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Ab initio and cluster expansion study of surface alloys of Fe and Au on Ru(0001) and Mo(110):
Importance of magnetism
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We have performed ab initio density functional theory calculations to study freestanding alloy monolayers of
Fe and Au in centered rectangular and hexagonal geometries, as well as Fe-Au surface alloys on Ru(0001) and
Mo(110) substrates. Though Fe and Au are bulk immiscible, in all four classes of systems we obtain negative
formation energies. While the properties of the two classes of freestanding monolayers are roughly similar, with
small differences due to the anisotropy and longer bond lengths of the centered rectangular case, the surface
alloys on the two substrates behave quite differently. The formation energies on Mo(110) are markedly smaller;
we trace this to the fact that magnetism contributes significantly to mixing on Ru(0001) but not on Mo(110). On
Ru(0001), there is a very stable (

√
3 × √

3) FeAu2 phase, in agreement with experiments. By performing cluster
expansion calculations, we show that ordering is not favored on Mo(110), again in accordance with experimental
data.

DOI: 10.1103/PhysRevB.88.245442 PACS number(s): 68.35.bd, 68.55.Nq, 71.15.Mb

I. INTRODUCTION

The formation of thin-film alloys has gained a lot of
interest after it was shown that bulk-immiscible pairs of metals
can form two-dimensional mixed phases on surfaces.1 This
alloying gives rise to new structural phases and hence can lead
to new material properties such as enhanced reactivity,2–4 and
high magnetic anisotropy energies. Many pairs of metals are
immiscible in the bulk because of a large size mismatch, which
leads to the buildup of large elastic stresses when they form a
bulk alloy; this leads to the first Hume-Rothery rule governing
the formation of bulk substitutional alloys.5 However, such
pairs of metals could conceivably relieve surface stress by
mixing on surfaces, and this was generally believed to be the
main driving force for the formation of surface alloys.6–8

The FeAu/Ru(0001) system seemed like an ideal system
to see this mechanism at play, since, while Fe and Au are
bulk immiscible, the lattice constant of Fe is 8% smaller
than that of Ru, while that of Au is 7% larger. Indeed,
it was experimentally found that FeAu2/Ru(0001) shows a
long-range-ordered surface alloy.9 The surprising finding in
this system was that it was not stress relief that was the driving
force for alloy formation; instead, it was magnetism.9 The
lowest energy surface alloy structure is one in which Fe atoms
surround themselves with Au atoms and thus attain a very
high magnetic moment, thus lowering the exchange energy of
the system. Another evidence for the dominance of magnetic
interactions in this system was the finding that for a given
composition, the most favored structure was always the one
with the highest magnetic moment.

This prompts the question, how general are these findings?
For example, would they always hold true for the same alloy
constituents, regardless of the substrate? What role, if any, does
the geometry of the two-dimensional lattice play? Therefore
we have chosen here to compare FeAu/Ru(0001) with a very
similar system—FeAu/Mo(110). Both Mo and Ru have similar
electronic properties, and their bulk nearest-neighbor distances
differ by only 1%. However, the geometry changes from a

highly isotropic hexagonal lattice to an anisotropic centered
rectangular lattice.

In order to more clearly separate out the effects of geometry
versus the effects of the substrate, we have studied four
classes of systems: (i) freestanding FeAu alloy monolayers
on a triangular lattice, with lattice spacing equal to that of the
Ru(0001) substrate; (ii) freestanding FeAu alloy monolayers
on a centered rectangular lattice, with lattice spacing equal
to that of the Mo(110) substrate; (iii) deposited monolayers
of FeAu alloys on Ru(0001); and (iv) deposited monolayers
of FeAu alloys on Mo(110). Comparison of (i) with (ii) will
allow us to extract the effect of geometry alone. Comparison
of (i) with (iii), or (ii) with (iv), will allow us to draw
conclusions about the effects of placing the alloys on the
respective substrates. Finally, comparison of (iii) and (iv)
will allow us to compare the effects of the two substrates.
The overall comparison of the four cases should enable us
to draw inferences about the relative importance of geometry
versus the chemical nature of the substrate. Examining how
the magnetic moments of the alloys compare with those of the
end phases allows us to discuss what role magnetism plays
in driving mixing. Another way in which we can look at this
question is by performing calculations in which we suppress
spin polarization; we have also done this.

Both Ru(0001) and Mo(110) surfaces are well-studied
surfaces, with higher surface energies than the stable Au(111)
and Fe(110) surfaces.10 Furthermore, the solubility of either
Fe or Au in bulk Ru or Mo is very small. Thus diffusion of
the overlayer metals into the substrate, or alloying with the
substrate, is less probable, which is needed for a good surface
alloy.

A. Previous work on related systems

The single-component Fe/Mo(110) system has been studied
extensively, both experimentally and theoretically.11–14 It
shows a strong magnetic anisotropy, with a spin reorientation
transition as a function of the Fe coverage: nanoislands

1098-0121/2013/88(24)/245442(11) 245442-1 ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.245442
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and nanowires show magnetization perpendicular to the
surface,15–17 whereas thin layers have an in-plane easy
axis.18,19 This suggests that depending on whether the structure
is striped or not, thin Fe-Au layers could show a variety of mag-
netic properties. Scanning tunneling microscopy studies done
on Fe-Au nanostructures on the Mo(110) surface20,21 have
shown that there is atomic-level mixing, but no ordered struc-
ture could be identified. Furthermore, this system shows a spin
reorientation as the Au coverage is varied. Therefore it will be
interesting to study the structural properties of thin films of Fe-
Au/Mo(110) and compare the results with these experiments.

