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Hydrodynamic electron transport and nonlinear waves in graphene
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We derive the system of hydrodynamic equations governing the collective motion of massless fermions in
graphene. The obtained equations demonstrate the lack of Galilean and Lorentz invariance and contain a variety
of nonlinear terms due to the quasirelativistic nature of carriers. Using these equations, we show the possibility
of soliton formation in an electron plasma of gated graphene. The quasirelativistic effects set an upper limit for
soliton amplitude, which marks graphene out of conventional semiconductors. The mentioned noninvariance of
the equations is revealed in spectra of plasma waves in the presence of steady flow, which no longer obey the
Doppler shift. The feasibility of plasma-wave excitation by direct current in graphene channels is also discussed.
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I. INTRODUCTION

The models of carrier transport in graphene should account
for strong carrier-carrier interaction,1,2 which is governed by
a large “fine-structure constant” e2/(�vF ) ∼ 1 and a logarith-
mically divergent collision integral for collinear scattering.3,4

The relative strength of carrier-carrier scattering compared to
other relaxation mechanisms was also proven in transparency
measurements of optically pumped graphene.5,6 The corre-
sponding relaxation time is estimated to be less than 100 fs.

The most natural way to account for carrier-carrier in-
teractions in transport models is to use local equilibrium
(hydrodynamic) distribution functions as a first approximation
to the solution of kinetic equations.7 Several approaches for
describing hydrodynamic transport in graphene were pre-
sented in Refs. 8–15. Within hydrodynamic models, it is pos-
sible to explain the temperature-independent dc conductivity
of graphene at the charge neutrality point8 and the strong
Coulomb drag between electrons and holes.8,15,16 The other
predictions of hydrodynamic transport, such as preturbulent
current flow due to low viscosity,11 existence of electron-
hole sound,8 and current saturation at high electric fields
due to heating of electrons,10 still expect their experimental
verification.

In recent works on graphene hydrodynamics,9,11,14 the
equations were obtained under assumption of low drift velocity
u of the electron plasma (u � vF ). Several nonlinear terms
were inevitably lost under such an assumption. In several
other works,12,13 the hydrodynamics of massless quasiparti-
cles in graphene was obtained from the hydrodynamics of
ultrarelativistic plasma by a simple replacement of the speed
of light, c, by the Fermi velocity vF . Such a spurious analogy is
misleading in this particular case because electrons in graphene
represent neither a Galilean-17 nor a truly Lorentz-invariant
system (in general, this refers to any electrons in solids). The
reason is that, for velocities less than and of the order of
vF � c/300, the distortion of spacetime metrics is negligible.
Hence, dealing with quasirelativistic particles in Galilean
spacetime, one will obtain hydrodynamic equations that are
neither Galilean nor Lorentz invariant.

In this paper, we present an explicit derivation of hy-
drodynamic equations for massless electrons in graphene,
following the general strategy put forward by Achiezer et al.18

In addition, we eliminate the restriction on the flow velocity
requiring it to be much less than the Fermi velocity. This opens
up an opportunity to study a wide variety of nonlinear phe-
nomena, such as propagation of large-amplitude waves,19,20

photovoltaic response,21 transport at high current flows,22

and acousto-electronic interactions.23 The peculiarities of
electron interactions with impurities and phonons along with
electron-hole interactions have already been studied within
a hydrodynamic approach in Refs. 8,10, and 13. For this
reason, in the present work we focus mainly on nondissipative
nonlinear hydrodynamic transport.

In graphene it is impossible to introduce a constant electron
effective mass m as a proportionality coefficient binding
the momentum to the velocity. Consequently, the Euler
equation can no longer be presented in the canonical form
∂tu + (u∇)u + (∇P )/ρ = 0, where u is the drift velocity, ρ is
the mass density of electrons, and P is the pressure. However,
a fictitious (hydrodynamic) mass M depending on the particle
density n and the drift velocity naturally arises in the Euler
equation. One more unusual feature of the Euler equation is an
appearance of a density- and velocity-dependent factor before
the convection term (u∇)u. We show that in the degenerate
electron system this term vanishes, giving way to a weaker
fourth-order nonlinearity proportional to u2(u∇)u.

