angle with respect to the diffract-
ing lattice plane from θB ; h is the reciprocal lattice vector of
the unstrained crystal; u is the displacement vector; χ0, χh, and
χh̄ are Fourier coefficients of the susceptibility function of the
crystal; and ŝ0 and ŝh are the unit vectors along the transmitted
and diffracted waves, respectively (Fig. 1). For an incident
wave D

(a)
0 (r) exp(ik0 · r), the boundary conditions are

D0(	) = D
(a)
0 (	) and Dh(
) = 0, (2)

where 	 and 
 are the corresponding boundaries for the trans-
mitted and diffracted waves, respectively, composed of the first
intersection points of their respective propagation vectors to
the crystal’s surface (Fig. 1). There is only a unique solution to
TTE that fulfills the boundary conditions in Eq. (2). The usual
definitions of the Bragg- and Laue-diffraction geometries are
distinguished by the boundary conditions. As Fig. 1 shows, if
	 and 
 coincide, it is the Laue geometry; if 	 and 
 do not
overlap, it is the Bragg geometry. For situations between, it is
a mixed geometry that complicates the calculation.

We first attempt to solve TTE from a purely physical
perspective. As stated earlier, the kinematical-diffraction
theory neglects the effect of multiple-wave scattering, i.e., the
energy interchange between the transmitted and the diffracted

waves, and thus is valid only when the diffracted wave is
very weak (typically smaller than 0.1, normalized to the
incident beam). Consequently, at the kinematical limit, we
can set Dh to zero and obtain the analytical expression of
the transmitted wave by solving the first equation in Eq. (1).
Unsurprisingly, this leads to the well-known exponential
transmission function in a medium with the absorption and
refraction effects included. Substituting D0 into the second
equation in Eq. (1) yields an analytical expression of Dh

that is the kinematical solution of the diffracted wave. The
presence of the nonzero Dh accelerates the change of D0;
therefore, we must substitute it back to the first equation to
more accurately express the transmitted wave. Accordingly, we
also must update the solution to the second equation to reflect
the change of the transmitted wave. The iteration continues
until a converged solution emerges. At the nth iteration, for a
point at P (s0,sh), we arrive at

D0,n(s0,sh) = D
(a)
0

(
s	

0 ,sh

)
exp

[
ic0

(
s0 − s	

0

)]

+ ich̄

∫ s0

	

Dh,n−1(s ′
0,sh) exp[ic0(s0 − s ′

0)]ds ′
0,

Dh,n(s0,sh) = ich

∫ sh




D0,n(s0,s
′
h) exp{ih · [u(s0,sh)

− u(s0,s
′
h)] + icw(sh − s ′

h)}ds ′
h,

c0,h,h̄ = kχ0,h,h̄/2, cw = kw0/2,

n = 1,2,3...,Dh,0(s0,sh) = 0, (3)

where s	
0 is the s0 coordinate of 	 at sh. This iteration

describes and clarifies the interaction between D0 and Dh.
For example, the second integral on the right-hand side of
the first equation describes the extinction effect. That is, the
transmitted wave attenuates faster than normal absorption
because energy is removed from it by the diffracted wave. Due
to the uniqueness of the solution, if the iteration converges
and the converged solution satisfies the boundary conditions,
then it must be the true and only solution to TTE. As is
evident from Eq. (3), the integral form of the solution ensures
that the boundary conditions are fulfilled automatically, a
great advantage compared to approaches based on the finite-
difference scheme.

A rigorous proof of convergence can be provided math-
ematically. Turning the differential equations in Eq. (1) into
their integral forms yields

D0(s0,sh) = Dkin
0 (s0,sh) + ε

∫ sh




∫ s0

	

K0(s0,sh; s ′
0,s

′
h)D0(s ′

0,s
′
h)ds ′

0ds ′
h

Dh(s0,sh) = Dkin
h (s0,sh) + ε

∫ sh




∫ s0

	

Kh(s0,sh; s ′
0,s

′
h)Dh(s ′

0,s
′
h)ds ′

0ds ′
h,

K0(s0,sh; s ′
0,s

′
h) = exp{ih · [u(s ′

0,sh) − u(s ′
0,s

′
h)] + icw(sh − s ′

h) + ic0(s0 − s ′
0)},

Kh(s0,sh; s ′
0,s

′
h) = exp{ih · [u(s0,sh) − u(s0,s

′
h)] + icw(sh − s ′

h) + ic0(s0 − s ′
0)}, ε = −chch̄. (4)

These are Volterra integral equations of the second kind. Here
Dkin

0 and Dkin
h are the kinematical solutions to the transmitted

and diffracted waves, respectively, and are the first iterations

in Eq. (3). Figure 1 displays the integrated area in purple. Only
the wave field inside this region can influence that at P . The
iterative solving procedure discussed previously is equivalent
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to a Neumann series solution to the Volterra integral equation
of the second kind, whose convergence is guaranteed as long
as the kernel is square integrable [23].