There have been many reports on single-component Fe or
Au layers deposited on the Ru(0001) surface. Fe forms two-
dimensional, pseudomorphic layers on the Ru(0001) surface
until a critical thickness.22,23 For annealing temperatures
>800 K, Fe and Ru are observed to form an interfacial
alloy.23 In contrast, it has been observed in experiments
that even at a single monolayer coverage, Au deposited on
the Ru(0001) surface has a striped pattern of dislocations
forming a herringbone pattern.24 This happens because a
pseudomorphic layer would be under a large compressive
stress, arising from the large atomic-size mismatch between
Au and Ru. However, the difference in energy between the
pseudomorphic and reconstructed structures is small. Using
the two-dimensional Frenkel-Kontorova model fit to ab initio
data, it was found to be ∼−12 meV/Å2 (Ref. 25).

When Fe and Au are codeposited on Ru(0001), the system
forms a long-range ordered, atomically mixed pseudomorphic
surface alloy at compositions where the Fe concentration is
about 33%.9 However, under Fe-rich conditions, no long-
range order is observed. These findings were confirmed and
explained by ab initio density functional theory calculations.9

There has been an earlier theoretical study of surface
alloys of Fe-Ag on the Mo(110) and Ru(0001) surfaces.26 In
this paper, possibly motivated by experimental findings,27 the
authors have restricted themselves to studying only equiatomic
striped structures. They found that the alloys on Ru(0001)
are more stable than those on Mo(110), at zero temperature;
however, by performing Monte Carlo simulations, they found
that the alloys on Ru disorder at a lower temperature than those
on Mo. Given that Ag and Au have similar sizes in their bulk
phases, it would be interesting to examine whether the mixing
properties are similar for the two surface alloy systems.

II. COMPUTATIONAL DETAILS OF DENSITY
FUNCTIONAL THEORY CALCULATIONS

We have used spin-polarized (“spin-unrestricted”) density
functional theory to calculate the structural properties of Fe-Au
surface alloys. We have used the PWSCF code implemented
in the QUANTUM ESPRESSO package,28 which uses a plane-
wave basis set. The spin-polarized version of the Kohn-Sham
equations29 are solved using a self-consistent loop, starting
from an initial guess with broken spin symmetry. We have
checked that when we start from different initial spin states
for the starting configuration, we always converged to the
same final magnetic state, giving us confidence that we have
found the correct minimum in spin space. We also did a few
test calculations with fixed-moment calculations and verified
that we obtained the same results as with spin-unrestricted

calculations. As mentioned below, in order to determine the
relative importance of magnetism, a few calculations are
performed, however, with spin polarization suppressed.

After extensive convergence tests, we determined that we
needed kinetic energy and charge density cutoffs of 25 and
200 Ry, respectively, for calculations involving Mo, and 20
Ry and 160 Ry, respectively, for calculations involving Ru.
To facilitate comparisons, the former set of cutoffs was used
also for the centered rectangular freestanding monolayers
and the latter set for the hexagonal freestanding monolayers.
Exchange-correlation interactions were treated within the
generalized gradient approximation.30 For Brillouin zone
sampling, we have used Monkhorst-Pack k-point grids31

commensurate with a (17 × 17) sampling of the (1 × 1)
surface unit cell for all centered rectangular configurations,
and a (8 × 8) sampling for all hexagonal configurations.
Note that previous authors26 have also reported that higher
plane-wave cutoffs and denser Brillouin zone sampling were
required for alloys on the Mo(110) substrate than those on
the Ru(0001) substrate. For faster convergence, we have used
the Methfessel-Paxton smearing technique,32 with a smearing
width equal to 0.05 Ry.

We have considered supercells consisting of an overlayer
of an alloy or pure Fe or pure Au, deposited on one side of
either an eight-atomic-layer thick Mo slab, or a six-atomic-
layer thick Ru slab. The slab thickness was determined by
testing for the convergence of the surface energy. Periodic
images of the slab were separated by a vacuum layer of about
16 Å thickness. To get optimized geometries, we have allowed
the overlayer and three adjacent substrate layers to relax using
Hellmann-Feynman forces, while the remaining layers were
kept fixed at the calculated bulk nearest-neighbor spacings. We
find the bulk nearest-neighbor distance to be 2.75 Å for Mo
and 2.74 Å for Ru; the corresponding experimental values are
2.73 and 2.70 Å, respectively. In all cases, we have assumed
the overlayer atoms occupy pseudomorphic positions at the
hollow sites on the surface.

III. RESULTS AND DISCUSSION

A. Ab initio calculations on freestanding monolayers

We first discuss our results for freestanding monolayers of
Fe-Au in centered rectangular and hexagonal geometries. In
the former case, the lattice spacings are adjusted to be those
of the Mo(110) surface, while in the latter they are those of
the Ru(0001) surface. Experimentally, the nearest-neighbor
distances of Mo and Ru are close, equal to 2.73 and 2.70
Å respectively. However, in our study, we have used our
theoretically computed values, which are even closer, equal to
2.75 and 2.74 Å, respectively. In Fig. 1 we show top views of
these two geometries; we see that they are very similar, with
the centered rectangular structure being somewhat distorted
from the sixfold symmetry of the hexagonal lattice, resulting
in perceptible anisotropy. Both as a result of this distortion
and because of the larger lattice constant of Mo compared
to that of Ru, corresponding interatomic distances in the
centered rectangular lattice are larger than in the hexagonal
lattice, with the closest six atoms being at distances that
are greater by a factor of 0.4% (for four atoms) and 14.6%
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FIG. 1. Schematic top views of the (a) hexagonal and (b) centered
rectangular geometries: here circles indicate lattice points, and the
primitive unit cell is shown with dashed lines. We have also shown
the crystallographic directions for each surface.