Using the derived equations, we study the nonlinear effects
in plasma-wave propagation in graphene. Hydrodynamics
proved to be an extremely efficient tool for the study of elec-
tron plasma in two-dimensional (2D) electron systems.24–27

Collective dynamics of electrons in two dimensions has a
rich analogy with the hydrodynamics of liquids, including
the phenomena of electron flow choking27 and formation of
shallow- and deep-water plasma waves in gated and nongated
systems, respectively.26 Despite huge efforts in the field of
graphene plasmonics,28–32 the problem of nonlinear plasma
waves stayed beyond the scope of recent works.

We show that the balance between nonlinearities and
dispersion allows the formation of solitary plasma waves in
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gated graphene. We find that “relativistic” terms in Euler
equation set an upper limit for the soliton amplitude and
broaden its profile. This differs much from the solitons in
systems of massive 2D electrons,25,33 which behave similarly
to solitary waves in water.

The features of electron hydrodynamics are also pro-
nouncedly revealed in the spectra of collective (plasma)
excitations in graphene in the presence of stationary electron
flow with velocity u0. It is natural to expect that velocities
of forward and backward plasma waves are u0 ± s0, where
s0 is the wave velocity in the electron fluid at rest. We
demonstrate, however, that in graphene the dependence of
the wave velocities on the flow velocity is more complicated
due to the lack of Galilean and Lorentz invariance. In the
particular case of a strongly degenerate electron system, these
velocities are 1

2u0 ± s0.
We also revealed the potentiality of plasma instability in

gated graphene in the presence of steady current. We prove that
this effect (predicted for high-mobility 2D electron systems
based on the conventional semiconductors by Dyakonov and
Shur26) persists for graphene with its unusual hydrodynamics.
We find the ultimate increment of plasma waves and show
that this instability could be realized in graphene channels of
submicron length.

The work is organized as follows: In Sec. II we derive
the set of hydrodynamic equations and discuss the terms
arising due to the massless nature of Dirac fermions. In
Sec. III we demonstrate several solutions of those equations
revealing the features of electrons in graphene. In particular,
we obtain the profiles of solitary waves in gated graphene, find
the spectra of plasma waves in the presence of steady flow,
and show the possibility of plasma-wave self-excitation under
certain boundary conditions. The main results are discussed in
Sec. IV. Some mathematical details concerning the derivation
of equations are singled out in the Appendixes.

II. DERIVATION OF HYDRODYNAMIC EQUATIONS

We consider a 2D plasma of massless electrons in graphene
with a linear dispersion law εp = pvF . We assume the Fermi
level to be above the Dirac point and neglect the contribution
of holes.

The starting point for the derivation of hydrodynamic
equations lies in the construction of the distribution function of
carriers which turns the collision integral to zero. Regardless
of the energy spectrum εp this function is

f (p) =
[

1 + exp

(
εp − pu − μ

T

)]−1

, (1)

where the quantities defined from the hydrodynamic equations
are the chemical potential μ, the drift velocity u, and the
temperature T (measured in the energy units).

The set of hydrodynamic equations is obtained by integrat-
ing the kinetic equation timed by 1, pi , and εp over the phase
space. The kinetic equation for massless electrons reads

∂f

∂t
+ vF

p
p

∂f

∂r
+ F

∂f

∂p
= Ste−i{f } + Ste-e{f }. (2)

Here Ste-i{f } includes the electron-impurity and electron-
phonon collision integrals, Ste-e{f } is the electron-electron

collision integral, F = e∂ϕ/∂r is the force acting on electron,
and e = |e|. The dissipative terms in hydrodynamic equations
due to the electron-impurity and electron-phonon collisions
were discussed in previous works,8,10 and further these terms
will be omitted.