Because the derivation is similar, here we discuss only the
convergence of the iterative solution to the diffracted wave.
The Neumann series solution of the diffracted wave can be
written as

Dh,M (s0,sh) =
M∑

m=0

εmϕm(s0,sh), (5)

where

ϕm(s0,sh) =
∫ sh




∫ s0

	

Kh(s0,sh; s ′
0,s

′
h)ϕm−1(s ′

0,s
′
h)ds ′

0ds ′
h.

According to Schwartz inequality, we have

|ϕm(s0,sh)|2 �
(∫ sh




∫ s0

	

|Kh(s0,sh; s ′
0,s

′
h)|2ds ′

0ds ′
h

)

×
(∫ sh




∫ s0

	

|ϕm−1(s ′
0,s

′
h)|2ds ′

0ds ′
h

)

� S

∫ sh




∫ s0

	

|ϕm−1(s ′
0,s

′
h)|2ds ′

0ds ′
h,

S =
∫ sh




∫ s0

	

ds ′
0ds ′

h. (6)

Integrating Eq. (6) on both sides, we arrive at∫ sh




∫ s0

	

|ϕm(s ′
0,s

′
h)|2ds ′

0ds ′
h

� S

∫ sh




∫ s0

	

∫ s ′
h




∫ s ′
0

	

|ϕm−1(s ′′
0 ,s ′′

h)|2ds ′′
0 ds ′′

hds ′
0ds ′

h. (7)

Integration by parts on the right-hand side of the equation leads
to∫ sh




∫ s0

	

|ϕm(s ′
0,s

′
h)|2ds ′

0ds ′
h

� S

∫ sh




∫ s0

	

|ϕm−1(s ′
0,s

′
h)|2(s0 − s ′

0)(sh − s ′
h)ds ′

0ds ′
h. (8)

Combining Eqs. (6) and (8), we can write

|ϕm(s0,sh)|2

� S2
∫ sh




∫ s0

	

|ϕm−2(s ′
0,s

′
h)|2(s0 − s ′

0)(sh − s ′
h)ds ′

0ds ′
h.

(9)

Repeating steps from Eqs. (7) to (9) so that the index in the
integral decreases by one every time, we arrive at

|ϕm(s0,sh)|2 � Sm

[(m − 1)!]2

∫ sh




∫ s0

	

|ϕ0(s ′
0,s

′
h)|2

×(s0 − s ′
0)m−1(sh − s ′

h)m−1ds ′
0ds ′

h.

Defining l0 = max(s0 − s ′
0), lh = max(sh − s ′

h), and F 2 =∫ sh




∫ s0

	

∣∣ϕ0(s ′
0,s

′
h)

∣∣2
ds ′

0ds ′
h, we eventually obtain

∣∣εmϕm(s0,sh)
∣∣ � |ε|m F

(m − 1)!

√
lm−1
0 lm−1

h Sm. (10)

Because the expression on the right-hand side represents a
converging series, the Neumann series solution on the left-hand

side also must converge. Earlier, Bremer proposed a similar
solving scheme based on the integral equation [Eq. (4)] [24]
but did not rigorously discuss the overall convergence of the
iterative solution.

III. SIMULATION RESULTS

To demonstrate the capability of our approach, we chose a
case wherein an incident plane wave at 12 keV is diffracted
from a slab of a perfect Si (004) crystal that is 100 μm
thick and 300 μm long. The diffraction geometry differs at
different illuminating surfaces [Fig. 2(a)]. There is interest in
studying dynamical diffraction in such a case [4,25,26], not
only for understanding the fundamental diffraction physics
but also for its potential applications in measuring strain with
high sensitivity. However, no previous paper has considered
the excitation of both the Laue and the Bragg diffractions
on the entrance surface due to difficulties in modeling a
mixed geometry. With the iterative approach we discuss in
this paper, it is straightforward to calculate the diffracted wave,
the transmitted wave, and the Poynting vector (energy flow)
at different places in the crystal. Figure 2(b)–2(d) show the
calculation results at an incident angle of 10 microradians
above the Bragg angle. This small amount of deviation
accounts for the refraction effect in the Bragg geometry so
that the incidence angle is within the total reflection region
of the Darwin curve. In the Bragg case, due to the very
strong diffraction around the top surface, the energy mostly is