(for two atoms). We wish to see what effect, if any, this
expansion and anisotropy have on the mixing and magnetic
properties of freestanding Fe-Au alloy monolayers in the
centered rectangular and hexagonal geometries.

For the centered rectangular geometry, we have performed
ab initio calculations on 102 symmetry-nonequivalent struc-
tures, and for the hexagonal geometry, on 43 symmetry-
nonequivalent structures. For the centered rectangular ge-
ometry, all the distinct symmetry-inequivalent configurations
containing up to six atoms per surface unit cell are considered,
and for the hexagonal geometry, all those up to five atoms per
surface unit cell and several with six atoms are considered.
Information on how these configurations were generated is
given in the Appendix. Note that the lower symmetry of the
centered rectangular geometry results in a larger number of
distinct configurations.

1. Formation energy �H for freestanding monolayers

In order to study the miscibility, we have computed whether
the mixed structures are more favored as compared to the
phase-segregated pure Fe or Au layers. To do this, we have
calculated the formation energy of the mixed structure of
FexAu1−x , defined by

�H = E(FexAu1−x) − xE(Fe) − (1 − x)E(Au), (1)

where E(A) is the total energy of a freestanding monolayer
of A, and x is the Fe concentration. A negative value of �H

indicates that mixing of the two components is favored.
In Fig. 2(a) we have plotted the formation energy of

freestanding monolayers in the two types of geometries as
a function of Fe concentration x; circles (red online) and
triangles (blue online) give our results for the hexagonal and
centered rectangular structures, respectively. The dashed lines
on the figure connect the stable structures that lie on the
convex hulls for the two classes of structures: there are five
such structures for the centered rectangular lattice, and three
for the hexagonal lattice. We find that the values for �H

are quite similar for both centered rectangular and hexagonal
structures, which is to be expected given the similarity between
the two types of lattices. However, in general, the hexagonal
structures have slightly larger |�H |, and a lower-lying convex
hull. While it is difficult to assign this to a single clear cause,
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FIG. 2. (Color online) The formation energy �H and magnetic
moments per Fe atom Mtot as a function of Fe concentration x for
freestanding monolayers. Here circles represent the values for the
hexagonal phases and triangles for the centered rectangular phases.
The configurations falling on the convex hull for each of these systems
are shown by stars and crosses for hexagonal (HX) and centered
rectangular (CR) geometries, respectively.

we believe that a hint may be obtained by examining the
surface stress. In the bulk, the Au nearest-neighbor distance
is larger than that in Mo or Ru, while the distance in bulk
Fe is smaller. However, the effective sizes of Au and Fe
atoms in a freestanding monolayer are much smaller than in
the bulk. As a result, while Fe freestanding monolayers are
under tensile stress, at both centered rectangular and hexagonal
geometries (as expected), only the hexagonal Au freestanding
monolayer is under compressive stress, while the centered
rectangular Au freestanding monolayer is also under tensile
stress. Thus, in hexagonal freestanding monolayer alloys, the
two single-component end members have opposite surface
stress, and it becomes more favorable for the alloys to form
than in the centered rectangular freestanding monolayer alloys,
where the end members have surface stress of the same sign.

2. Magnetic moments for freestanding monolayers

In Fig. 2(b) we have plotted Mtot, the total magnetic moment
(divided by the number of Fe atoms) of the two types of
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freestanding monolayers, as a function of x. Note that, as
expected, this decreases as the Fe concentration increases for
both centered rectangular and hexagonal geometries. This is
because when Fe atoms have more Fe neighbors, the magnetic
moment decreases due to hybridization with these neighbors.
Since we find that the induced moments on Au atoms tend
to align ferromagnetically with those on the Fe atoms, Mtot

tends to follow the same trend. The magnetic moments are
slightly larger for the centered rectangular geometries than for
the corresponding hexagonal geometries, due to the slightly
longer interatomic bond lengths in the former case.

In Fig. 2(b), points corresponding to those that lie on the
convex hull in Fig. 2(a) are indicated by stars and crosses.
In earlier work on FeAu/Ru(0001),9 we had found that at a
given concentration, the energetically most favored structure
was always the one with the highest magnetic moment. This
finding is more or less borne out in these systems too, with
a couple of exceptions. One can, in general, say that a high
magnetic moment tends to correlate with a low energy, i.e., a
high |�H |.

B. Ab initio calculations on deposited monolayers

Next, we deposit the same structures studied in the
previous section, on substrates, with the centered rectangular
structures deposited on a Mo(110) substrate and the hexagonal
structures deposited on a Ru(0001) substrate. Having studied
the freestanding monolayers beforehand allows us to more
clearly separate out the effects of the substrate from the effects
of the geometry. Once again, we use Eq. (1) to compute
the formation energies, where, however, the phase-separated
structures now refer to monolayers of either Fe or Au on the
relevant substrate. Some of our results for the case of deposited
monolayers on the Ru(0001) substrate have earlier been briefly
presented and discussed in Ref. 9; note, however, that here the
convention regarding the x and y axes is reversed to facilitate
easier comparison with the centered rectangular structures.

1. �H for deposited monolayers

Figure 3(a) shows our results for the formation energy �H

for deposited monolayers on the two substrates; as before,
the circles (red online) refer to the hexagonal geometry [on
Ru(0001)], and the triangles (blue online) to the centered
rectangular geometry [on Mo(110)].