It is instructive that all statistical average values like
the electron density n = 4

∑
p fp, flux j = 4

∑
p vpfp, and

internal energy density ε = 4
∑

p εpfp can be calculated
exactly with the distribution function (1) when the spectrum
εp is linear (see the derivation in the appendix); namely,

n = n0[
1 − u2/v2

F

]3/2 , (3)

j = nu, (4)

ε = ε0[
1 − u2/v2

F

]5/2
. (5)

Here n0 and ε0 are the steady-state particle density and energy
density, respectively, given by

n0 = 2T 2

π�2v2
F

∫ ∞

0

tdt

1 + et−μ/T
, (6)

ε0 = 2T 3

π�2v2
F

∫ ∞

0

t2dt

1 + et−μ/T
. (7)

For brevity, we introduce the pressure of the electron plasma

P = ε

2
, (8)

and an analog of the electron mass density

ρ = 3ε

2v2
F

. (9)

In these notations, the set of hydrodynamic equations takes
on the form

∂n

∂t
+ ∂(nui)

∂xi

= 0, (10)

∂(ρui)

∂t
+ ∂�ij

∂xj

− en
∂ϕ

∂xi

= 0. (11)

Equations (10) and (11) represent the continuity equation and
the Euler equation, respectively. The elements of the stress
tensor are (the velocity u is directed along the x axis)

�xx = P [1 + 2(u/vF )2], (12)

�yy = P [1 − 2(u/vF )2]. (13)

The heat-transfer equation (which will not be discussed here
in detail) reads

∂ε

∂t
+ v2

F

∂(ρui)

∂xi

+ enui

∂ϕ

∂xi

= 0. (14)

It is important that the electron sheet density n arises in
the continuity equation, while the mass density ρ arises in the
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Euler equation. Those quantities are not directly proportional
to each other because it is impossible to introduce a constant
electron effective mass m. In other words, the fictitious particle
mass M = ρ/n is density dependent and velocity dependent
and cannot be factored out of the differential operator. In the
degenerate electron system (μ � T ) the expression for mass
reads

M = μ/v2
F√

1 − u2/v2
F

. (15)

To recognize the peculiarities of the Euler equation ob-
tained and analyze the emerging nonlinearities, it would be
convenient to present it in the canonical form (hereafter we
restrict ourselves to one-dimensional motion). Excluding the
time derivatives of density ρ with the use of Eqs. (3) and (5)
[see also Eqs. (A5) and (A6)], we arrive at the following
equation:

∂u

∂t

[
1 + β2 (5 − 6ξ )

1 − β2

]
+ u

∂u

∂x

[
(3 − 4ξ ) − β2(5 − 6ξ )

1 − β2

]

+ 2ξv2
F

3n

∂n

∂x
(1 − β2) − n

ρ

∂(eϕ)

∂x
= 0. (16)

Here we have introduced the relativistic factor β = u/vF and
the dimensionless function ξ characterizing the thermody-
namic state of the electron system,

ξ = n2

ε〈ε−1〉 , (17)

where 〈ε−1〉 	= ε−1 is the density of inverse energy [see
Eq. (A4)]. The function ξ varies from 1/2 at μ/T → −∞
to 3/4 at μ/T → +∞. At μ � T it is given by the following
asymptotic relationship:

ξμ�T = 3

4

(
1 − 2

nT

n

)
. (18)

Here nT is the density of thermally activated electrons at
μ = 0.

In the hydrodynamic equations for massive particles, two
sources of nonlinearities exist: the current-density term in the
continuity equation, ∂x(nu), and the nonlinear-convection term
in Euler equation, u∂xu. Much greater variety of nonlinearities
is involved in the Euler equation for electrons in graphene
(16). They can be classified as relativistic nonlinearities due
to high drift velocities and nonlinearities due to the density
dependence of the hydrodynamic mass M. To compare their
“strength,” we consider small perturbations of density, ve-
locity, and electric potential: n = n0 + δn(x,t), u = δu(x,t),
ϕ = ϕ0 + δϕ(x,t).