FIG. 2. (Color online) (a) Schematic of a slab of Si (004) crystal
illuminated by a plane wave at 12 keV. Dynamical diffraction in Bragg
(top incident surface) and Laue (left incident surface) geometries
are excited simultaneously. At an incidence angle 10 microradians
above the Bragg angle, the simulated results of the (b) diffracted
wave, (c) transmitted wave, and (d) Poynting vector (energy flow).
The green arrows show the direction of the energy flow. (f)–(h) The
same plots when the deviation angle is zero (right at the Bragg
angle). (e) The change in diffraction intensity along the dashed
line in (f) compared with the classical dynamical-diffraction theory.
The oscillation corresponds to the Pendellösung fringes in the Laue
case.
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confined in a layer not greatly exceeding the extinction depth
and can only propagate along the surface [Fig. 2(d)]. Mean-
while, the transmitted wave experiences a strong extinction
effect; its intensity quickly decreases to zero at a depth of
several microns inside the crystal [Fig. 2(c)]. However, near the
left sidewall, the diffraction geometry changes to the Laue case
and the phenomenon differs completely. Unlike that in Bragg
geometry, the peak of Laue diffraction is centered at the Bragg
angle in the symmetric case, not offset by the refraction effect.
At this small deviation angle, Laue diffraction is not excited
strongly [Fig. 2(b)]. Consequently, energy flows mostly along
the incident direction near the left sidewall.

At the exact Bragg angle, in the region of the Laue
diffraction, the Pendellösung fringes, viz., the oscillation in
diffraction intensity with thickness (here, along the x axis),
starts to appear [Fig. 2(f)]. To verify the correctness of the
numerical results, we compared the intensity variation along
the dashed line in Fig. 2(f) with that calculated from classical
dynamical theory [Fig. 2(e)]. They agree perfectly. As we
expected, the energy flow in this region is along the diffracting
lattice plane. In the Brag-diffraction region, energy no longer
propagates along the surface as before but flows along an angle
inclined by �13° to the crystal’s surface due to the relatively
weak diffraction at this incidence angle. As the simulation
reveals, a 10-microradian variation in the incidence angle can
result in a directional change of more than 10° in energy flow,
a phenomenon known as the angular amplification effect in
perfect single crystals [1].

Although the individual dynamical-diffraction phenomena
discussed herein have been well studied within the framework
of the classical dynamical-diffraction theory, the coupling
properties of the wave fields generated under two different
diffraction geometries remain unresolved. As the simulation
demonstrates, the strong interference effect between these
two wave fields arises along their geometrical boundaries
and then propagates to other regions, engendering profound
diffraction-intensity modulations in both the x and the z

directions. This fact is of particular importance if the real
space variations of the exit diffracted or transmitted wave are
of interest.

The crystal we discuss above had no interior strain field. If
we were to deform it slightly and introduce a linear strain
field, other dynamical-diffraction effects would arise. For
weakly deformed crystals, the Eikonal theory that explores
the trajectory of the wave field often is employed [27]. Here,
we compare the numerical results obtained from the iterative
approach with those derived from the Eikonal theory. To
better visualize the ray’s trajectory, we assumed an incident
Gaussian beam with a narrow wave front. The linear strain
field has a constant strain gradient of 2.0 × 10−6 μm−1.
In Fig. 3(a)–3(c), we plot the variation of the Poynting
vector at different incidence angles. The presence of the
linear strain field deflects the beam back to the surface,
causing a “mirage effect” analogous to that for visible light.
However, this phenomenon is associated with the dynamical-
diffraction effect, not with refraction. It is the Poynting vector,
not the wave vector, that dramatically changes its direction.
The energy trajectory follows a hyperbolic curve [28], with
the distance separating the two emerging diffraction peaks
being determined by the gradient in strain and the incidence

FIG. 3. (Color online) Plots of the Poynting vector (energy flow)
when a Gaussian beam is incident on a crystal with a linear strain
field along depth z. The green arrows show the direction of the
vector. (a)–(c) The deviation angle is 10, 20, and 30 microradians,
respectively. The energy flow follows a hyperbolic curve, bending
back to the surface due to the presence of the constant strain gradient.
The diffracted beam emerges from two locations on the surface
separated by a distance dependent upon the deviation angle and
the strain gradient. (d) Comparison of the separation distance to the
Eikonal theory.

angle. We found good agreement between the numerical and
the analytical expressions [Fig. 3(d)].