2. Comparison of �H for freestanding and deposited monolayers

On comparing the results in Fig. 3(a) with those in Fig. 2(a),
we see that while the values of �H are more or less unchanged
when the substrate is Ru(0001), they are reduced by about
50% for the case of deposition on Mo(110). This is our most
striking result for the deposited monolayers, showing that the
nature of the substrate can in some cases play a huge role in
the miscibility of surface alloys, and we will analyze this in
greater detail further below.

Next, if one pays attention to which structures lie on the
ab initio convex hulls, we find that they are quite different
for the freestanding and deposited monolayers, and also quite
different in nature for the hexagonal and centered rectangular
deposited monolayers. Figure 4 shows some of the structures
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FIG. 3. (Color online) The formation energy �H and magnetic
moments per Fe atom Mtot as function of Fe concentration x for
deposited monolayers. Here circles represent the values for the
hexagonal phases and triangles for the centered rectangular phases.
The configurations falling on the convex hull for each of these systems
are shown by stars and crosses for hexagonal (HX) and centered
rectangular (CR) geometries, respectively.

that lie on the ab initio convex hulls for the freestanding and
deposited monolayers. In general, the low-lying structures for
the hexagonal deposited monolayers tend to feature isolated
atoms of one type surrounded by atoms of the other type,
while the energetically most favored structures for centered
rectangular deposited monolayers are almost always stripes
oriented along the [1̄10] or x direction. This difference in
the two types of favored structures has two origins: the greater
importance of magnetism in the alloys on Ru(0001) as opposed
to Mo(110) (this point is elaborated on further below), as well
as the anisotropic nature of the bcc(110) surface as opposed to
the isotropic hcp (0001) surface.

3. �H for striped structures for the centered
rectangular geometry

In the earlier mentioned studies on Fe-Ag alloys,26 the
authors restricted themselves to equiatomic striped structures,
whereas we have considered all possible structures with small
unit cells. In their work, the authors looked at how the
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FIG. 4. (Color online) Top views of example structures lying on
the hexagonal (top row) and centered rectangular (bottom row) convex
hulls. We have shown the following configurations: (a) FeAu3 with a
(2 × 2) unit cell for hexagonal freestanding monolayer; (b) FeAu2

with a (
√

3 × √
3) unit cell for hexagonal deposited monolayer;

(c) Fe3Au with a (
√

3 × 2) unit cell for a hexagonal deposited
monolayer; (d) FeAu2 with a (2

√
2/

√
3 × √

5/
√

3) unit cell for
both a centered rectangular freestanding and deposited monolayer;
(e) Fe2Au3 with (2

√
2/

√
3 × 3) for centered rectangular freestanding

monolayers; and (f) Fe3Au3 with a (2
√

2/
√

3 × 6/
√

3) unit cell for
a centered rectangular deposited monolayer. Fe and Au atoms are
shown by dark (red online) and bright (yellow online) spheres, and
the solid lines show the unit cell. Note that the most stable structures
at x = 0.33 for the deposited monolayer phases in (b) hexagonal and
(d) centered rectangular geometries are analogous structures, that is,
the latter can be obtained by a slight distortion of the former.

formation energy of the striped structures varied with the stripe
periodicity. We can also do this by extracting the data for the
striped structures from our pool of structures. We consider
three kinds of stripes: FenAun, FeAun, and FenAu, where n is
the stripe width or the number of atomic rows. Furthermore,
these stripes can be oriented along three high-symmetry
directions, [1̄11], [1̄10], and [001]. Sample structures of these
various kinds of stripes are shown in Figs. 5(d)–5(f), and our
results for �H versus n, for the centered rectangular deposited
monolayers and centered rectangular freestanding monolayers
are shown in Figs. 5(a)–5(c). For the Fe-Ag system, the authors
of the previous study26 had found that rather long-period
stripes were favored, whereas in our study, we find that
for nearly all the kinds of stripes we consider, the most
energetically favored structure has a rather low period. This
reflects the fact that Fe-Au alloys are more miscible than Fe-Ag
alloys, as we have noted before,33,34 since a longer-period
striped structure more closely resembles a phase-segregated
structure, having a rather low proportion of bonds between
unlike atoms. Another difference between our results and theirs
is that their lowest-energy striped structures are oriented along
[001], while ours are oriented along [1̄10].

4. Magnetic properties of deposited monolayers

We argue that the key to the differing behavior of the
two classes of deposited systems, viz., FeAu/Mo(110) and
FeAu/Ru(0001), is provided by examining their magnetic
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FIG. 5. (Color online) The formation energy �H as a function
of stripe width n for striped structures, for the centered rectangular
geometry, along (a) [1̄11], (b) [1̄10], and (c) [001] directions. Here we
have considered three kinds of stripes FenAun (black circles), FenAu
(red squares), and FeAun (blue triangles). Solid lines give results for
the freestanding configurations (FSM) and dashed lines for deposited
monolayers (DM). We have also shown top views of Fe2Au2 in unit
cells (d) (4 × 1), (e) (2

√
2/

√
3 × 4/

√
3), and (f) (4
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as typical examples of striped structures along [1̄11], [1̄10], and [001]
directions, respectively. Here dark (red) and bright (yellow) spheres
indicate Fe and Au atoms, respectively, and the unit cell is shown by
solid lines.