It is easy to see that the relativistic nonlinearities are, at the
least, the third-order terms. Dropping them, we can rewrite the
Euler equation as

∂u

∂t
+ u

∂u

∂x
(3 − 4ξ ) + 1

M

[
1

n

∂P

∂x
− ∂(eϕ)

∂x

]
= 0. (19)

The nonlinear convection term in the Euler equation is
weakened due to the factor 3 − 4ξ < 1. In a degenerate

electron system this term can be estimated as

6
nT

n0
δu

∂δu

δx
≈ 6

nT

n0

s2
0

n2
0

δn
∂δn

δx
. (20)

Here s0 is the velocity of collective excitations (plasma waves)
in graphene. At low temperatures and elevated Fermi energies
this term becomes infinitesimal and surrenders to the higher-
order nonlinearity u3∂xu.

In comparison with the convective term, the nonlinearity
due to the density dependent mass (M ∝ n1/2) is much
stronger. The corresponding term could be evaluated as

− 1

2M
δn

n0
δ

[
1

n0

∂P

∂x
− ∂(eϕ)

∂x

]
≈ − s2

0

2n2
0

δn
∂δn

∂x
. (21)

It is readily seen from the above considerations that non-
linear transport phenomena in graphene are rather governed
by the density dependence of mass M than by nonlinear
convection, which used to occur in common semiconductors.

III. NONLINEAR EFFECTS
IN PLASMA-WAVE PROPAGATION

A. Formation of solitons in gated graphene

In gated structures the electron density n is related to the
local electric field −∂ϕ/∂x in graphene via a weak nonlocality
approximation (see derivation in Appendix B, and also Ref. 25)

∂(eϕ)

∂x
= − 4πe2d1d2

κ(d1 + d2)

∂n

∂x
− 4πe2d2

1d2
2

3κ(d1 + d2)

∂3n

∂x3
. (22)

Here d1 and d2 are distances from the graphene layer to
the top and bottom gates, respectively, and κ is the gate-
dielectric permittivity. The first term on the right-hand side
simply follows from Gauss’s theorem for uniform electron
density. The third derivative term is associated with a weak
nonuniformity of charge in 2D layer; it accounts for a weak
dispersion of plasma waves in gated structures. A subtle
balance between dispersion and nonlinearity results in the
formation of solitary waves.

We search for the solutions of hydrodynamic equations
in the form n = n0 + δn(z), u = δu(z), where z = x − u0t is
the running coordinate, and u0 is the soliton velocity being
slightly different from the plasma-wave velocity s0 due to the
dispersion. Within the hydrodynamic model, the expression
for plasma-wave velocity can be represented as8

s2
0 = v2

F

2ξ

3

(
1 + 4πe2

κ

d1d2

d1 + d2
〈ε−1〉

)
. (23)

Integration of the continuity equation (10) provides the
relation between u and n:

u = u0
n − n0

n
. (24)

Eliminating the drift velocity u and the electric potential ϕ

from the Euler equation (16) with the help of Eqs. (22) and
(24), we arrive at the dynamic equation for a solitary wave.
The latter is concisely represented in the limit μ � T using
the dimensionless variables ζ = z

√
3/(d1d2), ν = δn/n0, β =
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u/vF , β0 = u0/vF , s̃0 = s0/vF as follows:

F (ν)
∂ν

∂ζ
+

(
s̃2

0 − 1

2

)
∂3ν

∂ζ 3
= 0, (25)

F (ν) = s̃2
0 − 1

2
− β0β

2(β + β0)

2(ν + 1)3/2(1 − β2)

+ 1 − β2

2
√

ν + 1
− β2

0

(ν + 1)3/2
. (26)

Upon expanding F (ν) in series over ν, one arrives at the
well-known Korteweg–de Vries34 (KdV) equation

(
s̃2

0 − β2
0

)∂ν

∂ζ
+

(
s̃2

0 − 1

2

)
∂3ν

∂ζ 3
+

(
3

2
β2

0 − 1

4

)
ν

∂ν

∂ζ
= 0.