This iterative approach is applicable to any dynamical-
diffraction problem where TTE is valid. In particular, for
relatively small crystals of less than 10 μm, only a few
iterations are needed for convergence of the solution. Therein,
not only is the computation faster, but we can derive the
approximated analytical expressions.

IV. DYNAMICAL DIFFRACTION IN THE FAR FIELD

In addition its power in terms of numerical calculation, the
analytical form of the integral solution in Eq. (3) offers insights
into the diffraction physics that are not readily apparent in its
differential counterpart. The cases in Figs. 2 and 3 concern
the diffraction intensity in real space and on the crystal, but
many diffraction problems deal with the pattern of far-field
diffraction in reciprocal space. The integral solution allows us
to derive the far-field diffraction equation while considering
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dynamical diffraction. From the Fresnel-Kirchhoff integral,
the expression for the far-field diffracted wave field φh is
derived readily:

φh(�q) ≈ A

∫ ∫
�

exp(−i�q · r�)(ŝh · n)ds

×
∫ �




D0 exp
[
(−ih · u) + icw

(
s�
h − s ′

h

)]
ds ′

h,

�q = kd − kh. (11)

Here, A is a constant of no consequence to this paper, � is
the emerging surface of the diffracted wave on the crystal,
n is its surface normal, r� is a position vector on �, and
kd is the receiving wave vector on the detector. We assumed
the Fraunhoffer diffraction condition in the derivation. The
crystal’s volume V is bounded by surfaces 
 and �. By noting∫ ∫

�

(ŝh · n)ds

∫ �




ds ′
h = V

and

�q · ŝh = ηk sin(2θB),

we can rewrite Eq. (11) as

φh(�q) = A

∫ ∫ ∫
V

D0(r) exp
{ − ih · u(r)

+ ikχ0
[
s�
h (r) − s ′

h(r)
]
/2

}
exp(−i�q · r)d3r. (12)

At first glance, Eq. (12) seemingly is nothing but a Fourier
transform. The transformed function includes the phase
variation due to the presence of the displacement field, the
transmitted wave, and the absorption/refraction correction
along the diffracted direction. At the kinematical limit where
all effects of absorption, refraction, and multiwave scattering
are ignored, it is simplified to the well-known kinematical-
diffraction equation

φh(�q) = A

∫ ∫ ∫
V

exp[−ih · u(r)] exp(−i�q · r)d3r.

(13)

Equation (12) illustrates the clear relationship of the far-field
diffraction pattern to the crystal’s shape, displacement field,
and refraction index. It offers an efficient way to evaluate the
effects of dynamical diffraction in reciprocal space, as well
as clues on how to correct them from the experimental data.
One remaining problem in Bragg coherent diffractive imaging
(BCDI), which inversely reconstructs the crystal’s shape and

the strain field by iterative phase-retrieval methods [11,12],
is to correct any artifacts from dynamical diffraction, together
with those associated with the effects of absorption and refrac-
tion. In closely examining Eq. (12), we find that strictly it is not
a Fourier transform, since D0, the transmitted wave, can be a
function of �q when dynamical diffraction is strongly excited.
Therefore, the effect of the former on reconstructing the shape
and the strain field in BCDI can be profound. Assuming that
the transmitted wave only experiences refraction, the usual
way of correcting the phase along the incident and diffracted
directions [29] readily is deduced as the first-order approxima-
tion to Eq. (12). High-order corrections due to the dynamical-
diffraction effects are beyond the scope of this paper.

V. SUMMARY

We present a universal approach for modeling x-ray
dynamical diffraction from single crystals with arbitrary
shape and strain field. We developed it from our observation
that we can interpret the interaction between the diffracted and
the transmitted waves as an iterative solving process to TTE.
We show that this iteration leads to a Neumann series solution
to the corresponding integral equation of TTE, and its conver-
gence can be proven rigorously. Compared to other numerical
methods based on a finite-difference scheme, this iterative
approach yields a solution automatically satisfying boundary
conditions, thereby unifying the Bragg- and Laue-diffraction
geometries. We verified its correctness in two cases wherein
the dynamical phenomena had been studied previously. In
addition, the integral solution allows us to derive an analytical
expression describing the diffraction intensity in reciprocal
space while considering dynamical diffraction. We discussed
their effects on Bragg coherent-diffractive imaging. This
universal approach will help us to understand many dynamical-
diffraction phenomena that remain difficult to model via
existing methods and will open opportunities to extend strain-
measurement techniques built upon the kinematical-diffraction
theory into the dynamical-diffraction regime. In addition,
dynamical-diffraction problems for electrons and neutrons can
be formulated into a form similar to TTE; therefore, this same
methodology likely will be applicable to them.
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