properties. Figure 3(b) shows how Mtot changes as a function
of Fe concentration x for the alloys on Mo (blue triangles) and
on Ru (red circles). Quite clearly, the moments are significantly
larger on the Ru(0001) substrate than on the Mo(110) substrate.
More crucially, the moments do not change much as a function
of x in the latter case, while they do so in the former case. It is
this latter observation that can explain why |�H | is reduced so
markedly upon deposition on Mo, but not upon deposition on
Ru. As an example, if one considers the points at or close to the
convex hull at x = 0.5, upon mixing, Mtot increases by ∼0.15
μB for the hexagonal freestanding monolayer, by ∼0.25 μB for
the centered rectangular freestanding monolayer, by ∼0.3 μB

for the hexagonal deposited monolayer, and by ∼0.01 μB for
the centered rectangular deposited monolayer. It is strikingly
obvious that the increase in magnetic moment is lower, by an
order of magnitude, in the last of these four cases than it is in the
first three cases. So for the first three cases, magnetism provides
a strong inducement for the alloys to mix:9,35 when the alloy
forms, the magnetic moments increase significantly, and thus
exchange interactions significantly lower the energy of the
resulting system, resulting in larger values of |�H |. However,
this effect is absent in the case of deposited monolayers on
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FIG. 6. (Color online) Comparison of formation energies ob-
tained by performing spin-polarized (SP) and non-spin-polarized
(NSP) calculations. The formation energy �H is plotted as a function
of the Fe concentration x. Here we have restricted ourselves to those
configurations which fall on the SP convex hulls. (a) and (b) are for
freestanding monolayers, and (c) and (d) for deposited monolayers
on Ru(0001) and Mo(110), respectively.

the Mo(110) substrate, and thus this contribution to �H is
absent, resulting in the marked lowering of |�H |. Also note
that for the centered rectangular deposited monolayer system
(in marked contrast to the other three systems), the highest
magnetic moments do not at all correspond to the lowest |�H |
values [see the position of the blue dashed line in Fig. 3(b)].

We note that the same effect may be present in the
results of previous authors in Fe-Ag alloys on Ru(0001) and
Mo(110) substrates,26 with their reported values of |�H |
being significantly larger on the Ru substrate than on the
Mo substrate. While these authors do not discuss magnetism,
or present results on magnetic moments, we speculate that a
similar effect might be operating in their systems, too.

Another and more direct way of checking whether the
mixing is significantly affected by the presence of mag-
netism is to test what happens when magnetic effects are
suppressed, by performing non-spin-polarized calculations.
We have done this for the configurations falling on the
spin-polarized convex hulls for the four classes of systems
considered here. We have compared the formation energies
for the non-spin-polarized systems with the corresponding
spin-polarized systems, as shown in Fig. 6. Note that the
non-spin-polarized formation energies are calculated with
respect to the non-spin-polarized end points. The results are
strikingly different for FeAu/Mo(110), compared to the other
three classes of systems. For FeAu/Mo(110), the value of |�H |
does not change appreciably on suppressing spin polarization,
though it increases very slightly. In marked contrast, for the
remaining three classes of systems |�H | reduces significantly
on suppressing the spin polarization. These results provide
unambiguous evidence that exchange interactions contribute
significantly to |�H | for the freestanding monolayers and for
FeAu/Ru(0001), but not for FeAu/Mo(110), thus bolstering
the conclusions drawn earlier from the results for the changes
in magnetic moments as a function of x.

TABLE I. Magnetic moments for representative systems consist-
ing of FexAu1−x alloys deposited on either a Ru(0001) or Mo(110)
substrate. We have tabulated here the local magnetic moment on Fe
atoms, and the induced moments on the Au atoms and the substrate
atoms in the topmost layer. Here we have given values only for a
few representative systems at different Fe concentrations x, and we
have selected corresponding structures for the hexagonal (labeled by
HX) and centered rectangular (labeled by CR) cases. The last column
gives the total magnetic moment, per Fe atom, for the structure.

x Magnetic moments (μB ) Mtot (μB

Unit cell Geometry Fe Au Ru/Mo per Fe atom)

CR 3.10 −0.008 −0.035 2.88
0.25 (2 × 2)

HX 3.08 0.015 0.050 3.11

CR 3.03 −0.028 −0.076 2.82
0.50 (2 × 1)

HX 3.04 −0.009 0.058 2.98

CR 2.97 −0.064 −0.112 2.77
0.75 (2 × 2)

HX 2.99 −0.055 0.025 2.88

It remains to understand just why the magnetic behavior
on the two substrates is different. For this, we project the
wave functions to get contributions to charges and magnetic
moments from individual atoms. Due to the difficulty of
presenting the large amount of data thus obtained, we choose
to present data from just a small number of representative
systems in Table I. In this table, we show, for a few structures
at different Fe concentrations x, the contribution to the
magnetic moment from the Fe atoms, the Au atoms, and the
Ru/Mo atoms in the topmost substrate layer. In every case,
we have chosen corresponding structures for the hexagonal
and centered rectangular cases such that the latter can be
obtained by a distortion of the former. On examining the
values in the table, we find that the values of the magnetic
moments on the Fe atoms are very similar in the hexagonal
and centered rectangular cases, with the Fe moment increasing
as x decreases. The difference is seen in the moments on the
Au atoms, and, most markedly, the substrate atoms. The atoms
in the topmost Ru layer are polarized ferromagnetically with
respect to the Fe atoms, whereas those in the topmost Mo layer
are polarized antiferromagnetically. Thus the net effect in the
case of the Ru substrate is a marked increase in Mtot as x

is decreased, whereas in the case of the Mo system, there is
almost no change in Mtot. This, in turn, as we have discussed
above, results in the differing miscibility properties on the two
substrates.