(27)

The solutions of this equation correspond to the so-called
bright solitons; their shape is given by35

δn(z) = δnmax cosh−2

[
z

2

√
3

d1d2

s2
0

2s2
0 − v2

F

δnmax

n0

]
. (28)

The maximum soliton height δnmax is bound to its velocity u0

via

δnmax = n0

2

u2
0 − s2

0

s2
0

. (29)

The soliton width W is

W = 2

√
d1d2

3

2s2
0 − v2

F

s2
0

δnmax

n0
. (30)

Because δnmax � n0, and s2
0 > v2

F /2, the soliton width can be
much greater than the distance to the gates, which justifies
the applicability of the weak nonlocality approximation.
Besides, the soliton width should markedly exceed the inelastic
(electron-electron) free path to justify the validity of the
hydrodynamic approach. The free path is less than 100 nm,
which follows from the experimental5,6 and theoretical8

estimates of collision frequencies.
Apart from the numerical coefficients, the obtained pa-

rameters of solitons coincide with those in 2D plasma of
massive electrons in Ref. 25. To reveal the unique features
of graphene electron hydrodynamics, one should go beyond
the condition δn � n0 and analyze the general expression
for F (ν). The necessity of rigorous treatment arises when
the velocity u approaches the Fermi velocity, i.e., already at
δnmax/n0 ≈ vF /s0.

The numerical solution of Eq. (25) shows that solitons exist
when the maximum particle density δnmax lies below a certain
critical density. The higher is the plasma-wave velocity s0, the
lower is the critical density. The relation between δnmax and
soliton velocity u0 − s0 is plotted in Fig. 1, the termination of
the curves corresponds to the critical density and velocity.
It is seen from Eq. (28) that the soliton width shrinks as
its amplitude increases. The numerical results of solving the
rigorous KdV equation (25) plotted in the insets in Fig. 1
indicate that the width of soliton decreases only slightly as its
amplitude grows. Given the value of δnmax, the profile of a real

FIG. 1. (Color online) Dependence of soliton amplitude
δnmax/n0 on its velocity (u0 − s0)/vF at different velocities of
plasma waves, s0. The dashed black line indicates the boundary
of soliton existence. The profiles of solitary waves obtained from
numerical integration of Eq. (25) are plotted in the insets.

soliton is broader than that obtained from the “nonrelativistic”
approximation (27).

B. “Shallow-water” plasma waves in presence
of steady electron flow

To obtain the spectra of plasma waves in the presence
of steady flow with velocity u0 we linearize the hydrody-
namic equations assuming a harmonic time dependence of
perturbations

n = n0 + δn(x)e−iωt , (31)

u = u0 + δu(x)e−iωt . (32)

This procedure leads to the “equations of motion” for plasma
oscillations,

−iωδn + n0
∂δu

∂x
+ u0

∂δn

∂x
= 0, (33)

−iω[1 + γ ]δu + u0
∂δu

∂x
[3 − 4ξ0 − γ ] + s2

0

n0

∂δn

∂x
= 0, (34)

where we have introduced another relativistic factor γ :

γ = β2
0

1 − β2
0

(5 − 6ξ0). (35)

A weak dispersion of plasma waves was neglected here.
Assuming a harmonic dependence of all quantities on the

coordinate, that is ∝eikx , we obtain the linear law of plasma-
wave dispersion ω± = s±k. The velocities of forward (s+) and
backward (s−) waves are given by

s± =
2u0(1 − ξ ) ±

√
s2

0 (1 + γ ) + u2
0(2ξ − 1 + γ )2

1 + γ
. (36)

This relation distinctly manifests the lack of Galilean
invariance in the graphene hydrodynamic equations. On the
contrary, in 2D plasma of massive electrons, the velocities sm±
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FIG. 2. (Color online) Dependencies of plasma-wave velocities
s± in the presence of steady flow on the flow velocity u0.

are given by

sm± = u0 ± s0. (37)

In graphene, the presence of steady flow modifies the
properties of the electron system; therefore, the plasma-
wave velocity s± depends on the flow velocity in the quite
complicated manner described by Eq. (36). Particularly, when
the flow velocity is small (β0 � 1), we obtain

s± = 2u0(1 − ξ ) ± s0. (38)

In the limit of strongly degenerate electrons (ξ = 3/4), the
velocity of plasma waves is reduced to

s± = 1
2u0 ± s0. (39)

The factor 1/2 formally originates due to the vanishing
nonlinear convective term in the Euler equation. In case of large
drift velocities u0, the sign of the convective term in Eq. (16)
can switch from positive to negative. This, in turn, leads to
a decrease in wave velocity s+ with rising flow velocity. An
increase in fictitious mass M also contributes to this process.