C. Comparison with experiment

Finally, we compare our results on the structures of stable
phases of the deposited monolayers to the available experimen-
tal data. For the case of FeAu/Ru(0001), our database of ab
initio results suffices to explain all aspects of experimental
results, as we have shown before.9 To summarize briefly,
combined scanning tunneling microscopy and low-energy
electron diffraction experiments show that under Au-rich
conditions, the most stable structure is a (

√
3 × √

3) FeAu2

structure with long-range order, which is indeed the most
stable structure on our convex hull (see Figs. 3 and 4); there
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are no nearby competing phases, neither at the same x, nor
at nearby x. In contrast, for Fe-rich conditions, experiments
show that there is short-range order but no long-range order,
this can be explained by the number of competing phases in
the right-hand side of Fig. 3(a) for Fe-Au/Ru(0001), with five
points lying on the convex hull, and also several points lying
close to the convex hull. Given the fact that our ab initio results
can essentially explain all the main features of the experimental
results, we see no need to extend the study for this system at
present.

The situation for Fe-Au/Mo(110) is not so clear. Our ab
initio results (admittedly with relatively small unit cells) yield
a convex hull with a few stable phases [see Fig. 3(a)], while
experiments20,21 show homogeneous mixing with scanning
tunneling microscopy, while observing no superstructures with
low-energy electron diffraction, suggesting the absence of any
ordered phases. However, based on our ab initio calculations,
we might have expected to see a (2

√
2/

√
3 × 3) structure at x

= 0.60. In order to examine this issue further, we decided to
explore the Fe-Au/Mo(110) system in greater detail by making
use of the cluster expansion technique. Moreover, to enable
a comparison with the corresponding deposited monolayers
case, this study was also performed for the corresponding
centered rectangular freestanding monolayer systems. These
results are presented in the next section.

D. Cluster expansion calculations on
centered rectangular configurations

1. Introduction to the cluster expansion method

The cluster expansion method is a lattice-model-based
technique.36,37 This method casts the alloy energetics into a
generalized Ising model with many-body interactions. In other
words, the cluster expansion gives a coarse model of the alloy
energetics where all but the configurational degrees of freedom
(e.g., electronic, elastic, etc.) have been subsumed into the
effective cluster interactions. When used along first-principles
methods, the cluster expansion produces an effective model
for the relevant (configurational) degrees of freedom. There
exist some other ways of mapping the total energy landscape
on simplified electronic Hamiltonians such as tight binding
models,38,39 effective pair potentials,40,41 etc.

In the cluster expansion method, a configuration σ for an
A-B alloy is defined in terms of the occupation of each lattice
site by an atom A or B:

σ ≡ {Si}, i = 1,2, . . . ,N, (2)

where N is the number of lattice points in the system, and the
occupation variable Si = +1 or −1, depending on whether
a site i is occupied by an atom of type A or B, respectively.
Then, the energy of an alloy in a configuration σ is defined in
terms of the occupation variables as

ECE(σ ) =
∑

α

Vαφα, (3)

where φα = 〈S1S2 · · · Sα〉 are the well-known multisite corre-
lation functions associated to a cluster (of lattice sites) α with
k sites, that is, the configurational average of the occupation
variables describing cluster α.42 The Vα’s are the so-called
effective cluster interactions, which are concentration inde-

pendent. The notation in Eq. (3) is synthetic, underscoring a
very important and practical aspect of the cluster expansion:
rigorously, the determination of an infinite set of parameters
(the Vα’s) needs an infinite number of energy configurations.
The power of the cluster expansion is based on the notion
that the configurational degrees of freedom and the crystal
structures of metals and alloys are strongly correlated and thus
amenable to be described by only a small set of parameters.
The problem is that concentration-independent interactions
do not follow any compactness or short-rangedness criteria,
and special schemes have been developed to find the rele-
vant parameters in the expansions.43 Once determined, the
effective cluster interactions (Vα’s) can be used to describe
the energetics of alloys with larger unit cells, including
disordered alloys. This makes the cluster expansion technique
extremely useful, when used in combination with density
functional theory calculations, to study larger unit cells. In
this paper, we have chosen the variational implementation
to the cluster expansion to determine the few relevant terms
in Eq. (3).44

The ab initio results described above constitute the density
functional theory database to which we will fit in order to find
the optimal pool of clusters that gives a satisfactory cluster
expansion. We have fit the formation energy of alloys to �H

using the cross-validation algorithm.44–46 In this method, we
consider a large cluster pool containing Nc clusters (Nc is less
than the number of structures Ns in the input data set) and then
reduce the number of clusters such that fitting and prediction
errors are minimized. In order to get the prediction error, we
have employed the “leave-one-out” algorithm in which one
structure is excluded from the original data set and fitting is
done to the remaining Ns − 1 structures; the excluded structure
is used to compute how good the fit is. The prediction error or
the cross-validation score is defined by

δ2
CV = 1

Ns

∑

{p}
[EAI (p) − ECE(p)]2, (4)

where EAI (p) denotes the ab initio formation energy of the
configuration p and the sum is taken over all the configu-
rations {p} excluded from the original data. To ensure good
convergence, we have considered five to ten different starting
pools, including up to ten smallest pairs, triplets, four-point,
five-point, and six-point cluster figures. A well-converged
solution is one where there is reasonable agreement between
the values of �H calculated using both density functional
theory and the cluster expansion, and where removal of any
cluster from the solution leads to a large increase in the fitting
and prediction errors.43

2. Results using the cluster expansion method

In Fig. 7, we have shown how the fitting and cross-validation
errors vary with the number of clusters retained, for both
the freestanding monolayers and deposited monolayers. In
the circled region, we see that (i) the error is acceptably
small, less than 5 meV/atom, and (ii) if we were to eliminate
some cluster figures, the result would be a large increase
in error;47 this is the region in which we decide to truncate
the expansion. For the converged cluster expansion chosen
by us, the square-root error considering all input structures
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FIG. 7. (Color online) Fitting and prediction errors for (a) free-
standing and (b) deposited monolayers. Here we have plotted a typical
example of the variation of the fitting (black circles) and prediction
errors (red squares), as the number of clusters Nc in the cluster pool
is reduced. When the pool size is large, removal of a cluster does not
affect errors significantly; however, as the pool size decreases, errors
start to increase. We have circled the regions where there is a sudden
increase in both types of errors.

averages out to 4.52 meV/atom for freestanding monolayers
and 4.12 meV/atom for deposited monolayers.

In Figs. 8(a) and 8(c) we have shown the optimal sets
of cluster figures required to get a good fit of the ab initio
data for the centered rectangular freestanding monolayers and
the centered rectangular deposited monolayers, respectively.
In Figs. 8(b) and 8(d), we have plotted bar charts indicating
the values of the corresponding effective cluster interactions.
Each cluster is denoted by the nomenclature kPl , where k

is the number of lattice points in the cluster and “l” is
an integer indicating the “size” of that cluster, such that
l = 1 for the shortest possible cluster of that type. Thus,
for example, 2P1 is the shortest possible two-body cluster
connecting nearest-neighbor sites on the lattice. We see that we
have seven cluster figures for the freestanding monolayers, and
nine for the deposited monolayers. Also, the clusters for the
deposited monolayers tend to have longer lengths, indicating

FIG. 8. (Color online) The optimal cluster sets and the cor-
responding effective cluster interactions for centered rectangular
geometries. The top two panels show the results for the freestanding
monolayers, and the bottom two panels for deposited monolayers.
The effective cluster interactions are in units of meV/atom. See the
text for the convention used in labeling the clusters.

that long-range interactions are more important here, possibly
due to the presence of substrate-mediated elastic interactions.
A positive value of an effective cluster interaction favors
occupation by unlike atoms, while a negative value favors
occupation by like atoms.

In Fig. 9 we have once again plotted our ab initio results for
�H (see the open circles), together with the results obtained

0 0.2 0.4 0.6 0.8 1
Fe concentration x

-160

-120

-80

-40

0

ΔH
 (m

eV
/a

to
m

)

 ab initio
cluster expansion
random alloys

0 0.2 0.4 0.6 0.8 1

(a) (b)

FIG. 9. (Color online) Comparing the ab initio and cluster ex-
pansion calculated �H as a function of Fe concentration x, for cen-
tered rectangular geometries, for (a) freestanding and (b) deposited
monolayers. We have plotted here the formation energies obtained by
density functional theory (open circles) and cluster expansion (filled
squares). The cluster expansion calculated values are obtained by
using the clusters shown in Fig. 8 and the corresponding effective
cluster interactions. Note that the values from the two methods
compare well with each other. We have also shown the formation
energies for random alloys (diamonds) as calculated from the cluster
expansion method.
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from the cluster expansion (filled squares, red online). We
can see that the difference between the two sets of results
is acceptably small. We have also plotted (diamonds, blue
online) the results for a random alloy, as computed using
the cluster expansion. The random alloy at a concentration
x is defined such that its average of occupation variables is
given by

φrandom
α = (2x − 1)k (5)

for a cluster figure α having k lattice sites. Note that for
both freestanding monolayers and deposited monolayers, we
find that �H is negative for random alloys, implying that
they are stable. However, at all x, the |�H | values are
less for random alloys as compared to the ordered ground-
state structures obtained from density functional theory,
which implies that ordering is more favored than random
alloys.

We are now in a position to check whether there are ordered
structures with larger unit cells than those considered in our
ab initio calculations, or whether the clear-cut convex hulls
obtained by us disappear on considering larger unit cells. To
do this, we use Eq. (3) to compute the energies of all distinct
alloy configurations containing up to 20 atoms per surface unit
cell. We note that by doing this, we have hugely increased the
number of configurations we are studying, which now becomes
more than a million. We could never hope to compute the
energies of such a large number of structures using ab initio
calculations alone, and thus the cluster expansion becomes
essential to carry out this part of our ground-state search. The
distinct configurations were obtained using the enumeration
code developed by Hart and Forcade;48 the code is based on
a group theoretic approach. We choose to restrict ourselves
to a maximum unit cell size of 20 surface atoms, because
this is equivalent to a length scale of about 40–50 Å and in
actual experiments, at this scale already defects come into the
picture.

The formation energies calculated using the optimized
cluster expansion Hamiltonian are plotted in Fig. 10 for the
freestanding monolayers [panel (a)] and for the deposited
monolayers [panel (b)]. For all the configurations considered
here, we find that the �H values are negative, implying that
mixing is favored whether the alloy monolayer is supported or
not.

For both the freestanding and deposited monolayers, there
is basically no jagged convex hull now; instead, there is a
smooth curve. Thus we can now understand the absence of any
ordered structures in the experiments on Fe-Au/Mo(110).20,21

If we were to closely examine the lowest-lying phases at
various values of x, we find that they usually tend to be
striped structures, with the stripes oriented along the [1̄10]
direction. This is in contrast with the Fe-Ag/Mo(110) system,
in which both experiments27 and calculations26 found stable
structures with stripes along the perpendicular [001] direction.
The preference for stripes oriented along the [1̄10] or x

direction, rather than the [001] or y direction for our deposited
monolayer systems, can be traced back to the absence of a
2P3 two-body cluster in our optimal pool for the deposited
monolayers, and a positive value for the effective cluster
interaction corresponding to 3P3, as a result of which like
neighbors are favored along the x direction. We do not believe

that the preference for stripes along x rather than y is an
artefact of a poorly converged cluster expansion, since the
same preference can also be seen in our ab initio density
functional theory results [see Fig. 4(f)]. However, we note that
this energetic preference is small, and as already noted, we do
not have a clearly identifiable convex hull with well-defined
stable phases.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have studied Fe-Au alloys in four classes
of systems: in centered-rectangular and hexagonal geometries,
and freestanding and deposited on Mo(110) and Ru(0001)
substrates. If one were to separate out the effect of geometry
alone, by considering freestanding monolayers, then it is not
that marked, though structures featuring isolated atoms of one
species surrounded by atoms of the other species are favored
on the isotropic hexagonal lattice, while striped structures are
also favored on the anisotropic centered rectangular lattice.
For freestanding monolayers, the formation energy of alloys
is comparable in the two geometries.