The wave velocities s± obtained from Eq. (36) are plotted
in Fig. 2 for different values of chemical potential and for flow
velocities ranging from zero up to vF . An unusual “halved”
drag by the flow at small velocities turns to a decrease in
wave velocity at large u0. Formally, at u0 = vF the velocities
of both branches converge to s± = ±vF . However, this case
is of purely academic interest because such fast flows are
unattainable owing to velocity saturation.36

C. Excitation of electron plasma waves by direct current

A special kind of plasma-wave instability (Dyakonov–Shur
instability) occurs in high-mobility field-effect transistors un-
der the condition of constant drain current.26 An amplification
of plasma-wave amplitude occurs after the reflection from the
drain end. The corresponding increment ω′′

m (for 2D plasma of
massive electrons) was shown to be governed by the ratio of

forward- and backward-wave velocities:

ω′′
m = s2

0 − u2
0

2Ls0
ln

[
s0 + u0

s0 − u0

]
. (40)

This plasma-wave instability leads to radiation of electro-
magnetic waves due to oscillations of image charges in metal
electrodes.37 To find out whether such instability persists for
the unusual electron dynamics in graphene, we solve Eqs. (33)
and (34) with the boundary conditions

δn|x=0 = 0, [n0δu + u0δn]|x=L = 0. (41)

The latter condition corresponds to a constant drain current.
This can be realized either for transistors operating in the
current-saturation mode,36 or with the help of an external
circuit sustaining a constant current.

It is easy to show that the complex eigenfrequencies ωn =
ω′

n + iω′′
n of Eqs. (33) and (34) with boundary conditions (41)

are

ω′
n = πn

2L

s2
0 − u2

0 (3 − 4ξ − γ )√
s2

0 (1 + γ ) + u2
0(2ξ − 1 + γ )2

, (42)

ω′′
n=1 = ω′

n=1

π
ln

∣∣∣∣ s+
s−

∣∣∣∣
≈ 2u0(1 − ξ )

L

s2
0 − u2

0(3 − 4ξ − γ )

s2
0 (1 + γ ) + u2

0(1 − 2ξ − γ )2
. (43)

The imaginary part of the complex frequency is positive,
which means an amplification of the waves. We also see that
for the existence of instability it does not matter whether the
spectrum of electrons is parabolic or linear. The instability
persists if only the velocities of forward and backward plasma
waves are different. At the same time, compared with massive
particles, the wave increment (43) is smaller due to a smaller
difference in wave velocities [|s+| − |s−| ≈ u0 for degenerate
massless electrons instead of 2u0 for massive electrons]. As
the flow velocity u0 increases (β0 � 1/2), the wave increment
begins to fall down because the velocity difference decreases.

The ultimate wave increment in such kind of instability
is estimated as vF /(4L), which is attained at u0 � vF /2
(see Fig. 3). For the self-excitation to arise, it should
exceed (2τp)−1, where τp is the momentum relaxation time.
Considering the high-quality samples, where scattering

FIG. 3. (Color online) Dependence of wave increment ω′′
1 on flow

velocity u0 at different values of Fermi energy.
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from acoustic phonons dominates, we can estimate
τ−1
p ≈ 3 × 1011 s−1 at room temperature.38 The self-excitation

turns out to be possible for channel lengths L � 1.5 μm. This
optimistic anticipation could be hampered by the presence
of impurity scattering, velocity saturation, and dependence
of relaxation time on electron density. Nevertheless, even for
shorter channels the hydrodynamic approach is valid and the
self-excitation seems plausible.