However, deposition on a substrate has a marked effect on
formation energies of alloys. When the Fe-Au monolayers are
deposited on Ru(0001), the formation energies remain more or
less unaltered, but on Mo(110) they are approximately halved.
This is because magnetism plays an important role in the
mixing properties on FeAu/Ru(0001) (as we have pointed out
before9), as it does in mixing in the freestanding monolayers;
however, this effect is basically absent on FeAu/Mo(110). This,
in turn, can be traced back to the fact that in the latter system,
Mo atoms in the substrate tend to be spin polarized opposite
to the Fe atoms in the overlayer, and any gain in magnetic
moment of Fe atoms on alloying is basically offset by the
opposite spin polarization of the Mo atoms. Thus the lowering

FIG. 10. (Color online) The formation energy of alloy configu-
rations calculated using the cluster expansion Hamiltonian �HCE

versus Fe concentration x for centered rectangular geometries for
(a) freestanding monolayers and (b) deposited monolayers on
Mo(110). The formation energy of all alloy configurations containing
up to 20 atoms per surface unit cell is plotted here. For a comparison
between ab initio results and corresponding CE results, the reader is
referred to Fig. 9.
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of exchange energy does not provide a significant driving force
for mixing in this system.

In this study, we have presented four kinds of evidence to
show that magnetism plays a role in the differing behavior of
FeAu/Ru(0001) and FeAu/Mo(110):

(i) Figure 6, i.e., the comparison between the spin-polarized
and non-spin-polarized curves of �H vs x for the two
systems. This shows that for FeAu/Ru(0001), but not for
FeAu/Mo(110), a large contribution to the negative formation
energy comes from exchange interactions.

(ii) The differing slopes of the curves of magnetic moment
vs x [see Fig. 3(b)] for the two classes of systems. This shows
that for FeAu/Ru(0001), but not for FeAu/Mo(110), the system
can raise its magnetic moment (and thus lower its exchange
energy) by alloy formation.

(iii) The fact that the rule “the lowest energy structure at a
given x corresponds to the highest magnetic moment at that x”
is obeyed by FeAu/Ru(0001) but not by FeAu/Mo(110). This
shows that magnetism plays an important role in the former
but not in the latter.

(iv) The (hand-waving) argument that the preferred struc-
tures for FeAu/Ru(0001) feature isolated Fe atoms surrounded
by Au atoms (wherein Fe atoms can maximize their magnetic
moment), whereas the preferred structures for FeAu/Mo(110)
feature stripes of Fe atoms, wherein Fe atoms, having
hybridized with more Fe neighbors, have lower moments.

In an earlier study, we had compared the alloying of several
pairs of metals on Ru and Rh substrates.49 At that time we
had reached the tentative conclusion that the substrate, while
important for magnetic properties, is not very important in
determining miscibility. Our results here show that we now
have to revise that inference, precisely because one cannot
separate out miscibility and magnetism, as we have shown
above: the two are intimately connected, and magnetism can
have a big impact on miscibility. In our earlier study, we had
missed this effect because both Ru and Rh substrates tend to
get spin polarized in the same direction as the Fe atoms, and
thus behave in the same way.

We have also shown that the interatomic interactions,
and thus the most favored structures, are influenced by the
presence of the substrate. In agreement with experiment,
FeAu/Ru(0001) has a clearly identifiable (

√
3 × √

3) structure,
while FeAu/Mo(110) has a smoothly curved convex hull and
thus no structures exhibiting long-range order.
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APPENDIX: FORMULA FOR GENERATING DISTINCT
UNIT CELLS

This Appendix describes the procedure utilized to generate
all possible distinct two-dimensional configurations of a given
size and geometry, used for our density functional theory
calculations.

We first generate all nonequivalent unit cells containing na

surface atoms using the following procedure:50

Let ā1 and ā2 be the basis vectors for the lattice.
Consider first the case in which na is a prime number, then

let na = p. The total number of possible unit cells is equal to
(p + 1) and the unit cells are defined by basis cell vectors

(pā1,ā2)

(ā1 + 0 × ā2,pā2)

(ā1 + 1 × ā2,pā2)

...

[ā1 + (p − 1) × ā2,pā2]. (A1)

Next we consider the case where na is not a prime number.
We then consider all possible values of whole numbers b, c,
and d such that b × d = na , b � 1, and 0 � c < d. The basis
vectors for all possible unit cells containing na surface atoms
are then given by

(bā1 + cā2,dā2). (A2)

We have used these formulas to obtain all the smallest unit
cells (na � 6) for the hexagonal and the centered-rectangular
geometries.

Once the unit cell has been obtained, then for each value
of x, the problem of obtaining the distinct configurations is
reduced to the simple problem of the number of inequivalent
ways of distributing xna Fe atoms and (1 − x)na Au atoms
among na sites.
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