IV. DISCUSSION OF RESULTS

We have derived hydrodynamic equations describing the
transport of massless electrons in graphene. A linear energy
spectrum of carriers should be taken into account from the
very beginning of the derivation. It cannot be introduced as a
small correction to the parabolic dispersion (like p4 terms
in Si, Ge, A3B5

39). On the other hand, the hydrodynamic
equations for ultrarelativistic plasmas also cannot be directly
applied to graphene because the Fermi velocity is much smaller
compared to that of light.

The dependence of particle density n on drift velocity u

[Eq. (3)] may look confusing. However, it is the immediate
consequence of the particular choice of distribution function
(1). At the same time, one can choose the distribution function
in the form

f (p) =
{

1 + exp

[
pvF − pu

T
(
1 − u2/v2

F

)3/4 − μ

T

]}−1

. (44)

This function turns the collision integral to zero, reduces to the
equilibrium Fermi function at u → 0, and the corresponding
particle density does not depend on u (but the internal energy
still does). It is easy to show that Euler and continuity equations
derived with this function and written in terms of n and u

coincide with Eqs. (11) and (10). The equation of state also
holds its view. The boundary conditions for hydrodynamic
equations are imposed on measurable quantities n and u.
Hence, the solutions of hydrodynamic equations do not depend
on the choice between distribution functions (1) and (44).

In the obtained hydrodynamic equations for electrons in
graphene, the effect of the linear spectrum is clearly visible.
First, the drift velocity u cannot overcome the Fermi velocity
vF . Second, a varying fictitious hydrodynamic mass M ≈
(μ/v2

F )/
√

1 − u2/v2
F originates in the Euler equation. The

obtained equations are neither Lorentz nor Galilean invariant,
which is directly revealed in the spectra of plasma waves in
the presence of steady electron flow [Eq. (36)]. Our main
conclusions concerning the spectra can be verified experimen-
tally using the techniques of plasmon nano-imaging30 in gated
graphene under applied bias.

As we became aware recently, the spectra of plasma
waves in the presence of steady flow and the Dyakonov–Shur
instability in graphene were analyzed in Ref. 9. The form
of Euler equation used was different from our Eq. (16) even
in the limit u � vF ; particularly, in Ref. 9 the gradient term
u∂xu did not vanish for degenerate electron systems. This has
led to the different expressions for plasma-wave velocities
(3u0/4 ± u0 instead of our s±), and to a higher estimate of
the plasma-wave instability increment. One possible reason
for the distinction of the Euler equations lies in dissimilar
expressions for the electron plasma pressure P , which is

substantially velocity dependent [see our Eqs. (A2) and (A3):
P = ε/2 ∝ μ3/(1 − β2)5/2].

The set of problems which could be solved via nonlinear
hydrodynamic equations is not restricted within plasma waves.
It would also be interesting to study the effects of velocity
saturation associated with the upper limit of drift velocity u

equal to vF . Those effects could be pronounced in graphene
samples on substrates with high optical phonon energy. If this
is the case, the velocity saturation caused by emission of optical
phonons36 seems irrelevant.

For rigorous simulation of emerging graphene-based de-
vices for THz generation and detection21 one can also employ
the derived nonlinear equations. In this case, however, an Euler
equation for holes and electron-hole friction terms should be
supplied.8 With large electron mobility and new hydrodynamic
nonlinearities, graphene-based THz devices could outperform
those based on conventional semiconductors.

V. CONCLUSIONS

The hydrodynamic equations governing the collective
motion of massless electrons in graphene were derived. The
validity of those equations is not restricted to small drift
velocities. A variable fictitious mass depending on density
and velocity arises in the hydrodynamic equations. It results
in several nonlinear terms specific to graphene.

The possibility of soliton formation in electron plasma of
gated graphene was shown. The quasirelativistic terms in the
dynamic equations set an upper limit on the soliton amplitude
and stabilize its shape.

The obtained hydrodynamic equations demonstrate a lack
of Galilean and true Lorentz invariance. This noninvariance
is pronouncedly revealed in the spectra of plasma waves in
the presence of steady flow with velocity u0. The difference
in velocities of forward and backward waves turns out to
be u0 instead of 2u0, as expected for massive electrons in
conventional semiconductors.

The possibility of plasma-wave self-excitation in high-
mobility graphene samples under certain boundary conditions
(Dyakonov–Shur instability) was demonstrated. The incre-
ment of such instability in graphene is less than that in common
semiconductors due to the smaller difference in velocities of
forward and backward waves. However, the high mobility of
electrons in graphene allows plasma-wave self-excitation for
micron-length and shorter channels.
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APPENDIX A: CALCULATION OF AVERAGE VALUES

The statistical average values can be exactly calculated with
the distribution function (1) for linear energy spectrum. The
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particle density is given by

n = 4

(2π�)2

∫
pdpdθ

1 + e
p(vF −u cos θ )−μ

T

= T 2

(π�vF )2

{∫ ∞

0

2πtdt

1 + et−μ/T

}{
1

2π

∫ 2π

0

dθ

[1 − β cos θ ]2

}
.

(A1)

The last term could be evaluated as [1 − β2]−3/2, while the
remainder is nothing more but the particle density in the
absence of flow n0. Similarly, the energy density reads as
follows:

ε = T 3

(π�vF )2

{ ∫ ∞

0

2πt2dt

1 + et−μ/T

}{
1

2π

∫ 2π

0

dθ

[1 − β cos θ ]3

}

= ε0

[1 − β2]5/2
. (A2)

The stress tensor is

�xx = 4

(2π�)2

∫
vF p2 cos2 θdpdθ

1 + e
p(vF −u cos θ )−μ

T

= T 3

(π�vF )2

{∫ ∞

0

2πt2dt

1 + et−μ/T

}{
1

2π

∫ 2π

0

cos2 θdθ

[1 − β cos θ ]3

}

= ε

2
(1 + 2β2). (A3)

The density of inverse energy 〈ε−1〉 can be expressed in
terms of elementary functions

〈ε−1〉 = 2T ln[1 + eμ/T ]

π�2v2
F

√
1 − u2/v2

F

. (A4)

The following relations for the derivatives of average values
are required to represent the Euler equation in the canonical
form:

dn = 1

1 − β2
(〈ε−1〉dμ + 3nβdβ), (A5)

dε = 1

1 − β2
(2ndμ + 5εβdβ). (A6)

APPENDIX B: WEAK NONLOCALITY APPROXIMATION
FOR POISSON EQUATION

One solves the Poisson equation for the gated 2D electron
gas (2DEG). The 2DEG plane is z = 0, the grounded top and
bottom gates are placed at z = d1 and z = −d2, respectively,
and the top and bottom dielectric permittivities are κ1 and κ2.
We assume that electron density in 2DEG varies only in the x

direction and write the Poisson equation as

∂2ϕ

∂x2
+ ∂2ϕ

∂z2
= 0, (B1)

with boundary conditions

ϕ|z=d1
= ϕ|z=−d2

= 0, (B2)

ϕ|z=+0 = ϕ|z=−0, (B3)

κ1∂ϕ/∂z|z=+0 − κ2∂ϕ/∂z|z=−0 = −4πσ. (B4)

Here σ = −en is the 2D charge density, and n is the electron
density. After the Fourier transform ϕk = ∫ +∞

−∞ ϕ(x,z)eikxdx

the Poisson equation becomes

− k2ϕk + ∂2ϕk

∂z2
= 0. (B5)

Solving Eq. (B5) with boundary conditions (B2–B4), which
apply to the Fourier components as well, we obtain

ϕk|z=0 = 4πσk

k[κ1 coth(kd1) + κ2 coth(kd2)]
. (B6)

Assuming that the 2D electron density varies slowly (kd1 � 1,
kd2 � 1), we expand Eq. (B6) in series over k and arrive at
the final solution after inverse Fourier transform:

ϕ|z=0 = 4πσ

κ2/d2 + κ1/d1
+ 4π

3

d1κ1 + d2κ2

(κ2/d2 + κ1/d1)2

∂2σ

∂x2
. (B7)

Equation (B7) is further simplified to Eq. (22) for equal
permittivities of top- and bottom gate dielectrics κ1 =
κ2 = κ .
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